2024 Vol. 30, No. 6
Article Contents

YANG Yuqing, GAO Peng, ZHANG Jian, LIU Xiaoguang, CHENG Changquan, YIN Changqing, QIAN Jiahui. 2024. Geochemical characteristics of apatite in metabasic rocks under different metamorphic conditions: a case study from the Paleoproterozoic Trans-North China Orogen. Journal of Geomechanics, 30(6): 991-1011. doi: 10.12090/j.issn.1006-6616.2024046
Citation: YANG Yuqing, GAO Peng, ZHANG Jian, LIU Xiaoguang, CHENG Changquan, YIN Changqing, QIAN Jiahui. 2024. Geochemical characteristics of apatite in metabasic rocks under different metamorphic conditions: a case study from the Paleoproterozoic Trans-North China Orogen. Journal of Geomechanics, 30(6): 991-1011. doi: 10.12090/j.issn.1006-6616.2024046

Geochemical characteristics of apatite in metabasic rocks under different metamorphic conditions: a case study from the Paleoproterozoic Trans-North China Orogen

    Fund Project: This research is financially supported by the National Natural Science Foundation of China (Grant No. 42025204).
More Information
  • Objective

    Apatite is a common accessory mineral that is widely distributed in various rock types. Its U-Pb age, trace elements (particularly REE, Th, U, and Sr), and Sr-Nd isotopic compositions provide important information on its chronology and magmatism. However, the geochemical behavior at different metamorphic levels during orogenesis remains unclear. As a typical continent-to-continent collisional orogenic belt in the Paleoproterozoic, the Trans-North China Orogen (TNCO) has recorded an integrated metamorphic sequence ranging from greenschist to amphibolite to granulite facies. Therefore, it is an ideal area to study the geochemical behavior of apatite during various grades of metamorphism involving the orogenic process.

    Methods

    In this study, we systematically collected metabasic samples of different metamorphic grades, including greenschist, amphibolite, and mafic granulite, in the Wutai-Hengshan area of the TNCO. We conducted detailed petrographic observations and geochemical analyses of apatite grains from metabasic rocks with different metamorphic grades.

    Results

    Our results showed that the apatite grains from the greenschist samples had both magmatic and metamorphic origins. The apatite grains in the amphibolite samples were mainly of metamorphic origin. In contrast, the grains from the granulite samples were closely related to crustal anatexis, exhibiting geochemical characteristics of magmatic-origin apatite.

    Conclusion

    This study shows that trace element variations in apatite can clearly reflect the influence of metamorphic grades, crustal anatexis, and coexisting rock-forming minerals with variations in temperature and pressure conditions during metamorphism.

    Significance

    The results of this study provide new constraints to our understanding of elemental migration and the geochemical balance within apatite during orogeny.

  • 加载中
  • [1] BAI J, 1986. The Early Precambrian geology of Wutaishan[M]. Tianjin: Tianjin Science and Technology Press: 1-475. (in Chinese)

    Google Scholar

    [2] BRUAND E, FOWLER M, STOREY C, et al., 2017. Apatite trace element and isotope applications to petrogenesis and provenance[J]. American Mineralogist, 102(1): 75-84. doi: 10.2138/am-2017-5744

    CrossRef Google Scholar

    [3] CHEN H X, LIU J H, ZHANG Q W L, et al., 2020. A long-lived tectono-metamorphic event in the Late Paleoproterozoic: evidence from SIMS U-Th-Pb dating of monazite from metapelite in central-south Trans-North China Orogen[J]. Precambrian Research, 336: 105497. doi: 10.1016/j.precamres.2019.105497

    CrossRef Google Scholar

    [4] CHEN R X, ZHENG Y F, XIE L W, 2010. Metamorphic growth and recrystallization of zircon: distinction by simultaneous in-situ analyses of trace elements, U-Th-Pb and Lu-Hf isotopes in zircons from eclogite-facies rocks in the Sulu Orogen[J]. Lithos, 114(1-2): 132-154. doi: 10.1016/j.lithos.2009.08.006

    CrossRef Google Scholar

    [5] CHEN R X, ZHENG Y F, 2017. Metamorphic zirconology of continental subduction zones[J]. Journal of Asian Earth Sciences, 145: 149-176. doi: 10.1016/j.jseaes.2017.04.029

    CrossRef Google Scholar

    [6] CHEN W, SIMONETTI A, 2013. In-situ determination of major and trace elements in calcite and apatite, and U–Pb ages of apatite from the Oka carbonatite complex: insights into a complex crystallization history[J]. Chemical Geology, 353: 151-172. doi: 10.1016/j.chemgeo.2012.04.022

    CrossRef Google Scholar

    [7] CHEN Y X, ZHENG Y F, CHEN R X, et al., 2011. Metamorphic growth and recrystallization of zircons in extremely 18O-depleted rocks during eclogite-facies metamorphism: evidence from U-Pb ages, trace elements, and O-Hf isotopes[J]. Geochimica et Cosmochimica Acta, 75(17): 4877-4898. doi: 10.1016/j.gca.2011.06.003

    CrossRef Google Scholar

    [8] CHEW D M, SPIKINGS R A, 2021. Apatite U-Pb thermochronology: a review[J]. Minerals, 11(10): 1095. doi: 10.3390/min11101095

    CrossRef Google Scholar

    [9] CHU M F, WANG K L, GRILLFIN W L, et al., 2009. Apatite composition: tracing petrogenetic processes in Transhimalayan granitoids[J]. Journal of Petrology, 50(10): 1829-1855. doi: 10.1093/petrology/egp054

    CrossRef Google Scholar

    [10] FENG W Y, ZHENG J H, 2023. Apatite trace elements and O-Sr isotopes reveal different magmatic sources of Fe-Ti oxide deposits in the eastern Tianshan, NW China[J]. Ore Geology Reviews, 163: 105764. doi: 10.1016/j.oregeorev.2023.105764

    CrossRef Google Scholar

    [11] FILIPPELLI G M, 2002. The global phosphorus cycle[J]. Reviews in Mineralogy and Geochemistry, 48(1): 391-425. doi: 10.2138/rmg.2002.48.10

    CrossRef Google Scholar

    [12] GALL Q, DAVIS W J, LOWE D G, et al., 2017. Diagenetic apatite character and in situion microprobe U-Pb age, Keeseville Formation, Potsdam Group, New York State[J]. Canadian Journal of Earth Sciences, 54(7): 785-797. doi: 10.1139/cjes-2016-0195

    CrossRef Google Scholar

    [13] GAO P, SANTOSH M, 2019. Building the Wutai arc: insights into the Archean-Paleoproterozoic crustal evolution of the North China Craton[J]. Precambrian Research, 333: 105429. doi: 10.1016/j.precamres.2019.105429

    CrossRef Google Scholar

    [14] GAO P, SANTOSH M, KWON S, et al., 2021. Ocean plate stratigraphy of a long-lived Precambrian subduction-accretion system: the Wutai complex, North China Craton[J]. Precambrian Research, 363: 106334. doi: 10.1016/j.precamres.2021.106334

    CrossRef Google Scholar

    [15] GAO S S, LI Q G, HU P Y, et al., 2023. Geochemical features and tectonic significance of Late Archean metavolcanic rocks in Hengshan Area, North China Craton[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 59(1): 143-160. (in Chinese with English abstract

    Google Scholar

    [16] GUO R R, LIU S W, SANTOSH M, et al., 2013. Geochemistry, zircon U–Pb geochronology and Lu–Hf isotopes of metavolcanics from eastern Hebei reveal Neoarchean subduction tectonics in the North China Craton[J]. Gondwana Research, 24(2): 664-686. doi: 10.1016/j.gr.2012.12.025

    CrossRef Google Scholar

    [17] GUO R R, LIU S W, WYMAN D, et al., 2015. Neoarchean subduction: a case study of arc volcanic rocks in Qinglong-Zhuzhangzi area of the eastern Hebei Province, North China Craton[J]. Precambrian Research, 264: 36-62. doi: 10.1016/j.precamres.2015.04.007

    CrossRef Google Scholar

    [18] GUO R R, LIU S W, BAI X, et al., 2017. A Neoarchean subduction recorded by the eastern Hebei Precambrian basement, North China Craton: geochemical fingerprints from metavolcanic rocks of the Saheqiao-Shangying-Qinglong supracrustal belt[J]. Journal of Asian Earth Sciences, 135: 347-369. doi: 10.1016/j.jseaes.2017.01.007

    CrossRef Google Scholar

    [19] HAMMERLI J, GREBER N D, MARTIN L, et al., 2021. Tracing sulfur sources in the crust via SIMS measurements of sulfur isotopes in apatite[J]. Chemical Geology, 579: 120242. doi: 10.1016/j.chemgeo.2021.120242

    CrossRef Google Scholar

    [20] HE L C, ZHANG J, ZHAO G C, et al., 2021. Macro-and microstructural analysis of the Zhujiafang ductile shear zone, Hengshan complex: tectonic nature and geodynamic implications of the evolution of Trans–North China orogen[J]. GSA Bulletin, 133(5-6): 1237-1255. doi: 10.1130/B35672.1

    CrossRef Google Scholar

    [21] HENRICHS I A, O'SULLIVAN G, CHEW D M, et al., 2018. The trace element and U-Pb systematics of metamorphic apatite[J]. Chemical Geology, 483: 218-238. doi: 10.1016/j.chemgeo.2017.12.031

    CrossRef Google Scholar

    [22] HOSKIN P W O, KINNY P D, WYBORN D, et al., 2000. Identifying accessory mineral saturation during differentiation in granitoid magmas: an integrated approach[J]. Journal of Petrology, 41(9): 1365-1396. doi: 10.1093/petrology/41.9.1365

    CrossRef Google Scholar

    [23] HU Y L, LIU S W, FU J H, et al., 2021. Neoarchean-early Paleoproterozoic granitoids, the geothermal gradient and geodynamic evolution in the Hengshan Terrane, North China Craton[J]. Gondwana Research, 94: 143-163. doi: 10.1016/j.gr.2021.03.004

    CrossRef Google Scholar

    [24] HUGHES J M, RAKOVAN J F, 2015. Structurally robust, chemically diverse: apatite and apatite supergroup minerals[J]. Elements, 11(3): 165-170. doi: 10.2113/gselements.11.3.165

    CrossRef Google Scholar

    [25] KRÖNER A, WILDE S A, LI J H, et al., 2005a. Age and evolution of a Late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of Northern China[J]. Journal of Asian Earth Sciences, 24(5): 577-595. doi: 10.1016/j.jseaes.2004.01.001

    CrossRef Google Scholar

    [26] KRÖNER A, WILDE S A, O’BRIEN P J, et al., 2005b. Field relationships, geochemistry, zircon ages and evolution of a Late Archaean to Palaeoproterozoic lower crustal section in the Hengshan Terrain of Northern China[J]. Acta Geologica Sinica (English Edition), 79(5): 605-632.

    Google Scholar

    [27] LI T S, ZHAI M G, PENG P, et al., 2010. Ca. 2.5 billion year old coeval ultramafic–mafic and syenitic dykes in Eastern Hebei: implications for Cratonization of the North China Craton[J]. Precambrian Research, 180(3-4): 143-155. doi: 10.1016/j.precamres.2010.04.001

    CrossRef Google Scholar

    [28] LIU C H, LIU F L, SHI J R, et al., 2016a. Depositional age and provenance of the Wutai group: evidence from zircon U-Pb and Lu-Hf isotopes and whole-rock geochemistry[J]. Precambrian Research, 281: 269-290. doi: 10.1016/j.precamres.2016.06.002

    CrossRef Google Scholar

    [29] LIU C H, ZHAO G C, LIU F L, et al., 2016b. Constraints of volcanic rocks of the Wutai complex (Shanxi Province, Northern China) on a giant Late Neoarchean intra-oceanic arc system in the Trans-North China Orogen[J]. Journal of Asian Earth Sciences, 123: 178-212. doi: 10.1016/j.jseaes.2016.04.006

    CrossRef Google Scholar

    [30] LIU J B, ZHANG L M, CHEN Y, et al., 2013. Chlorine contents in apatites of eclogites and hosted veins from the Dabie-Sulu UHP belt: implication for fluid evolution in the process of metamorphism[J]. Chinese Science Bulletin, 58(22): 2165-2168. (in Chinese with English abstract doi: 10.1360/csb2013-58-22-2165

    CrossRef Google Scholar

    [31] LIU J H, ZHANG Q W L, LI Z M G, et al., 2020. Metamorphic evolution and U-Pb geochronology of metapelite, northeastern Wutai complex: implications for Paleoproterozoic tectonic evolution of the Trans-North China Orogen[J]. Precambrian Research, 350: 105928. doi: 10.1016/j.precamres.2020.105928

    CrossRef Google Scholar

    [32] LIU S Q, ZHANG G B, LI H J, 2023. Fingerprinting crustal anatexis with apatite trace element, halogen, and Sr isotope data[J]. Geochimica et Cosmochimica Acta, 351: 14-31. doi: 10.1016/j.gca.2023.04.021

    CrossRef Google Scholar

    [33] LIU S W, PAN Y M, LI J H, et al., 2002. Geological and isotopic geochemical constraints on the evolution of the Fuping complex, North China Craton[J]. Precambrian Research, 117(1-2): 41-56. doi: 10.1016/S0301-9268(02)00063-3

    CrossRef Google Scholar

    [34] LIU S W, PAN Y M, XIE Q L, et al., 2004. Archean geodynamics in the central zone, North China Craton: constraints from geochemistry of two contrasting series of granitoids in the Fuping and Wutai complexes[J]. Precambrian Research, 130(1-4): 229-249. doi: 10.1016/j.precamres.2003.12.001

    CrossRef Google Scholar

    [35] LIU S W, ZHAO G C, WILDE S A, et al., 2006. Th-U-Pb monazite geochronology of the Lüliang and Wutai complexes: constraints on the tectonothermal evolution of the Trans-North China Orogen[J]. Precambrian Research, 148(3-4): 205-224. doi: 10.1016/j.precamres.2006.04.003

    CrossRef Google Scholar

    [36] MAO M X, LIOU P, DU L L, et al., 2024. Petrogenesis of 2.7-2.65Ga TTGs in the Wutai complex: constraints on the Neoarchean crustal evolution of the North China Craton[J]. Precambrian Research, 400: 107245. doi: 10.1016/j.precamres.2023.107245

    CrossRef Google Scholar

    [37] MIYASHIRO A, 1974. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 274(4): 321-355. doi: 10.2475/ajs.274.4.321

    CrossRef Google Scholar

    [38] NATHWANI C L, LOADER M A, WILKINSON J J, et al., 2020. Multi-stage arc magma evolution recorded by apatite in volcanic rocks[J]. Geology, 48(4): 323-327. doi: 10.1130/G46998.1

    CrossRef Google Scholar

    [39] O'SULLIVAN G, CHEW D, KENNY G, et al., 2020. The trace element composition of apatite and its application to detrital provenance studies[J]. Earth-Science Reviews, 201: 103044. doi: 10.1016/j.earscirev.2019.103044

    CrossRef Google Scholar

    [40] O'SULLIVAN G J, CHEW D M, 2020. The clastic record of a Wilson cycle: evidence from detrital apatite petrochronology of the Grampian-Taconic fore-arc[J]. Earth and Planetary Science Letters, 552: 116588. doi: 10.1016/j.jpgl.2020.116588

    CrossRef Google Scholar

    [41] PAN L C, HU R Z, WANG X S, et al., 2016. Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: examples from four granite plutons in the Sanjiang Region, SW China[J]. Lithos, 254-255: 118-130. doi: 10.1016/j.lithos.2016.03.010

    CrossRef Google Scholar

    [42] PATON C, HELLSTROM J, PAUL B, et al., 2011. Iolite: freeware for the visualisation and processing of mass spectrometric data[J]. Journal of Analytical Atomic Spectrometry, 26(12): 2508-2518. doi: 10.1039/c1ja10172b

    CrossRef Google Scholar

    [43] PEARCE J A, 1996. A user’s guide to basalt discrimination diagrams[M]//WYMAN D A. Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. St. John's: Geological Association of Canada: 79-113.

    Google Scholar

    [44] PENG P, FENG L J, SUN F B, et al., 2017. Dating the Gaofan and Hutuo groups – Targets to investigate the Paleoproterozoic great oxidation event in North China[J]. Journal of Asian Earth Sciences, 138: 535-547. doi: 10.1016/j.jseaes.2017.03.001

    CrossRef Google Scholar

    [45] PICCOLI P M, CANDELA P A, 2002. Apatite in igneous systems[J]. Reviews in Mineralogy and Geochemistry, 48(1): 255-292. doi: 10.2138/rmg.2002.48.6

    CrossRef Google Scholar

    [46] POLAT A, KUSKY T, LI J H, 2005. Geochemistry of Neoarchean (ca. 2.55-2.50 Ga) volcanic and ophiolitic rocks in the Wutaishan greenstone belt, central orogenic belt, North China Craton: implications for geodynamic setting and continental growth[J]. GSA Bulletin, 117(11-12): 1387-1399.

    Google Scholar

    [47] QIAN J H, WEI C J, ZHOU X W, et al., 2013. Metamorphic P-T paths and new zircon U-Pb age data for garnet-mica schist from the Wutai group, North China Craton[J]. Precambrian Research, 233: 282-296. doi: 10.1016/j.precamres.2013.05.012

    CrossRef Google Scholar

    [48] QIAN J H, WEI C J, 2016. P-T-t evolution of garnet amphibolites in the Wutai-Hengshan area, North China Craton: insights from phase equilibria and geochronology[J]. Journal of Metamorphic Geology, 34(5): 423-446. doi: 10.1111/jmg.12186

    CrossRef Google Scholar

    [49] SPEAR F S, PYLE J M, 2002. Apatite, monazite, and xenotime in metamorphic rocks[J]. Reviews in Mineralogy and Geochemistry, 48(1): 293-335. doi: 10.2138/rmg.2002.48.7

    CrossRef Google Scholar

    [50] STOKES T N, BROMILEY G D, POTTS N J, et al., 2019. The effect of melt composition and oxygen fugacity on manganese partitioning between apatite and silicate melt[J]. Chemical Geology, 506: 162-174. doi: 10.1016/j.chemgeo.2018.12.015

    CrossRef Google Scholar

    [51] SUN D, LI Q G, LIU S W, et al., 2019. Neoarchean-Paleoproterozoic magmatic arc evolution in the Wutai-Hengshan-Fuping area, North China Craton: new perspectives from zircon U-Pb ages and Hf isotopic data[J]. Precambrian Research, 331: 105368. doi: 10.1016/j.precamres.2019.105368

    CrossRef Google Scholar

    [52] SUN J F, YANG J H, ZHANG J H, et al., 2021. Apatite geochemical and Sr-Nd isotopic insights into granitoid petrogenesis[J]. Chemical Geology, 566: 120104. doi: 10.1016/j.chemgeo.2021.120104

    CrossRef Google Scholar

    [53] SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Magmatism in the Ocean Basins[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [54] TAN H M R, HUANG X W, MENG Y M, et al., 2023. Multivariate statistical analysis of trace elements in apatite: discrimination of apatite with different origins[J]. Ore Geology Reviews, 153: 105269. doi: 10.1016/j.oregeorev.2022.105269

    CrossRef Google Scholar

    [55] TANG L, SANTOSH M, 2018. Neoarchean granite-greenstone belts and related ore mineralization in the North China Craton: an overview[J]. Geoscience Frontiers, 9(3): 751-768. doi: 10.1016/j.gsf.2017.04.002

    CrossRef Google Scholar

    [56] TANG M, LEE C T A, JI W Q, et al., 2020. Crustal thickening and endogenic oxidation of magmatic sulfur[J]. Science Advances, 6(31): eaba6342. doi: 10.1126/sciadv.aba6342

    CrossRef Google Scholar

    [57] TRAP P, FAURE M, LIN W, et al., 2007. Late Paleoproterozoic (1900-1800 Ma) nappe stacking and polyphase deformation in the Hengshan-Wutaishan area: implications for the understanding of the Trans-North-China belt, North China Craton[J]. Precambrian Research, 156(1-2): 85-106. doi: 10.1016/j.precamres.2007.03.001

    CrossRef Google Scholar

    [58] WAN Y S, DONG C Y, XIE H Q, et al., 2022. Huge growth of the Late Mesoarchean–Early Neoarchean (2.6~3.0 Ga) continental crust in the North China Craton: a review[J]. Journal of Geomechanics, 28(5): 866-906. (in Chinese with English abstract

    Google Scholar

    [59] WANG C L, ZHANG L C, LAN C Y, et al., 2014. Petrology and geochemistry of the Wangjiazhuang banded iron formation and associated supracrustal rocks from the Wutai greenstone belt in the North China Craton: implications for their origin and tectonic setting[J]. Precambrian Research, 255: 603-626. doi: 10.1016/j.precamres.2014.08.002

    CrossRef Google Scholar

    [60] WANG X P, PENG P, LI X B, 2023. Petrogenesis and geological implications of the ca. 2520Ma gabbroic intrusions in Wutai Mountain of the North China Craton[J]. Acta Petrologica Sinica, 39(3): 845-864. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.03.13

    CrossRef Google Scholar

    [61] WANG Z H, WILDE S A, WANG K Y, et al., 2004. A MORB-arc basalt-Adakite association in the 2.5 Ga Wutai greenstone belt: Late Archean magmatism and crustal growth in the North China Craton[J]. Precambrian Research, 131(3-4): 323-343. doi: 10.1016/j.precamres.2003.12.014

    CrossRef Google Scholar

    [62] WEBSTER J D, PICCOLI P M, 2015. Magmatic apatite: a powerful, yet deceptive, mineral[J]. Elements, 11(3): 177-182. doi: 10.2113/gselements.11.3.177

    CrossRef Google Scholar

    [63] WEI C J, 2018. Paleoproterozoic metamorphism and tectonic evolution in Wutai-Hengshan region, Trans-North China Orogen[J]. Earth Science, 43(1): 24-43. (in Chinese with English abstract

    Google Scholar

    [64] WILDE S A, CAWOOD P A, WANG K Y, et al., 2004. Determining Precambrian crustal evolution in China: a case-study from Wutaishan, Shanxi Province, demonstrating the application of precise SHRIMP U-Pb geochronology[J]. Geological Society, London, Special Publications, 226(1): 5-25. doi: 10.1144/GSL.SP.2004.226.01.02

    CrossRef Google Scholar

    [65] XIA Q X, ZHENG Y F, YUAN H L, et al., 2009. Contrasting Lu-Hf and U-Th-Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranites in the Dabie Orogen, China[J]. Lithos, 112(3-4): 477-496. doi: 10.1016/j.lithos.2009.04.015

    CrossRef Google Scholar

    [66] XIA Q X, ZHENG Y F, HU Z C, 2010. Trace elements in zircon and coexisting minerals from low-T/UHP metagranite in the Dabie Orogen: implications for action of supercritical fluid during continental subduction-zone metamorphism[J]. Lithos, 114(3-4): 385-412. doi: 10.1016/j.lithos.2009.09.013

    CrossRef Google Scholar

    [67] XING K, SHU Q H, 2021. Applications of apatite in study of ore deposits: a review[J]. Mineral Deposits, 40(2): 189-205. (in Chinese with English abstract

    Google Scholar

    [68] YANG Q Y, SANTOSH M, 2015. Paleoproterozoic arc magmatism in the North China Craton: no Siderian global plate tectonic shutdown[J]. Gondwana Research, 28(1): 82-105. doi: 10.1016/j.gr.2014.08.005

    CrossRef Google Scholar

    [69] YANG Q Y, SANTOSH M, 2017. The building of an Archean microcontinent: evidence from the North China Craton[J]. Gondwana Research, 50: 3-37. doi: 10.1016/j.gr.2017.01.003

    CrossRef Google Scholar

    [70] ZAFAR T, REHMAN H U, MAHAR M A, et al., 2020. A critical review on petrogenetic, metallogenic and geodynamic implications of granitic rocks exposed in north and East China: new insights from apatite geochemistry[J]. Journal of Geodynamics, 136: 101723. doi: 10.1016/j.jog.2020.101723

    CrossRef Google Scholar

    [71] ZHAI M G, GUO J H, LIU W J, 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review[J]. Journal of Asian Earth Sciences, 24(5): 547-561. doi: 10.1016/j.jseaes.2004.01.018

    CrossRef Google Scholar

    [72] ZHAI M G, SANTOSH M, 2011. The Early Precambrian odyssey of the North China Craton: a synoptic overview[J]. Gondwana Research, 20(1): 6-25. doi: 10.1016/j.gr.2011.02.005

    CrossRef Google Scholar

    [73] ZHAI M G, 2019. Tectonic evolution of the North China Craton[J]. Journal of Geomechanics, 25(5): 722-745. (in Chinese with English abstract

    Google Scholar

    [74] ZHAN Q Y, ZHU D C, WANG Q, et al., 2022. Partitioning behaviors of some key elements in apatite and their implications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 41(6): 1087-1099. (in Chinese with English abstract

    Google Scholar

    [75] ZHANG J, ZHAO G C, SUN M, et al., 2006. High-pressure mafic granulites in the Trans–North China Orogen: tectonic significance and age[J]. Gondwana Research, 9(3): 349-362. doi: 10.1016/j.gr.2005.10.005

    CrossRef Google Scholar

    [76] ZHANG J, ZHAO G C, LI S Z, et al., 2007. Deformation history of the Hengshan complex: implications for the tectonic evolution of the Trans–North China Orogen[J]. Journal of Structural Geology, 29(6): 933-949. doi: 10.1016/j.jsg.2007.02.013

    CrossRef Google Scholar

    [77] ZHANG J, ZHAO G C, LI S Z, et al., 2012. Structural pattern of the Wutai complex and its constraints on the tectonic framework of the Trans–North China Orogen[J]. Precambrian Research, 222-223: 212-229. doi: 10.1016/j.precamres.2011.08.009

    CrossRef Google Scholar

    [78] ZHANG J, ZHAO G C, SHEN W L, et al., 2015. Aeromagnetic study of the Hengshan-Wutai-Fuping region: unraveling a crustal profile of the Paleoproterozoic Trans–North China Orogen[J]. Tectonophysics, 662: 208-218. doi: 10.1016/j.tecto.2015.08.025

    CrossRef Google Scholar

    [79] ZHANG S Y, YANG L Q, HE W Y, et al., 2021. Melt volatile budgets and magma evolution revealed by diverse apatite halogen and trace elements compositions: a case study at Pulang porphyry Cu-Au deposit, China[J]. Ore Geology Reviews, 139: 104509. doi: 10.1016/j.oregeorev.2021.104509

    CrossRef Google Scholar

    [80] ZHAO G C, WILDE S A, CAWOOD P A, et al., 1998. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting[J]. International Geology Review, 40(8): 706-721. doi: 10.1080/00206819809465233

    CrossRef Google Scholar

    [81] ZHAO G C, CAWOOD P A, WILDE S A, et al., 2000. Metamorphism of basement rocks in the central zone of the North China Craton: implications for Paleoproterozoic tectonic evolution[J]. Precambrian Research, 103(1-2): 55-88. doi: 10.1016/S0301-9268(00)00076-0

    CrossRef Google Scholar

    [82] ZHAO G C, WILDE S A, CAWOOD P A, et al., 2001. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution[J]. Precambrian Research, 107(1-2): 45-73. doi: 10.1016/S0301-9268(00)00154-6

    CrossRef Google Scholar

    [83] ZHAO G C, SUN M, WILDE S A, et al., 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002

    CrossRef Google Scholar

    [84] ZHAO G C, KRÖNER A, WILDE S A, et al., 2007. Lithotectonic elements and geological events in the Hengshan–Wutai–Fuping belt: a synthesis and implications for the evolution of the Trans-North China Orogen[J]. Geological Magazine, 144(5): 753-775. doi: 10.1017/S0016756807003561

    CrossRef Google Scholar

    [85] ZHAO G C, WILDE S A, GUO J H, et al., 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton[J]. Precambrian Research, 177(3-4): 266-276. doi: 10.1016/j.precamres.2009.12.007

    CrossRef Google Scholar

    [86] ZHAO G C, CAWOOD P A, LI S Z, et al., 2012. Amalgamation of the North China Craton: key issues and discussion[J]. Precambrian Research, 222-223: 55-76. doi: 10.1016/j.precamres.2012.09.016

    CrossRef Google Scholar

    [87] ZHAO Y F, HU J M, GONG W B, et al., 2019. Comparison of main characteristics of different Precambrian blocks in the Trans-North China Orogen[J]. Acta Petrologica Sinica, 35(7): 2259-2279. (in Chinese with English abstract doi: 10.18654/1000-0569/2019.07.19

    CrossRef Google Scholar

    [88] 白瑾,1986. 五台山早前寒武纪地质[M]. 天津:天津科学技术出版社:1-475.

    Google Scholar

    [89] 高山松,李秋根,胡鹏月,等,2023. 华北克拉通恒山地区晚太古代变质火山岩的地球化学特征及构造意义[J]. 北京大学学报(自然科学版),59(1):143-160.

    Google Scholar

    [90] 刘景波,张灵敏,陈意,等,2013. 大别-苏鲁造山带超高压榴辉岩和脉体磷灰石含氯特征与变质流体演化[J]. 科学通报,58(22):2165-2168.

    Google Scholar

    [91] 万渝生,董春艳,颉颃强,等,2022. 华北克拉通新太古代早期—中太古代晚期(2.6~3.0 Ga)巨量陆壳增生:综述[J]. 地质力学学报,28(5):866-906. doi: 10.12090/j.issn.1006-6616.20222817

    CrossRef Google Scholar

    [92] 王欣平,彭澎,李小兵,2023. 华北克拉通五台山~2520 Ma辉长岩侵入体的成因及其地质意义[J]. 岩石学报,39(3):845-864. doi: 10.18654/1000-0569/2023.03.13

    CrossRef Google Scholar

    [93] 魏春景,2018. 华北中部造山带五台-恒山地区古元古代变质作用与构造演化[J]. 地球科学,43(1):24-43.

    Google Scholar

    [94] 邢凯,舒启海,2021. 磷灰石在矿床学研究中的应用[J]. 矿床地质,40(2):189-205.

    Google Scholar

    [95] 翟明国,2019. 华北克拉通构造演化[J]. 地质力学学报,25(5):722-745. doi: 10.12090/j.issn.1006-6616.2019.25.05.063

    CrossRef Google Scholar

    [96] 詹琼窑,朱弟成,王青,等,2022. 磷灰石中一些关键元素的分配行为及意义[J]. 矿物岩石地球化学通报,41(6):1087-1099.

    Google Scholar

    [97] 赵远方,胡健民,公王斌,等,2019. 华北中部构造带不同前寒武纪地块主要特征对比研究[J]. 岩石学报,35(7):2259-2279. doi: 10.18654/1000-0569/2019.07.19

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(4)

Article Metrics

Article views(184) PDF downloads(34) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint