2025 Vol. 31, No. 3
Article Contents

WANG Haiyang, ZHONG Fujun, PAN Jiayong, XIA Fei, CHEN Zhengle, LI Wenli, LIU Jungang, SUN Yue, YAN Jie, QI Jiaming. 2025. Genesis of the gneissic biotite granite in Lanhe, northern Guangdong: Constraints from zircon U–Pb geochronology, Hf isotopes, and geochemistry. Journal of Geomechanics, 31(3): 539-556. doi: 10.12090/j.issn.1006-6616.2024137
Citation: WANG Haiyang, ZHONG Fujun, PAN Jiayong, XIA Fei, CHEN Zhengle, LI Wenli, LIU Jungang, SUN Yue, YAN Jie, QI Jiaming. 2025. Genesis of the gneissic biotite granite in Lanhe, northern Guangdong: Constraints from zircon U–Pb geochronology, Hf isotopes, and geochemistry. Journal of Geomechanics, 31(3): 539-556. doi: 10.12090/j.issn.1006-6616.2024137

Genesis of the gneissic biotite granite in Lanhe, northern Guangdong: Constraints from zircon U–Pb geochronology, Hf isotopes, and geochemistry

    Fund Project: This research is financially supported by the National Natural Science Foundation of China (Grant Nos. 42362011 and 42272090)
More Information
  • Objective

    The Lanhe pluton in northern Guangdong is located at the southeastern margin of the Zhuguangshan Complex and is primarily composed of gneissic biotite granite; its petrogenesis has not yet been determined.

    Methods

    This study applied LA–ICP–MS zircon U–Pb geochronology, whole-rock geochemistry, and zircon Hf isotope analyses to the Lanhe gneissic biotite granite.

    Results

    U–Pb dating indicates that the emplacement age of the Lanhe gneissic biotite granite is 427 ± 2 Ma, representing a product of the Caledonian magmatic activity. The geochemical characteristics show that the granite has SiO2 contents ranging from 71.53% to 75.41%, high total alkali contents (K2O + Na2O = 7.57%–8.23%), and high A/CNK values (1.00–1.06). It is enriched in Rb, Th, U, and K, but depleted in Ba, Y, Nb, Ta, Sr, and Yb. The LREE/HREE ratios range from 9.49 to 28.15, with significant Eu negative anomalies (δEu = 0.21–0.76). The zircon εHf(t) values of the samples are all negative (–11.8 to –5.2), with corresponding tDM2 values of 1806–2129 Ma.

    Conclusion

    Based on the geochemical and isotopic characteristics, the Lanhe gneissic biotite granite is identified as a highly fractionated I-type granite, primarily formed by partial melting of crustal metasedimentary rocks, including metagraywacke and metapelite. It is likely a product of the multi-stage reworking of the Paleoproterozoic basement during the Neoproterozoic to Early Paleozoic. The comprehensive study suggests that the Lanhe gneissic biotite granite formed in a syn-collisional tectonic setting during the Early Paleozoic in South China. [Significance] Integrated with the Zhuguang magmatic system and regional geological data, the Lanhe pluton likely represents a product of the transition from compressional thickening to post-collisional extension during the Caledonian Orogeny in South China. This transition may have been associated with intracontinental tectonic reorganization or external subduction–collision processes.

  • 加载中
  • [1] ALTHERR R, HOLL A, HEGNER E, et al., 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 50(1-3): 51-73. doi: 10.1016/S0024-4937(99)00052-3

    CrossRef Google Scholar

    [2] BATCHELOR R A, BOWDEN P, 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 48(1-4): 43-55.

    Google Scholar

    [3] BOUVIER A, VERVOORT J D, PATCHETT P J, 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets[J]. Earth and Planetary Science Letters, 273(1-2): 48-57. doi: 10.1016/j.jpgl.2008.06.010

    CrossRef Google Scholar

    [4] CAI D W, TANG Y, ZHANG H, et al., 2017. Petrogenesis and tectonic setting of the Devonian Xiqin A-type granite in the northeastern Cathaysia Block, SE China[J]. Journal of Asian Earth Sciences, 141: 43-58.

    Google Scholar

    [5] CAWOOD P A, ZHAO G C, YAO J L, et al., 2018. Reconstructing South China in Phanerozoic and Precambrian supercontinents[J]. Earth-Science Reviews, 186: 173-194. doi: 10.1016/j.earscirev.2017.06.001

    CrossRef Google Scholar

    [6] CHAPPELL B W, WHITE A J R, 1974. Two contrasting granite types[J]. Pacific Geology, 8: 173-174.

    Google Scholar

    [7] CHAPPELL B W, WHITE A J R, 2001. Two contrasting granite types: 25 years later[J]. Australian Journal of Earth Sciences, 48(4): 489-499.

    Google Scholar

    [8] CHARVET J, SHU L S, FAURE M, et al., 2010. Structural development of the Lower Paleozoic belt of South China: genesis of an intracontinental orogen[J]. Journal of Asian Earth Sciences, 39(4): 309-330.

    Google Scholar

    [9] CHEN B L, GAO Y, WANG Y, et al., 2024. Denudation and preservation of the Changjiang uranium ore field in North Guangdong, China: revealed by apatite fission track thermochronology[J]. Geotectonica et Metallogenia, 48(5): 911-927. (in Chinese with English abstract

    Google Scholar

    [10] CHEN B L, PEI Y R, 2025. Analysis of ore-controlling structure of Lujing uranium ore field in Hunan-Jiangxi border[J]. Acta Geologica Sinica, 1-25. (in Chinese with English abstract

    Google Scholar

    [11] COLEMAN R G, PETERMAN Z E, 1975. Oceanic plagiogranite[J]. Journal of Geophysical Research, 80(8): 1099-1108.

    Google Scholar

    [12] DENG F L, 1987. Isotopic geochronology of the southern Zhuguangshan granite batholith[J]. Geochimica, 16(2): 141-152. (in Chinese with English abstract

    Google Scholar

    [13] DENG P, REN J S, LING H F, et al., 2011. Yanshanian granite batholiths of southern Zhuguang mountian: SHRIMP zircon U-Pb dating and tectonic implications[J]. Geological Review, 57(6): 881-888. (in Chinese with English abstract

    Google Scholar

    [14] DENG P, REN J S, LING H F, et al., 2012. SHRIMP zircon U-Pb ages and tectonic implications for Indosinian granitoids of southern Zhuguangshan granitic composite, South China[J]. Chinese Science Bulletin, 57(13): 1542-1552. doi: 10.1007/s11434-011-4951-8

    CrossRef Google Scholar

    [15] DOUCE A E P, HARRIS N, 1998. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 39(4): 689-710. doi: 10.1093/petroj/39.4.689

    CrossRef Google Scholar

    [16] FENG S J, ZHAO K D, LING H F, et al., 2014. Geochronology, elemental and Nd–Hf isotopic geochemistry of Devonian A-type granites in central Jiangxi, South China: Constraints on petrogenesis and post-collisional extension of the Wuyi–Yunkai orogeny[J]. Lithos, 206-207: 1-18.

    Google Scholar

    [17] GAO S, LUO T C, ZHANG B R, et al., 1999. Structure and composition of the continental crust in East China[J]. Science in China Series D: Earth Sciences, 42(2): 129-140. doi: 10.1007/BF02878511

    CrossRef Google Scholar

    [18] GRIFFIN W L, WANG X, JACKSON S E, et al., 2002. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61(3-4): 237-269.

    Google Scholar

    [19] GUAN Y L, YUAN C, SUN M, et al., 2014. I-type granitoids in the eastern Yangtze Block: implications for the Early Paleozoic intracontinental orogeny in South China[J]. Lithos, 206-207: 34-51.

    Google Scholar

    [20] GUO C L, LIU Z K, 2021. Caledonian granites in South China: the geological and geochemical characteristics on their petrogenesis and mineralization[J]. Journal of Earth Sciences and Environment, 43(6): 927-961. (in Chinese with English abstract

    Google Scholar

    [21] HARRIS N B W, PEARCE J A, TINDLE A G, 1986. Geochemical characteristics of collision zone magmatism[J]. Geological Society, London, Special Publications, 19(1): 67-81.

    Google Scholar

    [22] HU R Z, BI X W, SU W C, et al., 2004. The relationship between uranium metallogenesis and crustal extension during the Cretaceous-Tertiary in South China[J]. Earth Science Frontiers, 11(1): 153-160 (in Chinese with English abstract).

    Google Scholar

    [23] HU R Z, BI X W, ZHOU M F, et al., 2008. Uranium metallogenesis in South China and its relationship to crustal extension during the cretaceous to tertiary[J]. Economic Geology, 103(3): 583-598.

    Google Scholar

    [24] HU R Z, LUO J C, CHEN Y W, et al., 2019. Several progresses in the study of uranium deposits in South China[J]. Acta Petrologica Sinica, 35(9): 2625-2636. (in Chinese with English abstract).

    Google Scholar

    [25] HUA R M, ZHANG W L, CHEN P R, et al., 2013. Relationship between Caledonian granitoids and large-scale mineralization in South China[J]. Geological Journal of China Universities, 19(1): 1-11. (in Chinese with English abstract

    Google Scholar

    [26] HUANG G L, CAO H J, LING H F, et al., 2012. Zircon SHRIMP U-Pb age, geochemistry and genesis of the Youdong granite in northern Guangdong[J]. Acta Geologica Sinica, 86(4): 577-586. (in Chinese with English abstract

    Google Scholar

    [27] HUANG G L, LIU X Y, SUN L Q, et al., 2014. Zircon U-Pb dating, geochemical characteristic and genesis of the Changjiang granite in northern Guangdong[J]. Acta Geologica Sinica, 88(5): 836-849. (in Chinese with English abstract

    Google Scholar

    [28] HUANG X L, YU Y, LI J, et al., 2013. Geochronology and petrogenesis of the early Paleozoic I-type granite in the Taishan area, South China: middle-lower crustal melting during orogenic collapse[J]. Lithos, 177: 268-284. doi: 10.1016/j.lithos.2013.07.002

    CrossRef Google Scholar

    [29] Institute of Geochemistry, Chinese Academy of Sciences, Isotope Geochronology Laboratory, 1972. Study on isotopic ages of granites in the Nanling Mountains and adjacent regions[J]. Geochemistry, 1(2): 119-134.

    Google Scholar

    [30] JENSEN B B, 1973. Patterns of trace element partitioning[J]. Geochimica et Cosmochimica Acta, 37(10): 2227-2242. doi: 10.1016/0016-7037(73)90101-4

    CrossRef Google Scholar

    [31] KONG H, LI H, WU Q H, et al., 2018. Co-development of Jurassic I-type and A-type granites in southern Hunan, South China: Dual control by plate subduction and intraplate mantle upwelling[J]. Geochemistry, 78(4): 500-520. doi: 10.1016/j.chemer.2018.08.002

    CrossRef Google Scholar

    [32] LI F R, PAN J Y, ZHONG F J, et al. , 2025. Petrogenesis and uranium mineralization potential of granites of the Xiaoshan deposit in the Lujing uranium ore field, Jiangxi province[J]. Geoscience, 1-29. (in Chinese with English abstract

    Google Scholar

    [33] LI L M, LIN S F, XING G F, et al., 2022. Identification of ca. 520 Ma mid-ocean-ridge-type Ophiolite suite in the inner Cathaysia block, South China: evidence from shearing-type oceanic Plagiogranite[J]. GSA Bulletin, 134(7-8): 1701-1720. doi: 10.1130/B36088.1

    CrossRef Google Scholar

    [34] LI X H, 1993. On the genesis of caledonian granitoid rocks at Wanyangshan and Zhuguangshan, Southeast China: evidence from trace elements and rare-earth elements geochemistry[J]. Geochimica, 22(1): 35-44. (in Chinese with English abstract

    Google Scholar

    [35] LI X H, HU R Z, RAO B, 1997. Geochronology and geochemistry of cretaceous mafic dikes from northern Guangdong, se China[J]. Geochimica, 26(2): 14-31. (in Chinese with English abstract

    Google Scholar

    [36] LI X H, LI W X, LI Z X, et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 174(1-2): 117-128. doi: 10.1016/j.precamres.2009.07.004

    CrossRef Google Scholar

    [37] LI X H, LI Z X, LI W X, 2014. Detrital zircon U-Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia block, South China: a synthesis[J]. Gondwana Research, 25(3): 1202-1215. doi: 10.1016/j.gr.2014.01.003

    CrossRef Google Scholar

    [38] LI Z X, LI X H, WARTHO J A, et al., 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: new age constraints and pressure–temperature conditions[J]. GSA Bulletin, 122(5-6): 772-793. doi: 10.1130/B30021.1

    CrossRef Google Scholar

    [39] LIN S F, XING G F, DAVIS D W, et al., 2018. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China[J]. Geology, 46(4): 319-322. doi: 10.1130/G39806.1

    CrossRef Google Scholar

    [40] LIU M H, SHI Y, TANG Y L, et al., 2021. Petrogenesis and tectonic significance of Caledonian I-type Granitoids in southeast Guangxi, South China[J]. Earth Science, 46(11): 3965-3992. (in Chinese with English abstract

    Google Scholar

    [41] LIU S F, PENG S B, KUSKY T, et al., 2018. Origin and tectonic implications of an early Paleozoic (460-440Ma) subduction-accretion shear zone in the northwestern Yunkai Domain, South China[J]. Lithos, 322: 104-128. doi: 10.1016/j.lithos.2018.10.006

    CrossRef Google Scholar

    [42] LIU Y D, SU X L, CHENG H Y, et al., 2022. Geochronological and geochemical characteristics of the Caledonian Longquan pluton in southern Zhejiang, and their geological significance[J]. Journal of Geomechanics, 28(2): 237-256. (in Chinese with English abstract

    Google Scholar

    [43] LOISELLE M C, WONES D R, 1979. Characteristics of anorogenic granites[J]. Geological society of America, Abstracts with Programs, 11: 468.

    Google Scholar

    [44] LUDWIG K R, 2003. ISOPLOT 3.00: a geochronological toolkit for Microsoft excel[M]. Berkeley: Berkeley Geochronology Center: 1-70.

    Google Scholar

    [45] MANIAR P D, PICCOLI P M, 1989. Tectonic discrimination of granitoids[J]. GSA Bulletin, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [46] MIDDLEMOST E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9

    CrossRef Google Scholar

    [47] NARDI L V S, FORMOSO M L L, MÜLLER I F, et al., 2013. Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: Uses for provenance and mineral exploration purposes[J]. Chemical Geology, 335: 1-7. doi: 10.1016/j.chemgeo.2012.10.043

    CrossRef Google Scholar

    [48] PEARCE J A, HARRIS N B W, TINDLE A G, 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [49] PECCERILLO A, TAYLOR S R, 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [50] PENG S B, JIN Z M, LIU Y H, et al., 2006. Petrochemistry, chronology and tectonic setting of strong peraluminous anatectic granitoids in Yunkai orogenic belt, western Guangdong province, China[J]. Earth Science—Journal of China University of Geosciences, 31(1): 110-120. (in Chinese with English abstract

    Google Scholar

    [51] PENG S B, LIU S F, LIN M S, et al., 2016a. Early Paleozoic subduction in Cathaysia (I): new evidence from Nuodong ophiolite[J]. Earth Science, 41(5): 765-778. (in Chinese with English abstract

    Google Scholar

    [52] PENG S B, LIU S F, LIN M S, et al., 2016b. Early Paleozoic subduction in Cathaysia (Ⅱ): new evidence from the Dashuang high Magnesian-Magnesian andesite[J]. Earth Science, 41(6): 931-947. (in Chinese with English abstract

    Google Scholar

    [53] PLANK T, LANGMUIR C H, 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 145(3-4): 325-394. doi: 10.1016/S0009-2541(97)00150-2

    CrossRef Google Scholar

    [54] QIU X F, ZHAO X M, YANG H M, et al., 2018. Petrogenesis of the Early Palaeozoic granitoids from the Yunkai massif, South China block: implications for a tectonic transition from compression to extension during the Caledonian orogenic event[J]. Geological Magazine, 155(8): 1776-1792. doi: 10.1017/S0016756817000796

    CrossRef Google Scholar

    [55] SHU L S, 2006. Predevonian tectonic evolution of South China: from Cathaysian block to Caledonian period folded orogenic belt[J]. Geological Journal of China Universities, 12(4): 418-431. (in Chinese with English abstract

    Google Scholar

    [56] SHU L S, FAURE M, JIANG S Y, et al., 2006. SHRIMP zircon U-Pb age, litho- and biostratigraphic analyses of the Huaiyu domain in South China-Evidence for a Neoproterozoic orogen, not late Paleozoic-early Mesozoic collision[J]. Episodes, 29(4): 244-252. doi: 10.18814/epiiugs/2006/v29i4/002

    CrossRef Google Scholar

    [57] SHU L S, FAURE M, YU J H, et al., 2011. Geochronological and geochemical features of the Cathaysia block (South China): new evidence for the Neoproterozoic breakup of Rodinia[J]. Precambrian Research, 187(3-4): 263-276. doi: 10.1016/j.precamres.2011.03.003

    CrossRef Google Scholar

    [58] SHU L S, 2012. An analysis of principal features of tectonic evolution in South China block[J]. Geological Bulletin of China, 31(7): 1035-1053. (in Chinese with English abstract

    Google Scholar

    [59] SHU L S, JAHN B M, CHARVET J, et al., 2014. Early Paleozoic depositional environment and intraplate tectono-magmatism in the Cathaysia Block (South China): Evidence from stratigraphic, structural, geochemical and geochronological investigations[J]. American Journal of Science, 314(1): 154-186. doi: 10.2475/01.2014.05

    CrossRef Google Scholar

    [60] SHU L S, WANG B, CAWOOD P A, et al., 2015. Early Paleozoic and early Mesozoic intraplate tectonic and magmatic events in the Cathaysia block, South China[J]. Tectonics, 34(8): 1600-1621. doi: 10.1002/2015TC003835

    CrossRef Google Scholar

    [61] SHU L S, SONG M J, YAO J L, 2018. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China: COMMENT[J]. Geology, 46(6): e445. doi: 10.1130/G40213C.1

    CrossRef Google Scholar

    [62] SHU L S, CHEN X Y, LOU F S, 2020. Pre-Jurassic tectonics of the South China[J]. Acta Geologica Sinica, 94(2): 333-360. (in Chinese with English abstract

    Google Scholar

    [63] SLÁMA J, KOŠLER J, CONDON D J, et al., 2008. Plešovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249(1-2): 1-35. doi: 10.1016/j.chemgeo.2007.11.005

    CrossRef Google Scholar

    [64] SÖDERLUND J, 2004. Building theories of project management: past research, questions for the future[J]. International Journal of Project Management, 22(3): 183-191. doi: 10.1016/S0263-7863(03)00070-X

    CrossRef Google Scholar

    [65] SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [66] SUN T, 2006. A new map showing the distribution of granites in South China and its explanatory notes[J]. Geological Bulletin of China, 25(3): 332-335. (in Chinese with English abstract

    Google Scholar

    [67] SYLVESTER P J, 1998. Post-collisional strongly peraluminous granites[J]. Lithos, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3

    CrossRef Google Scholar

    [68] TAYLOR S R, MCLENNAN S M, 1985. The continental crust: its composition and evolution[M]. Oxford: Blackwell Scientific Publications: 312.

    Google Scholar

    [69] WANG L J, ZHANG K X, LIN S F, et al., 2022. Origin and age of the Shenshan tectonic mélange in the Jiangshan-Shaoxing-Pingxiang fault and late early Paleozoic juxtaposition of the Yangtze block and the West Cathaysia Terrane, South China[J]. GSA Bulletin, 134(1-2): 113-129. doi: 10.1130/B35963.1

    CrossRef Google Scholar

    [70] WANG L J, LIN S F, XIAO W J, 2023. Yangtze and Cathaysia blocks of South China: their separate positions in Gondwana until early Paleozoic juxtaposition[J]. Geology, 51(8): 723-727.

    Google Scholar

    [71] WANG L J, LIN S F, XIAO W J, et al., 2024. Identifying and characterizing missing source Orogens for Syn-Orogenic basins based on detrital accessory mineral U-Pb geochronology and trace element geochemistry[J]. Geology, 52(8): 577-582. doi: 10.1130/G52212.1

    CrossRef Google Scholar

    [72] WANG L K, ZHANG Y Q, LIU S X, 1975. Multiple emplacements and some geochemical characteristics of the Zhuguangshan granitic batholith, Southern China[J]. Geochimica, 4(3): 189-201. (in Chinese with English abstract

    Google Scholar

    [73] WANG L L, 2015. Geochemistry and petrogenesis of early Paleozoic-Mesozoic granites in Ganzhou, Jiangxi Province, South China block[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract

    Google Scholar

    [74] WANG X L, ZHOU J C, GRIFIIN W L, et al., 2014. Geochemical zonation across a Neoproterozoic orogenic belt: isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China[J]. Precambrian Research, 242: 154-171. doi: 10.1016/j.precamres.2013.12.023

    CrossRef Google Scholar

    [75] WANG Y J, ZHANG A M, FAN W M, et al., 2011. Kwangsian crustal anatexis within the eastern South China Block: geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai domains[J]. Lithos, 127(1-2): 239-260. doi: 10.1016/j.lithos.2011.07.027

    CrossRef Google Scholar

    [76] WANG Y J, FAN W M, ZHANG G W, et al., 2013. Phanerozoic tectonics of the South China block: key observations and controversies[J]. Gondwana Research, 23(4): 1273-1305. doi: 10.1016/j.gr.2012.02.019

    CrossRef Google Scholar

    [77] WATSON E B, HARRISON T M, 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 64(2): 295-304. doi: 10.1016/0012-821X(83)90211-X

    CrossRef Google Scholar

    [78] WHALEN J B, CURRIE K L, CHAPPELL B W, 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [79] WIEDENBECK MAPC, ALLÉ P, CORFU F, et al., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 19(1): 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x

    CrossRef Google Scholar

    [80] WU F Y, LI X H, YANG J H, et al., 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6): 1217-1238. (in Chinese with English abstract

    Google Scholar

    [81] WU Y B, ZHENG Y F, 2004. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 49(15): 1554-1569. doi: 10.1007/BF03184122

    CrossRef Google Scholar

    [82] XIA Y, XU X S, NIU Y L, et al., 2018. Neoproterozoic amalgamation between Yangtze and Cathaysia blocks: the magmatism in various tectonic settings and continent-arc-continent collision[J]. Precambrian Research, 309: 56-87. doi: 10.1016/j.precamres.2017.02.020

    CrossRef Google Scholar

    [83] XIN Y J, LI J H, RATSCHBACHER L, et al., 2020. Early Devonian (415-400 Ma) a-type granitoids and diabases in the Wuyishan, eastern Cathaysia: a signal of crustal extension coeval with the separation of South China from Gondwana[J]. GSA Bulletin, 132(11-12): 2295-2317. doi: 10.1130/B35412.1

    CrossRef Google Scholar

    [84] XU W J, XU X S, 2015. Early Paleozoic intracontinental felsic magmatism in the South China Block: petrogenesis and geodynamics[J]. Lithos, 234-235: 79-92. doi: 10.1016/j.lithos.2015.08.006

    CrossRef Google Scholar

    [85] XU W J, 2017. The petrogenesis of early Paleozoic intracontinental magmatism in the Zhuguang-Wanyang Mts district, Cathaysia block[D]. Nanjing: Nanjing University. (in Chinese with English abstract

    Google Scholar

    [86] XU Y J, CAWOOD P A, DU Y S, 2016. Intraplate orogenesis in response to Gondwana Assembly: Kwangsian Orogeny, South China[J]. American Journal of Science, 316(4): 329-362. doi: 10.2475/04.2016.02

    CrossRef Google Scholar

    [87] YU J H, O’REILLY S Y, WANG L J, et al., 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments[J]. Precambrian Research, 181(1-4): 97-114. doi: 10.1016/j.precamres.2010.05.016

    CrossRef Google Scholar

    [88] ZHANG F F, WANG Y J, ZHANG A M, et al., 2012. Geochronological and geochemical constraints on the Petrogenesis of middle Paleozoic (Kwangsian) massive granites in the eastern South China block[J]. Lithos, 150: 188-208. doi: 10.1016/j.lithos.2012.03.011

    CrossRef Google Scholar

    [89] ZHANG F R, SHU L S, WANG D Z, et al., 2009. Discussions on the tectonic setting of Caledonian granitoids in the eastern segment of South China[J]. Earth Science Frontiers, 16(1): 248-260. (in Chinese with English abstract

    Google Scholar

    [90] ZHANG F R, 2011. The geological and geochemical characteristics and its Petrogenesis for Caledonian granites in the central-southern JiangXi Province[D]. Nanjing: Nanjing University. (in Chinese with English abstract

    Google Scholar

    [91] ZHANG L, CHEN Z Y, LI S R, et al., 2017. Isotope geochronology, geochemistry, and mineral chemistry of the U-bearing and barren granites from the Zhuguangshan Complex, South China: implications for petrogenesis and Uranium Mineralization[J]. Ore Geology Reviews, 91: 1040-1065. doi: 10.1016/j.oregeorev.2017.07.017

    CrossRef Google Scholar

    [92] ZHANG L, CHEN Z Y, LI X F, et al., 2018. Zircon U-Pb geochronology and geochemistry of granites in the Zhuguangshan Complex, South China: Implications for uranium mineralization[J]. Lithos, 308-309: 19-33. doi: 10.1016/j.lithos.2018.02.029

    CrossRef Google Scholar

    [93] ZHANG L, CHEN Z Y, WANG F Y, et al.,2021. Apatite geochemistry as an indicator of petrogenesis and uranium fertility of granites: A case study from the Zhuguangshan batholith, South China[J]. Ore Geology Reviews,128:103886.

    Google Scholar

    [94] ZHANG Q, WANG Y L, JIN W J, et al., 2008. Criteria for the recognition of pre-, syn-and post-orogenic granitic rocks[J]. Geological Bulletin of China, 27(1): 1-18. (in Chinese with English abstract

    Google Scholar

    [95] ZHANG Q, JIANG Y H, WANG G C, et al., 2015. Origin of Silurian gabbros and I-type granites in Central Fujian, SE China: implications for the evolution of the Early Paleozoic orogen of South China[J]. Lithos, 216-217: 285-297. doi: 10.1016/j.lithos.2015.01.002

    CrossRef Google Scholar

    [96] ZHANG S M, 2023. Characteristics, genesis and tectonic significance of the Zhuguangshan composite batholith, South China[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract

    Google Scholar

    [97] ZHAO L, GUO F, ZHANG X B, et al., 2021. Cretaceous crustal melting records of tectonic transition from subduction to slab rollback of the Paleo-Pacific Plate in SE China[J]. Lithos, 384-385: 105985. doi: 10.1016/j.lithos.2021.105985

    CrossRef Google Scholar

    [98] ZHONG Y F, WANG L X, ZHAO J H, et al., 2016. Partial melting of an ancient sub-continental lithospheric mantle in the Early Paleozoic intracontinental regime and its contribution to petrogenesis of the coeval peraluminous granites in South China[J]. Lithos, 264: 224-238. doi: 10.1016/j.lithos.2016.08.026

    CrossRef Google Scholar

    [99] ZHOU H B, PAN J Y, ZHONG F J, et al., 2018. Genesis of fine grained biotite granite in the Changjiang uranium ore field, northern Guangdong of China, and its relation with uranium mineralization[J]. Journal of Mineralogy and Petrology, 38(1): 10-19. (in Chinese with English abstract

    Google Scholar

    [100] ZHU B, 2010. The study of mantle liquid and uranium metallogenesis-take uranium ore field of south Zhuguang mountain as an example[D]. Chengdu: Chengdu University of Technology: 31-57. (in Chinese with English abstract

    Google Scholar

    [101] 陈柏林,高允,王永,等,2024. 粤北长江铀矿田隆升剥露历史和矿床保存:来自磷灰石裂变径迹热年代学的启示[J]. 大地构造与成矿学,48(5):911-927.

    Google Scholar

    [102] 陈柏林,裴英茹,2025. 湘赣边界鹿井铀矿田控矿构造解析[J/OL]. 地质学报,1-25.

    Google Scholar

    [103] 邓访陵,1987. 诸广山花岗岩复式岩基南部的同位素地质年代学[J]. 地球化学,16(2):141-152. doi: 10.3321/j.issn:0379-1726.1987.02.005

    CrossRef Google Scholar

    [104] 邓平,任纪舜,凌洪飞,等,2011. 诸广山南体燕山期花岗岩的锆石SHRIMP U-Pb年龄及其构造意义[J]. 地质论评,57(6):881-888.

    Google Scholar

    [105] 邓平,任纪舜,凌洪飞,等,2012. 诸广山南体印支期花岗岩的SHRIMP锆石U-Pb年龄及其构造意义[J]. 科学通报,57(14):1231-1241.

    Google Scholar

    [106] 高山,骆庭川,张本仁,等,1999. 中国东部地壳的结构和组成[J]. 中国科学(D辑),29(3):204-213.

    Google Scholar

    [107] 郭春丽,刘泽坤,2021. 华南地区加里东期花岗岩:成岩和成矿作用的地质与地球化学特征[J]. 地球科学与环境学报,43(6):927-961.

    Google Scholar

    [108] 胡瑞忠,毕献武,苏文超,等,2004. 华南白垩—第三纪地壳拉张与铀成矿的关系[J]. 地学前缘,2004,11(1):153-160. doi: 10.3321/j.issn:1005-2321.2004.01.012

    CrossRef Google Scholar

    [109] 胡瑞忠,骆金诚,陈佑纬,等,2019. 华南铀矿床研究若干进展[J]. 岩石学报,35(9):2625-2636. doi: 10.18654/1000-0569/2019.09.01

    CrossRef Google Scholar

    [110] 华仁民,张文兰,陈培荣,等,2013. 初论华南加里东花岗岩与大规模成矿作用的关系[J]. 高校地质学,19(1):1-11.

    Google Scholar

    [111] 黄国龙,曹豪杰,凌洪飞,等,2012. 粤北油洞岩体SHRIMP锆石U-Pb年龄、地球化学特征及其成因研究[J]. 地质学报,86(4):57-586.

    Google Scholar

    [112] 黄国龙,刘鑫扬,孙立强,等,2014. 粤北长江岩体的锆石U-Pb定年、地球化学特征及其成因研究[J]. 地质学报,88(5):836-849.

    Google Scholar

    [113] 李芙蓉,潘家永,钟福军,等,2025. 江西鹿井铀矿田小山矿床花岗岩成因及产铀潜力分析[J/OL]. 现代地质,1-29.

    Google Scholar

    [114] 李献华,1993. 万洋山—诸广山加里东期花岗岩的形成机制:微量元素和稀土元素地球化学证据[J]. 地球化学,22(1):35-44. doi: 10.3321/j.issn:0379-1726.1993.01.005

    CrossRef Google Scholar

    [115] 李献华,胡瑞忠,饶冰,1997. 粤北白垩纪基性岩脉的年代学和地球化学[J]. 地球化学,26(2):14-31. doi: 10.3321/j.issn:0379-1726.1997.02.004

    CrossRef Google Scholar

    [116] 刘明辉,时毓,唐远兰,等,2021. 华南桂东南地区加里东期Ⅰ型花岗岩类的岩石成因及构造意义[J]. 地球科学,46(11):3965-3992.

    Google Scholar

    [117] 刘远栋,苏小浪,程海艳,等,2022. 浙南加里东期龙泉岩体年代学、地球化学特征及其地质意义[J]. 地质力学学报,28(2):237-256.

    Google Scholar

    [118] 彭松柏,金振民,刘云华,等,2006. 云开造山带强过铝深熔花岗岩地球化学、年代学及构造背景[J]. 地球科学——中国地质大学学报,31(1):110-120.

    Google Scholar

    [119] 彭松柏,刘松峰,林木森,等,2016a. 华夏早古生代俯冲作用(Ⅰ):来自糯垌蛇绿岩的新证据[J]. 地球科学,41(5):765-778.

    Google Scholar

    [120] 彭松柏,刘松峰,林木森,等,2016b. 华夏早古生代俯冲作用(Ⅱ):大爽高镁—镁质安山岩新证据[J]. 地球科学,41(6):931-947.

    Google Scholar

    [121] 舒良树,2006. 华南前泥盆纪构造演化:从华夏地块到加里东期造山带[J]. 高校地质学报,12(4):418-431. doi: 10.3969/j.issn.1006-7493.2006.04.002

    CrossRef Google Scholar

    [122] 舒良树,2012. 华南构造演化的基本特征[J]. 地质通报,31(7):1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003

    CrossRef Google Scholar

    [123] 舒良树,陈祥云,楼法生,2020. 华南前侏罗纪构造[J]. 地质学报,94(2):333-360. doi: 10.3969/j.issn.0001-5717.2020.02.001

    CrossRef Google Scholar

    [124] 孙涛,2006. 新编华南花岗岩分布图及其说明[J]. 地质通报,25(3):332-335. doi: 10.3969/j.issn.1671-2552.2006.03.002

    CrossRef Google Scholar

    [125] 王丽丽,2015. 华南赣州地区早古生代晚期—中生代花岗岩类地球化学与岩石成因[D]. 北京:中国地质大学(北京).

    Google Scholar

    [126] 王联魁,张玉泉,刘师先,1975. 南岭诸广山花岗岩体的多次侵入活动和某些地球化学特征[J]. 地球化学,4(3):189-201. doi: 10.3321/j.issn:0379-1726.1975.03.004

    CrossRef Google Scholar

    [127] 吴福元,李献华,杨进辉,等,2007. 花岗岩成因研究的若干问题[J]. 岩石学报,23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    CrossRef Google Scholar

    [128] 徐文景,2017. 华夏地块诸广-万洋山地区早古生代陆内岩浆作用与岩石成因[D]. 南京:南京大学.

    Google Scholar

    [129] 张芳荣,舒良树,王德滋,等,2009. 华南东段加里东期花岗岩类形成构造背景探讨[J]. 地学前缘,16(1):248-260. doi: 10.3321/j.issn:1005-2321.2009.01.027

    CrossRef Google Scholar

    [130] 张芳荣,2011. 江西中—南部加里东期花岗岩地质地球化学特征及其成因[D]. 南京:南京大学.

    Google Scholar

    [131] 张旗,王元龙,金惟俊,等,2008. 造山前、造山和造山后花岗岩的识别[J]. 地质通报,27(1):1-18. doi: 10.3969/j.issn.1671-2552.2008.01.001

    CrossRef Google Scholar

    [132] 张素梅,2023. 华南诸广山复式岩基的特征、成因及构造意义[D]. 北京:中国地质科学院.

    Google Scholar

    [133] 中国科学院贵阳地球化学研究所同位素年龄实验室,湖北地质科学研究所同位素年龄实验室,1972. 南岭及其邻区花岗岩同位素年龄的研究[J]. 地球化学,1(2):119-134.

    Google Scholar

    [134] 周航兵,潘家永,钟福军,等,2018. 粤北长江铀矿田细粒黑云母花岗岩的成因及其与铀成矿关系[J]. 矿物岩石,38(1):10-19.

    Google Scholar

    [135] 朱捌,2010. 地幔流体与铀成矿作用研究:以诸广山南部铀矿田为例[D]. 成都:成都理工大学:31-57.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(175) PDF downloads(116) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint