2024 Vol. 30, No. 5
Article Contents

HE Hongping, WANG Heng, LI Xurui, MA Lingya, ZHU Jianxi, YANG Wubin. 2024. Remobilization and transferring of rare earth elements in the formation of regolith-hosted REE deposits. Journal of Geomechanics, 30(5): 707-722. doi: 10.12090/j.issn.1006-6616.2024070
Citation: HE Hongping, WANG Heng, LI Xurui, MA Lingya, ZHU Jianxi, YANG Wubin. 2024. Remobilization and transferring of rare earth elements in the formation of regolith-hosted REE deposits. Journal of Geomechanics, 30(5): 707-722. doi: 10.12090/j.issn.1006-6616.2024070

Remobilization and transferring of rare earth elements in the formation of regolith-hosted REE deposits

    Fund Project: This research is financially supported by the National Natural Science Foundation of China (Grants No. 41921003, 41773113, and 42022012), the Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2019B030302013), and National Key R&D Program of China (Grant No. 2021YFC2901701).
More Information
  • Author Bio: 何宏平,中国科学院院士,研究员,博士生导师。2023年获第十八次李四光地质科学奖科研奖。现任中国科学院广州地球化学研究所所长。曾在法国国家应用科学学院(INSA-Lyon)从事博士后研究工作,并以访问学者身份访学于澳大利亚等国的知名研究机构;任Clays Clay Miner.、Clay Miner.、GSA Bulletin等国际主流期刊副主编。主要研究领域为黏土矿物学、矿物晶体化学、表生成矿、矿物资源利用;已发表SCI论文300多篇,SCI他引15000余次(H-index为70),获国家发明专利51件,出版专著2部,入选科睿唯安地学领域全球高被引学者。曾获国际黏土学会杰出成就奖(AIPEA Medal)、美国黏土学会Jackson奖、中–法科学与应用基金会首届Gilles Kahn奖、广东省自然科学一等奖2项、南粤百杰、金锤奖等荣誉和奖励。任中国矿物岩石地球化学学会副理事长,国际黏土学会矿物命名委员会委员,美国黏土学会奖励委员会委员和矿物命名委员会委员,美国矿物学会会士
  • Objective

    Rare earth elements (REEs) are indispensable for high-tech industries, such as clean energy, national defense, and military industries, rendering them strategically critical minerals. In China, regolith-hosted REE deposits constitute one of the most important REE resources, supplying over 90% global heavy rare earth elements (HREE). Understanding the formation of such REE deposits can provide a theoretical basis for their efficient utilization.

    Methods

    This paper summarizes the recent research results on the two key processes of REE remobilization and transferring and puts forward prospects for future research to deepen the knowledge and understanding of the formation of regolith-hosted REE deposit.

    Results

    These deposits developed primarily in the weathering crusts of REE-rich granitic rocks, with the REE distribution patterns largely reflecting those of the underlying bedrock. The granitoid weathering crusts are primarily developed by chemical and biological weathering. Clay minerals and Fe–Mn (hydr) oxides, resulting from the weathering of major rock-forming minerals, such as feldspar, mica, and amphibole, serve as the primary hosts for REE ions in weathered crusts. These REE ions originate from the weathering and decomposition of REE-bearing accessory minerals in the bedrock, which exhibit varying degrees of susceptibility to weathering. Furthermore, metabolites such as microbial organic acids can breakdown refractory minerals like monazite and xenotime, facilitating REE remobilization. Simultaneously, microbial action can cause significant REE fractionation, and gram-positive bacteria are significantly more selective for HREE than for LREE. During weathering and leaching processes, REE primarily form REE complex ions within weathering crusts and are then transferred by meteoric water or groundwater. This process is primarily controlled by factors such as pH, secondary mineral formation, and the weathering environment. Notably, in addition to inorganic ligands, such as F and ${\mathrm{CO}}_3^{2-} $, organic matter can directly interact with REE, acting as organic ligands that aid in REE transfer.

    Conclusion

    Consequently, the REE remobilization and transferring mechanisms in regolith-hosted REE deposits are predominantly controlled by chemical and biological weathering processes, which result from interactions between inorganic and organic agents. However, the quantitative impact of these processes on the formation of these deposits requires further evaluation.

  • 加载中
  • [1] BAIDYA A S, PAL D C, UPADHYAY D, 2019. Chemical weathering of garnet in Banded Iron Formation: implications for the mechanism and sequence of secondary mineral formation and mobility of elements[J]. Geochimica et Cosmochimica Acta, 265: 198-220. doi: 10.1016/j.gca.2019.08.037

    CrossRef Google Scholar

    [2] BANFIELD J F, 1985. The mineralogy and chemistry of granite weathering[D]. Canberra: The Australian National University.

    Google Scholar

    [3] BAO Z W, 1992. A geochemical study of the granitoid weathering crust in Southeast China[J]. Geochimica, 21(2): 166-174. (in Chinese with English abstract

    Google Scholar

    [4] BAO Z W, ZHAO Z H, 2008. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China[J]. Ore Geology Reviews, 33(3-4): 519-535. doi: 10.1016/j.oregeorev.2007.03.005

    CrossRef Google Scholar

    [5] BECKER S, BULLMANN M, DIETZE H J, et al., 1986. Mass spectrographic analysis of selected chemical elements by microbial leaching of zircon[J]. Fresenius’ Zeitschrift für Analytische Chemie, 324(1): 37-42.

    Google Scholar

    [6] BERGER A, JANOTS E, GNOS E, et al., 2014. Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar[J]. Applied Geochemistry, 41: 218-228. doi: 10.1016/j.apgeochem.2013.12.013

    CrossRef Google Scholar

    [7] BERN C R, YESAVAGE T, FOLEY N K, 2017. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: an effect of hydrothermal alteration[J]. Journal of Geochemical Exploration, 172: 29-40. doi: 10.1016/j.gexplo.2016.09.009

    CrossRef Google Scholar

    [8] BIDDAU R, CIDU R, FRAU F, 2002. Rare earth elements in waters from the albitite-bearing granodiorites of Central Sardinia, Italy[J]. Chemical Geology, 182(1): 1-14. doi: 10.1016/S0009-2541(01)00272-8

    CrossRef Google Scholar

    [9] BORST A M, SMITH M P, FINCH A A, et al., 2020. Adsorption of rare earth elements in regolith-hosted clay deposits[J]. Nature Communications, 11(1): 4386. doi: 10.1038/s41467-020-17801-5

    CrossRef Google Scholar

    [10] BRISSON V L, ZHUANG W Q, ALVAREZ-COHEN L, 2016. Bioleaching of rare earth elements from monazite sand[J]. Biotechnology and Bioengineering, 113(2): 339-348. doi: 10.1002/bit.25823

    CrossRef Google Scholar

    [11] CHAÏRAT C, SCHOTT J, OELKERS E H, et al., 2007. Kinetics and mechanism of natural fluorapatite dissolution at 25 °C and pH from 3 to 12[J]. Geochimica et Cosmochimica Acta, 71(24): 5901-5912. doi: 10.1016/j.gca.2007.08.031

    CrossRef Google Scholar

    [12] CHEN B F, ZOU X Y, PENG L L, et al., 2019. Geological characteristics and prospecting direction of the metamorphic rock ion-adsorption REE ore deposit in South Jiangxi[J]. East China Geology, 40(2): 143-151. (in Chinese with English abstract

    Google Scholar

    [13] CHEN Z C, YU S Y, FU Q C, et al., 1997. Study on the organic metallogenic mechanism of weathering crust REE deposits[J]. Journal of the Chinese Rare Earth Society, 15(3): 244-250. (in Chinese with English abstract

    Google Scholar

    [14] CUADROS J, 2017. Clay minerals interaction with microorganisms: A review[J]. Clay Minerals, 52(2): 235-261. doi: 10.1180/claymin.2017.052.2.05

    CrossRef Google Scholar

    [15] DB36/T 1158-2019, 2019. Specifications for weathered crust ion-absorbed rare earth mineral geological exploration[S]. Nanchang: Department of Natural Resources of Jiangxi Province. (in Chinese)

    Google Scholar

    [16] DOU J Z, WANG C Y, XING Y L, et al., 2023. Redistribution of REE in granitic bedrocks during incipient weathering: insights into the role of groundwater in the formation of regolith-hosted REE deposit[J]. Contributions to Mineralogy and Petrology, 178(10): 69. doi: 10.1007/s00410-023-02054-4

    CrossRef Google Scholar

    [17] EHRLICH H L, 1998. Geomicrobiology: its significance for geology[J]. Earth-Science Reviews, 45(1-2): 45-60. doi: 10.1016/S0012-8252(98)00034-8

    CrossRef Google Scholar

    [18] FAN C X, XU C, SHI A G, et al., 2023. Origin of heavy rare earth elements in highly fractionated peraluminous granites[J]. Geochimica et Cosmochimica Acta, 343: 371-383. doi: 10.1016/j.gca.2022.12.019

    CrossRef Google Scholar

    [19] FARRAH H, PICKERING W F, 1979. pH effects in the adsorption of heavy metal ions by clays[J]. Chemical Geology, 25(4): 317-326. doi: 10.1016/0009-2541(79)90063-9

    CrossRef Google Scholar

    [20] FATHOLLAHZADEH H, HACKETT M J, KHALEQUE H N, et al., 2018. Better together: potential of co-culture microorganisms to enhance bioleaching of rare earth elements from monazite[J]. Bioresource Technology Reports, 3: 109-118. doi: 10.1016/j.biteb.2018.07.003

    CrossRef Google Scholar

    [21] FINLAY R D, MAHMOOD S, ROSENSTOCK N, et al., 2020. Reviews and syntheses: biological weathering and its consequences at different spatial levels - from nanoscale to global scale[J]. Biogeosciences, 17(6): 1507-1533. doi: 10.5194/bg-17-1507-2020

    CrossRef Google Scholar

    [22] FU W, LUO P, HU Z Y, et al., 2019. Enrichment of ion-exchangeable rare earth elements by felsic volcanic rock weathering in South China: genetic mechanism and formation preference[J]. Ore Geology Reviews, 114: 103120. doi: 10.1016/j.oregeorev.2019.103120

    CrossRef Google Scholar

    [23] Gangnan Geological Brigade of Jiangxi Bureau of Geology and Mineral Resource, 1985. Exploration report of ion adosrption type REE resources survey in Jiangxi Province [R]. Nanchang: Gangnan Geological Brigade of Jiangxi Bureau of Geology and Mineral Resource. (in Chinese)

    Google Scholar

    [24] GARCÍA M V R, KRZEMIEŃ A, DEL CAMPO M Á M, et al., 2017. Rare earth elements mining investment: it is not all about China[J]. Resources Policy, 53: 66-76. doi: 10.1016/j.resourpol.2017.05.004

    CrossRef Google Scholar

    [25] GIERÉ R, SORENSEN S S, 2004. Allanite and other REE-rich epidote-group minerals[J]. Reviews in Mineralogy and Geochemistry, 56(1): 431-493. doi: 10.2138/gsrmg.56.1.431

    CrossRef Google Scholar

    [26] HARLAVAN Y, EREL Y, 2002. The release of Pb and REE from granitoids by the dissolution of accessory phases[J]. Geochimica et Cosmochimica Acta, 66(5): 837-848. doi: 10.1016/S0016-7037(01)00806-7

    CrossRef Google Scholar

    [27] HE H P, YANG W B, 2022. REE mineral resources in China: review and perspective[J]. Geotectonica et Metallogenia, 46(5): 829-841. (in Chinese with English abstract

    Google Scholar

    [28] HE L Y, WANG S N, 1989. The ion adsorption type rare earth deposits in South China[J]. Chinese Rare Earths, 10(1): 39-44. (in Chinese)

    Google Scholar

    [29] HE Y, CHENG L, LI Y, et al., 2015. The mineralization mechanism of the ion adsorption type rare earths ore and prospecting marks[J]. Chinese Rare Earths, 36(4): 98-103. (in Chinese with English abstract

    Google Scholar

    [30] HE Y L, MA L Y, LI X R, et al., 2023. Mobilization and fractionation of rare earth elements during experimental bio-weathering of granites[J]. Geochimica et Cosmochimica Acta, 343: 384-395. doi: 10.1016/j.gca.2022.12.027

    CrossRef Google Scholar

    [31] HE Y L, MA L Y, LIANG X L, et al., 2024. Resistant rare earth phosphates as possible sources of environmental dissolved rare earth elements: insights from experimental bio-weathering of xenotime and monazite[J]. Chemical Geology, 661: 122186. doi: 10.1016/j.chemgeo.2024.122186

    CrossRef Google Scholar

    [32] HU C S, 1986. Study on mineralization regularity of ion-adsorption type REE deposits in southern Jiangxi Province[R]. Nanchang: Gangnan Geological Brigade of Jiangxi Bureau of Geology and Mineral Resource. (in Chinese)

    Google Scholar

    [33] HUANG D H, WU C Y, HAN J Z, 1988. REE Geochemistry and mineralization characteristics of the Zudong and Guanxi granites, Jiangxi Province[J]. Acta Geologica Sinica, 62(4): 311-328. (in Chinese with English abstract

    Google Scholar

    [34] HUANG J, TAN W, LIANG X L, et al., 2021a. REE fractionation controlled by REE speciation during formation of the Renju regolith-hosted REE deposits in Guangdong Province, South China[J]. Ore Geology Reviews, 134: 104172. doi: 10.1016/j.oregeorev.2021.104172

    CrossRef Google Scholar

    [35] HUANG J, TAN W, LIANG X L, et al., 2022. Weathering characters of REE-bearing accessory minerals and their effects on REE mineralization in Renju regolith-hosted REE deposits in Guangdong Province[J]. Geochimica, 51(6): 684-695. (in Chinese with English abstract

    Google Scholar

    [36] HUANG Y F, HE H P, LIANG X L, et al., 2021b. Characteristics and genesis of ion adsorption type REE deposits in the weathering crusts of metamorphic rocks in Ningdu, Ganzhou, China[J]. Ore Geology Reviews, 135: 104173. doi: 10.1016/j.oregeorev.2021.104173

    CrossRef Google Scholar

    [37] HUTCHENS E, VALSAMI-JONES E, HAROUIYA N, et al., 2006. An experimental investigation of the effect of Bacillus megaterium on apatite dissolution[J]. Geomicrobiology Journal, 23(3-4): 177-182. doi: 10.1080/01490450600599239

    CrossRef Google Scholar

    [38] LEE J H, BYRNE R H, 1992. Examination of comparative rare earth element complexation behavior using linear free-energy relationships[J]. Geochimica et Cosmochimica Acta, 56(3): 1127-1137. doi: 10.1016/0016-7037(92)90050-S

    CrossRef Google Scholar

    [39] LEE J H, BYRNE R H, 1993. Complexation of trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions[J]. Geochimica et Cosmochimica Acta, 57(2): 295-302. doi: 10.1016/0016-7037(93)90432-V

    CrossRef Google Scholar

    [40] LI M Y H, ZHAO W W, ZHOU M F, 2017. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: an integrated genetic model[J]. Journal of Asian Earth Sciences, 148: 65-95. doi: 10.1016/j.jseaes.2017.08.004

    CrossRef Google Scholar

    [41] LI M Y H, ZHOU M F, WILLIAMS-JONES A E, 2019. The genesis of regolith-hosted heavy rare earth element deposits: insights from the world-class Zudong deposit in Jiangxi Province, South China[J]. Economic Geology, 114(3): 541-568. doi: 10.5382/econgeo.4642

    CrossRef Google Scholar

    [42] LI M Y H, ZHOU M F, WILLIAMS-JONES A E, 2020. Controls on the dynamics of rare earth elements during subtropical hillslope processes and formation of regolith-hosted deposits[J]. Economic Geology, 115(5): 1097-1118. doi: 10.5382/econgeo.4727

    CrossRef Google Scholar

    [43] LI M Y H, KWONG H T, WILLIAMS-JONES A E, et al., 2022a. The thermodynamics of rare earth element liberation, mobilization and supergene enrichment during groundwater-regolith interaction[J]. Geochimica et Cosmochimica Acta, 330: 258-277. doi: 10.1016/j.gca.2021.05.002

    CrossRef Google Scholar

    [44] LI S Y, HE H P, LIANG X L, et al., 2022b. Transformation of ordered albite into kaolinite: implication for the “Booklet” morphology[J]. ACS Earth and Space Chemistry, 6(4): 1133-1142. doi: 10.1021/acsearthspacechem.2c00030

    CrossRef Google Scholar

    [45] LI X R, LIANG X L, HE H P, et al., 2022c. Microorganisms accelerate REE mineralization in supergene environments[J]. Applied and Environmental Microbiology, 88(13): e00632-22.

    Google Scholar

    [46] LI X R, TAN W, LIANG X L, et al., 2024. Adsorption behavior and mechanism of REEs by Bacillus pumilus isolated from ion adsorption REE deposit in South China[J]. Geochimica, 53(1): 77-86. (in Chinese with English abstract

    Google Scholar

    [47] LIANG X L, TAN W, MA L Y, et al., 2022. Mineral surface reaction constraints on the formation of ion-adsorption rare earth element deposits[J]. Earth Science Frontiers, 29(1): 29-41. (in Chinese with English abstract

    Google Scholar

    [48] LU L, WANG D H, WANG C H, et al., 2019. Mineralization regularity of ion-adsorption type REE deposits on Lincang granite in Yunnan Province[J]. Acta Geologica Sinica, 93(6): 1466-1478. (in Chinese with English abstract

    Google Scholar

    [49] MA Y J, HUO R K, XU Z F, et al., 2004. REE behavior and influence factors during chemical weathering[J]. Advance in Earth Sciences, 19(1): 87-94. (in Chinese with English abstract

    Google Scholar

    [50] NESBITT H W, 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite[J]. Nature, 279(5710): 206-210. doi: 10.1038/279206a0

    CrossRef Google Scholar

    [51] OHTA A, KAWABE I, 2001. REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2[J]. Geochimica et Cosmochimica Acta, 65(5): 695-703. doi: 10.1016/S0016-7037(00)00578-0

    CrossRef Google Scholar

    [52] OWUSU-FORDJOUR E Y, YANG X B, 2023. Bioleaching of rare earth elements challenges and opportunities: a critical review[J]. Journal of Environmental Chemical Engineering, 11(5): 110413. doi: 10.1016/j.jece.2023.110413

    CrossRef Google Scholar

    [53] PRICE J R, VELBEL M A, PATINO L C, 2005. Allanite and epidote weathering at the Coweeta Hydrologic Laboratory, western North Carolina, U. S. A.[J]. American Mineralogist, 90(1): 101-114. doi: 10.2138/am.2005.1444

    CrossRef Google Scholar

    [54] PRICE J R, BRYAN-RICKETTS D S, ANDERSON D, et al., 2013. Weathering of almandine garnet: influence of secondary minerals on the rate-determining step, and implications for regolith-scale Al mobilization[J]. Clays and Clay Minerals, 61(1): 34-56. doi: 10.1346/CCMN.2013.0610104

    CrossRef Google Scholar

    [55] QIN F, TAN J, ZHOU Y Q, et al., 2019. Characteristics and genesis of ion-adsorbed rare-earth deposits in volcanic weathering crust in Chongzuo area of Guangxi[J]. Mineral Resources and Geology, 33(2): 234-241. (in Chinese with English abstract

    Google Scholar

    [56] QUINN K A, BYRNE R H, SCHIJF J, 2006. Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: influence of pH and ionic strength[J]. Marine Chemistry, 99(1-4): 128-150. doi: 10.1016/j.marchem.2005.05.011

    CrossRef Google Scholar

    [57] SANEMATSU K, KON Y, IMAI A, et al., 2013. Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand[J]. Mineralium Deposita, 48(4): 437-451. doi: 10.1007/s00126-011-0380-5

    CrossRef Google Scholar

    [58] SANEMATSU K, WATANABE Y, 2016. Characteristics and genesis of ion adsorption-type rare earth element deposits[M]//VERPLANCK P L, HITZMAN M W. Rare earth and critical elements in ore deposits. Littleton: Society of Economic Geologists, Inc. : 55-79.

    Google Scholar

    [59] SOLDEN L, LLOYD K, WRIGHTON K, 2016. The bright side of microbial dark matter: lessons learned from the uncultivated majority[J]. Current Opinion in Microbiology, 31: 217-226. doi: 10.1016/j.mib.2016.04.020

    CrossRef Google Scholar

    [60] SUN Q B, LIAN B, 2019. The different roles of Aspergillus nidulans carbonic anhydrases in wollastonite weathering accompanied by carbonation[J]. Geochimica et Cosmochimica Acta, 244: 437-450. doi: 10.1016/j.gca.2018.10.022

    CrossRef Google Scholar

    [61] TAUNTON A E, WELCH S A, BANFIELD J F, 2000. Microbial controls on phosphate and lanthanide distributions during granite weathering and soil formation[J]. Chemical Geology, 169(3-4): 371-382. doi: 10.1016/S0009-2541(00)00215-1

    CrossRef Google Scholar

    [62] VAN SCHÖLL L, KUYPER T W, SMITS M M, et al., 2008. Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles[J]. Plant and Soil, 303(1-2): 35-47. doi: 10.1007/s11104-007-9513-0

    CrossRef Google Scholar

    [63] VELBEL M A, 1993. Formation of protective surface layers during silicate-mineral weathering under well-leached, oxidizing conditions[J]. American Mineralogist, 78(3-4): 405-414.

    Google Scholar

    [64] VELBEL M A, 2009. Dissolution of olivine during natural weathering[J]. Geochimica et Cosmochimica Acta, 73(20): 6098-6113. doi: 10.1016/j.gca.2009.07.024

    CrossRef Google Scholar

    [65] VELBEL M A, 2014. Etch-pit size, dissolution rate, and time in the experimental dissolution of olivine: implications for estimating olivine lifetime at the surface of Mars[J]. American Mineralogist, 99(11-12): 2227-2233. doi: 10.2138/am-2014-4654

    CrossRef Google Scholar

    [66] WANG D H, ZHAO Z, YU Y, et al., 2013. Progress, problems and research orientation of ion-adsorption type rare earth resources[J]. Rock and Mineral Analysis, 32(5): 796-802. (in Chinese with English abstract

    Google Scholar

    [67] WANG G F, XU J, RAN L Y, et al., 2023a. A green and efficient technology to recover rare earth elements from weathering crusts[J]. Nature Sustainability, 6(1): 81-92.

    Google Scholar

    [68] WANG H, HE H P, YANG W B, et al., 2023b. Zircon texture and composition fingerprint HREE enrichment in muscovite granite bedrock of the Dabu ion-adsorption REE deposit, South China[J]. Chemical Geology, 616: 121231. doi: 10.1016/j.chemgeo.2022.121231

    CrossRef Google Scholar

    [69] WANGER G, SOUTHAM G, ONSTOTT T C, 2006. Structural and chemical characterization of a natural fracture surface from 2.8 kilometers below land surface: biofilms in the deep subsurface[J]. Geomicrobiology Journal, 23(6): 443-452. doi: 10.1080/01490450600875746

    CrossRef Google Scholar

    [70] WEI L L, LI Y, NOGUERA D R, et al., 2017. Adsorption of Cu2+ and Zn2+ by extracellular polymeric substances (EPS) in different sludges: effect of EPS fractional polarity on binding mechanism[J]. Journal of Hazardous Materials, 321: 473-483. doi: 10.1016/j.jhazmat.2016.05.016

    CrossRef Google Scholar

    [71] WEI Z W, 2019. Study on the bacterial diversity in the restoration area of rare earth mine tailings of Gannan[D]. Wuxi: Jiangnan University. (in Chinese with English abstract

    Google Scholar

    [72] WOOD S A, 1990. The aqueous geochemistry of the rare-earth elements and yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters[J]. Chemical Geology, 82: 159-186. doi: 10.1016/0009-2541(90)90080-Q

    CrossRef Google Scholar

    [73] WU C Y, HUANG D H, GUO Z X, 1989. REE geochemistry in the weathering process of granites in Longnan County, Jiangxi Province[J]. Acta Geologica Sinica, 63(4): 349-362. (in Chinese with English abstract

    Google Scholar

    [74] WU C Y, BAI G, HUANG D H, et al. , 1992. Characteristics and significance of HREE-rich granitoids of the Nanling Mountain area[J]. Bulletin of the Chinese Academy of Geological Sciences(13): 43-58. (in Chinese with English abstract

    Google Scholar

    [75] WU L L, JACOBSON A D, HAUSNER M, 2008. Characterization of elemental release during microbe–granite interactions at T = 28 oC[J]. Geochimica et Cosmochimica Acta, 72(4): 1076-1095. doi: 10.1016/j.gca.2007.11.025

    CrossRef Google Scholar

    [76] WU Q F, HU H B, ZHANG X, 2018. Effect of Aspergillus niger and its metabolites on weathering of granite[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 42(1): 81-88. (in Chinese with English abstract

    Google Scholar

    [77] XU C, KYNICKÝ J, SMITH M P, et al., 2017. Origin of heavy rare earth mineralization in South China[J]. Nature Communications, 8: 14598. doi: 10.1038/ncomms14598

    CrossRef Google Scholar

    [78] YANG C S, GU Z F, WANG B, et al., 2015. Content and mineralization of Xunwu rare earth ore[J]. Bulletin of the Chinese Ceramic Society, 34(S1): 231-233. (in Chinese with English abstract

    Google Scholar

    [79] YANG M J, LIANG X L, MA L Y, et al., 2019. Adsorption of REEs on kaolinite and halloysite: a link to the REE distribution on clays in the weathering crust of granite[J]. Chemical Geology, 525: 210-217. doi: 10.1016/j.chemgeo.2019.07.024

    CrossRef Google Scholar

    [80] YANG X M, ZHANG P S, 1992. Study on the occurrence state and mass balance of REE in granites[J]. Chinese Rare Earths, 13(5): 6-11. (in Chinese)

    Google Scholar

    [81] ZHANG B, ZHU X P, ZHANG B H, et al., 2019. Geochemical characteristics of Tuguanzhai ion-adsorption type REE deposit in Tengchong, Yunnan[J]. Journal of the Chinese Society of Rare Earths, 37(4): 491-506. (in Chinese with English abstract

    Google Scholar

    [82] ZHANG L M, DONG H L, LIU Y, et al., 2018. Bioleaching of rare earth elements from bastnaesite-bearing rock by actinobacteria[J]. Chemical Geology, 483: 544-557. doi: 10.1016/j.chemgeo.2018.03.023

    CrossRef Google Scholar

    [83] ZHANG P S, TAO K J, YANG Z M, et al. , 1998. Rare earth mineralogy in China[M]. Beijing: Science Press. (in Chinese)

    Google Scholar

    [84] ZHANG Z H, 1990. A study on weathering crust ion adsorption type REE deposits, South China[J]. Contributions to Geology and Mineral Resources Research, 5(1): 57-71. (in Chinese with English abstract

    Google Scholar

    [85] ZHAO Z, WANG D H, CHEN Z H, et al., 2017. Progress of research on metallogenic regularity of ion-adsorption type REE deposit in the Nanling Range[J]. Acta Geologica Sinica, 91(12): 2814-2827. (in Chinese with English abstract

    Google Scholar

    [86] ZHAO Z, CHEN Z H, ZOU X Y, et al., 2018. REE mineralization of epimetamorphic rocks from an ion-adsorption type REE deposit in southern Jiangxi Province[J]. Earth Science, 43(10): 3652-3663. (in Chinese with English abstract

    Google Scholar

    [87] ZHOU M F, LI M Y H, WANG Z C, et al., 2020. The genesis of regolith-hosted rare earth element and scandium deposits: current understanding and outlook to future prospecting[J]. Chinese Science Bulletin, 65: 3809-3824. (in Chinese with English abstract doi: 10.1360/TB-2020-0350

    CrossRef Google Scholar

    [88] 包志伟,1992. 华南花岗岩风化壳稀土元素地球化学研究[J]. 地球化学,21(2):166-174.

    Google Scholar

    [89] 陈斌锋,邹新勇,彭琳琳,等,2019. 赣南地区变质岩离子吸附型稀土矿床地质特征及找矿方向[J]. 华东地质,40(2):143-151.

    Google Scholar

    [90] 陈志澄,俞受鋆,符群策,等,1997. 风化壳稀土矿有机成矿机理研究[J]. 中国稀土学报,15(3):244-250.

    Google Scholar

    [91] DB36/T 1158-2019,2019. 风化壳离子吸附型稀土矿产地质勘查规范[S]. 南昌:江西省自然资源厅.

    Google Scholar

    [92] 何宏平,杨武斌,2022. 我国稀土资源现状和评价[J]. 大地构造与成矿学,46(5):829-841.

    Google Scholar

    [93] 贺伦燕,王似男,1989. 我国南方离子吸附型稀土矿[J]. 稀土,10(1):39-44.

    Google Scholar

    [94] 何耀,程柳,李毅,等,2015. 离子吸附型稀土矿的成矿机理及找矿标志[J]. 稀土,36(4):98-103.

    Google Scholar

    [95] 胡淙声,1986. 赣南离子吸附型稀土矿成矿规律研究[R]. 南昌:江西省地质矿产局赣南地质调查大队.

    Google Scholar

    [96] 黄典豪,吴澄宇,韩久竹,1988. 江西足洞和关西花岗岩的稀土元素地球化学及矿化特征[J]. 地质学报,62(4):311-328.

    Google Scholar

    [97] 黄健,谭伟,梁晓亮,等,2022. 富稀土副矿物的风化特征及其对稀土成矿过程的影响:以广东仁居离子吸附型稀土矿床为例[J]. 地球化学,51(6):684-695.

    Google Scholar

    [98] 江西省地质矿产局赣南地质调查大队,1985. 江西省离子吸附型稀土资源勘查报告[R]. 南昌:江西省地质矿产局赣南地质调查大队.

    Google Scholar

    [99] 李旭锐,谭伟,梁晓亮,等,2024. 一株分离自华南离子吸附型稀土矿的短小芽孢杆菌对稀土元素的吸附行为及机理研究[J]. 地球化学,53(1):77-86.

    Google Scholar

    [100] 梁晓亮,谭伟,马灵涯,等,2022. 离子吸附型稀土矿床形成的矿物表/界面反应机制[J]. 地学前缘,29(1):29-41.

    Google Scholar

    [101] 陆蕾,王登红,王成辉,等,2019. 云南临沧花岗岩中离子吸附型稀土矿床的成矿规律[J]. 地质学报,93(6):1466-1478.

    Google Scholar

    [102] 马英军,霍润科,徐志方,等,2004. 化学风化作用中的稀土元素行为及其影响因素[J]. 地球科学进展,19(1):87-94.

    Google Scholar

    [103] 覃丰,谭杰,周业泉,等,2019. 广西崇左地区火山岩风化壳离子吸附型稀土矿床地质特征及成因[J]. 矿产与地质,33(2):234-241.

    Google Scholar

    [104] 王登红,赵芝,于扬,等,2013. 离子吸附型稀土资源研究进展、存在问题及今后研究方向[J]. 岩矿测试,32(5):796-802.

    Google Scholar

    [105] 魏志文,2019. 赣南稀土尾矿修复区细菌多样性研究[D]. 无锡:江南大学.

    Google Scholar

    [106] 吴澄宇,黄典豪,郭中勋,1989. 江西龙南地区花岗岩风化壳中稀土元素的地球化学研究[J]. 地质学报,63(4):349-362.

    Google Scholar

    [107] 吴澄宇,白鸽,黄典豪,等,1992. 南岭富重稀土花岗岩类的特征和意义[J]. 中国地质科学院院报:43-58.

    Google Scholar

    [108] 吴秋芳,胡海波,张鑫,2018. 黑曲霉及其代谢产物对花岗岩风化作用的影响[J]. 南京林业大学学报(自然科学版),42(1):81-88.

    Google Scholar

    [109] 杨昌善,谷志峰,王宾,等,2015. 寻乌稀土矿的稀土含量及成矿原理研究[J]. 硅酸盐通报,34(S1):231-233.

    Google Scholar

    [110] 杨学明,张培善,1992. 花岗岩中稀土元素的赋存状态及质量平衡研究[J]. 稀土,13(5):6-11.

    Google Scholar

    [111] 张彬,祝向平,张斌辉,等,2019. 云南腾冲土官寨离子吸附型稀土矿床地球化学特征[J]. 中国稀土学报,37(4):491-506.

    Google Scholar

    [112] 张培善,陶克捷,杨主明,等,1998. 中国稀土矿物学[M]. 北京:科学出版社.

    Google Scholar

    [113] 张祖海,1990. 华南风化壳离子吸附型稀土矿床[J]. 地质找矿论丛,5(1):57-71.

    Google Scholar

    [114] 赵芝,王登红,陈郑辉,等,2017. 南岭离子吸附型稀土矿床成矿规律研究新进展[J]. 地质学报,91(12):2814-2827.

    Google Scholar

    [115] 赵芝,陈郑辉,邹新勇,等,2018. 赣南某离子吸附型稀土矿床浅变质岩的矿化特征[J]. 地球科学,43(10):3652-3663.

    Google Scholar

    [116] 周美夫,李欣禧,王振朝,等,2020. 风化壳型稀土和钪矿床成矿过程的研究进展和展望[J]. 科学通报,65(33):3809-3824.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(292) PDF downloads(25) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint