2024 Vol. 30, No. 4
Article Contents

ZHANG Xiaoyin, ZHAN Rongruo, DUAN Liang, LUO Xiaorong, WEI Ronghao. 2024. 3D digital modelling and detailed anatomy of tight sandstone reservoir outcrop with oil-bearing heterogeneity: A case study of Angou outcrop of Triassic Yanchang Formation in Ordos Basin. Journal of Geomechanics, 30(4): 609-621. doi: 10.12090/j.issn.1006-6616.2024028
Citation: ZHANG Xiaoyin, ZHAN Rongruo, DUAN Liang, LUO Xiaorong, WEI Ronghao. 2024. 3D digital modelling and detailed anatomy of tight sandstone reservoir outcrop with oil-bearing heterogeneity: A case study of Angou outcrop of Triassic Yanchang Formation in Ordos Basin. Journal of Geomechanics, 30(4): 609-621. doi: 10.12090/j.issn.1006-6616.2024028

3D digital modelling and detailed anatomy of tight sandstone reservoir outcrop with oil-bearing heterogeneity: A case study of Angou outcrop of Triassic Yanchang Formation in Ordos Basin

    Fund Project: This research is financially supported by the Key Science and Technology Research Project of the PetroChina Changqing Oilfield Company (Grant No. 2023-25461-02) and National Science and Technology Major Project (Grant No. 2017ZX05008-004-004).
More Information
  • Objective

    Our understanding of architecture-controlled oil-bearing heterogeneity shown in tight sandstone reservoirs is hindered by scarcity of large-scale oil-bearing outcrops. Triassic lacustrine delta and fluvial succession exposed in a quarry near Angou village (Yanchang county, northern Shannxi province) is an analog for buried oil-bearing tight sandstones in the Ordos basin.

    Methods

    In this study, 3D digital outcrop modeling was carried out on the oil-bearing sandstone outcrop of Angou by using Unmanned Aerial Vehicle(UAV) multi-point aerial photography, and then the depositional sequence diagenetic anatomy and field anatomy were carried out on the 3D digital model of Angou oil-bearing sandstone outcrop. Based on field observations, drone-based measurement and digital outcrop modelling, continuous sampling using Husquvarna power cutter and petrographic and diagenesis analysis under section, a 2D architectural heterogeneity model incorporating spatial configuration of effective reservoir was created.

    Results

    The UAV 3D digital outcrop modeling and field dissection revealed that the oil charging was only distributed within the interior, but not at the top or bottom of sand body. The configuration and nature of bounding surface underlying this succession was reconstructed with reference to lateral tracing for distinctive markers and a detailed measured profile with facies and sequence stratigraphic analysis. The results show that the sedimentary environment of oil-bearing tight sandstone is curved river channel. In the quarry, fluvial sandstone succession is underlain by a regional surface interpreted as a third-order sequence boundaries on the basis of abrupt landward facies change and locally developed incised valleys <20 m deep. Architectural heterogeneity within the amalgamated sandbody is expressed by multiple fifth-order storey surfaces, sixth-order barform and seventh-order bedform. Continuous sampling and thin-section observation of outcrops show that the completely different structural properties and diagenetic characteristics of the top, bottom and interior of a single sand layer are the fundamental reasons for the different oil bearing in outcrops. The discovery of the Angou oil-bearing outcrop provides a rare field example for the objective understanding of the oil-bearing heterogeneity of the reservoir controlled by the configurational interface in the sand body.

    Conclusion

    In this study, the specific characteristics of oil-bearing heterogeneity in oil-bearing sandstone outcrop are described, the sedimentary background and possible levels of different configuration interfaces of extremely thick oil-bearing sandstone are revealed, and the causes of oil-bearing heterogeneity developing in sand bodies are qualitatively understood. [Significance] Of importance, the discovery and detailed anatomy of Angou outcrop provide direct geological evidence showing that sedimentation and diagenesis exert a strong control on the quality and heterogeneity of most tight clastic reservoirs.

  • 加载中
  • [1] BEKELE E, PERSON M, DE MARSILY G, 1999. Petroleum migration pathways and charge concentration: a three-dimensional model: discussion[J]. AAPG Bulletin, 83(6): 1015-1019.

    Google Scholar

    [2] BRYANT I D, FLINT S S, 1992. Quantitative clastic reservoir geological modelling: problems and perspectives[M]//FLINT S S, BRYANT I D. The geological modelling of hydrocarbon reservoirs and outcrop analogues. Oxford: Blackwell Scientific Publications: 1-20. CATUNEANU O, 2019. Scale in sequence stratigraphy[J]. Marine and Petroleum Geology, 106: 128-159.

    Google Scholar

    [3] CATUNEANU O,2019. Scale in sequence stratigraphy[J]. Marine and Petroleum Geology,106:128-159.

    Google Scholar

    [4] CATUNEANU O, 2022. Sequence stratigraphic framework[M]// CATUNEANU O. Principles of Sequence Stratigraphy . Amsterdam: Elsevier: 295-336.

    Google Scholar

    [5] CHEN F, LUO P, ZHANG X Y, et al., 2010. Stratigraphic architecture and sequence stratigraphy of Upper Triassic Yanchang Formation in the eastern margin of Ordos Basin[J]. Earth Science Frontiers, 17: 330-338. (in Chinese)

    Google Scholar

    [6] CHEN H Q, WANG J, DU Y J, 2017. Advances of research methods on reservoir heterogeneity[J]. Geological Journal of China Universities, 23(1): 104-116. (in Chinese with English abstract

    Google Scholar

    [7] CHEN J J, ZHAO J Z, LIU Z Y, et al. , 2023. Influencing Factors of Physical Properties of Chang 6 Reservoir in the Qilicun Oilfield, Ordos Basin[J]. Geology and Exploration 59(3): 647-656. (in Chinese with English abstract

    Google Scholar

    [8] CHEN Q H, LI W H, GAO Y X, et al., 2007. Deep lacustrine sedimentary relationship of Yanchang Formation, Upper Triassic, Ordos Basin[J]. Science in China Press, 31(S1): 39-48. (in Chinese)

    Google Scholar

    [9] CUI J W, ZHU R K, WU S T, et al., 2013. Heterogeneity and lower oily limits for tight sandstones: a case study on Chang-7 oil layers of the Yanchang Formation, Ordos Basin[J]. Acta Petrolei Sinica, 34(5): 877-882. (in Chinese with English abstract

    Google Scholar

    [10] DALRYMPLE R W, BOYD R, ZAITLIN B A, 1994. Incised-valley systems: origin and sedimentary sequences[M]. Tulsa: SEPM Society for Sedimentary Geology.

    Google Scholar

    [11] DENG S H, LU Y Z, LUO Z, et al., 2018. Subdivision and age of the Yanchang Formation and the Middle/Upper Triassic boundary in Ordos Basin, North China[J]. Science China Earth Sciences, 61(10): 1419-1439. doi: 10.1007/s11430-017-9215-3

    CrossRef Google Scholar

    [12] DENG X Q, LI W H, LIU X S, 2009. Discussion on the stratigraphic boundary between Middle Triassic and Upper Triassic[J]. Acta geologica Sinica, 83(8): 1089-1096. (in Chinese with English abstract

    Google Scholar

    [13] DU G C, SHI L H, MA X F, et al., 2019. Laumontite cementation characteristics and their influences on reservoir physical properties in Chang 6 member of Qilicun oilfield, Ordos Basin[J]. Xinjiang Petroleum Geology, 40(2): 174-180. (in Chinese with English abstract

    Google Scholar

    [14] DUTTON S P, WHITE C D, WILLIS B J, et al., 2002. Calcite cement distribution and its effect on fluid flow in a deltaic sandstone, Frontier Formation, Wyoming[J]. AAPG Bulletin, 86(12): 2007-2021.

    Google Scholar

    [15] ENGE H D, BUCKLEY S J, ROTEVATN A, et al., 2007. From outcrop to reservoir simulation model: workflow and procedures[J]. Geosphere, 3(6): 469-490. doi: 10.1130/GES00099.1

    CrossRef Google Scholar

    [16] FISCHER C, GAUPP R, DIMKE M, et al., 2007. A 3D high resolution model of bounding surfaces in aeolian-fluvial deposits: an outcrop analogue study from the Permian Rotliegend, northern Germany[J]. Journal of Petroleum Geology, 30(3): 257-273. doi: 10.1111/j.1747-5457.2007.00257.x

    CrossRef Google Scholar

    [17] FITCH P J R, LOVELL M A, DAVIES S J, et al., 2015. An integrated and quantitative approach to petrophysical heterogeneity[J]. Marine and Petroleum Geology, 63: 82-96. doi: 10.1016/j.marpetgeo.2015.02.014

    CrossRef Google Scholar

    [18] FU J H, GUO Z Q, DENG X Q, 2005. Sedimentary facies of the Yanchang Formation of Upper Triassic and petroleum geological implication in southwestern Ordos Basin[J]. Journal of Palaeogeography, 7(1): 34-44. (in Chinese with English abstract

    Google Scholar

    [19] HODGETTS D, 2013. Laser scanning and digital outcrop geology in the petroleum industry: a review[J]. Marine and Petroleum Geology, 46: 335-354. doi: 10.1016/j.marpetgeo.2013.02.014

    CrossRef Google Scholar

    [20] HOWELL J A, MARTINIUS A W, GOOD T R, 2014. The application of outcrop analogues in geological modelling: a review, present status and future outlook[J]. Geological Society, London, Special Publications, 387(1): 1-25. doi: 10.1144/SP387.12

    CrossRef Google Scholar

    [21] JI L M, XU J L, SONG Z G, 2012. Lacustrine cyanobacteria from the Yanchang Formation in Ordos Basin and its implication of oil source[J]. Acta Micropalaeontologica Sinica, 29(3): 270-281. (in Chinese with English abstract

    Google Scholar

    [22] JIANG D X, WANG Y D, WEI J, 2006. Palynoflora and its environmental significance of the Late Triassic in Tongchuan, Shaanxi Province[J]. Journal of Palaeogeography, 8(1): 24-33. (in Chinese with English abstract

    Google Scholar

    [23] LAPPONI F, CASINI G, SHARP I, et al., 2011. From outcrop to 3D modelling: a case study of a dolomitized carbonate reservoir, Zagros Mountains, Iran[J]. Petroleum Geoscience, 17(3): 283-307. doi: 10.1144/1354-079310-040

    CrossRef Google Scholar

    [24] LONGMAN M W, 1980. Carbonate diagenetic textures from nearsurface diagenetic environments[J]. AAPG Bulletin, 64(4): 461-487.

    Google Scholar

    [25] LUO J L, LUO X R, BAI Y B, et al., 2016. Impact of differential diagenetic evolution on the chronological tightening and pore evolution of tight sandstone reservoirs: a case study from the Chang-7 tight turbidite sandstone reservoir in the southwestern Ordos Basin[J]. Journal of Earth Sciences and Environment, 38(1): 79-92. (in Chinese with English abstract

    Google Scholar

    [26] LUO X R, 2011. Simulation and characterization of pathway heterogeneity of secondary hydrocarbon migration[J]. AAPG Bulletin, 95(6): 881-898. doi: 10.1306/11191010027

    CrossRef Google Scholar

    [27] LUO X R, HU C Z, XIAO Z Y, et al., 2015. Effects of carrier bed heterogeneity on hydrocarbon migration[J]. Marine and Petroleum Geology, 68: 120-131. doi: 10.1016/j.marpetgeo.2015.08.015

    CrossRef Google Scholar

    [28] LUO X R, WANG Z N, LEI Y H, et al., 2016a. Heterogeneity characteristics and accumulation model of ultra-low permeability sandstone reservoirs: a case study of the lower part of Yanchang Formation in the western Ordos Basin, China[J]. Acta Petrolei Sinica, 37(S1): 87-98. (in Chinese with English abstract

    Google Scholar

    [29] LUO X R, ZHANG L K, LEI Y H, et al., 2016b. Structural heterogeneity of reservoirs and its implication on hydrocarbon accumulation in deep zones[J]. China Petroleum Exploration, 21(1): 28-36. (in Chinese with English abstract

    Google Scholar

    [30] MA L Y, HU C Z, QIU G Q, et al., 2020. Heterogeneity and structural pattern of Chang 8 reservoir in Zhenjing Area, Ordos Basin[J]. Acta Sedimentologica Sinica, 38(5): 1088-1098. (in Chinese with English abstract

    Google Scholar

    [31] MIALL A D, 1996. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology[M]//GEORGE P. Sedimentary Geology. Berlin: Springer-Verlag: 149-150.

    Google Scholar

    [32] MIALL A D, 2010. TimeinSequence Stratigraphy[M]//ANDREW M. The Geology of Stratigraphic Sequences. Berlin Heidelberg: Springer: 381-389.

    Google Scholar

    [33] MIKES D, GEEL C R, 2006. Standard facies models to incorporate all heterogeneity levels in a reservoir model[J]. Marine and Petroleum Geology, 23(9-10): 943-959. doi: 10.1016/j.marpetgeo.2005.06.007

    CrossRef Google Scholar

    [34] MORAD S, AL-RAMADAN K, KETZER J M, et al., 2010. The impact of diagenesis on the heterogeneity of sandstone reservoirs: a review of the role of depositional facies and sequence stratigraphy[J]. AAPG Bulletin, 94(8): 1267-1309. doi: 10.1306/04211009178

    CrossRef Google Scholar

    [35] NESBIT P R, BOULDING A D, HUGENHOLTZ C H, et al., 2020. Visualization and sharing of 3D digital outcrop models to promote open science[J]. GSA Today, 30(6): 4-10. doi: 10.1130/GSATG425A.1

    CrossRef Google Scholar

    [36] ONYENANU G I, JACQUEMYN C E M M, GRAHAM G H, et al., 2018. Geometry, distribution and fill of erosional scours in a heterolithic, distal lower shoreface sandstone reservoir analogue: Grassy member, Blackhawk Formation, Book Cliffs, Utah, USA[J]. Sedimentology, 65(5): 1731-1760. doi: 10.1111/sed.12444

    CrossRef Google Scholar

    [37] OWEN A, EBINGHAUS A, HARTLEY A J, et al., 2017. Multi‐scale classification of fluvial architecture: an example from the Palaeocene–Eocene Bighorn Basin, Wyoming[J]. Sedimentology, 64(6): 1572-1596. doi: 10.1111/sed.12364

    CrossRef Google Scholar

    [38] PORTER R J, ROJAS A M, SCHLÜTER M, 2018. The impact of heterogeneity on waterflood developments in clastic inner shelf reservoirs: an example from the Holland Greensand member, Rotterdam Field, The Netherlands[J]. Geological Society, London, Special Publications, 469(1): 457-477. doi: 10.1144/SP469.20

    CrossRef Google Scholar

    [39] POSAMENTIER H W, ALLEN G P, 1999. Siliciclastic sequence stratigraphy—concepts and applications[M]. Tulsa: SEPM Society for Sedimentary Geology.

    Google Scholar

    [40] PRANTER M J, REZA Z A, BUDD D A, 2006. Reservoir-scale characterization and multiphase fluid-flow modelling of lateral petrophysical heterogeneity within dolomite facies of the Madison Formation, Sheep Canyon and Lysite Mountain, Wyoming, USA[J]. Petroleum Geoscience, 12(1): 29-40. doi: 10.1144/1354-079305-660

    CrossRef Google Scholar

    [41] PRINGLE J K, WESTERMAN A R, CLARK J D, et al., 2004. 3D high-resolution digital models of outcrop analogue study sites to constrain reservoir model uncertainty: an example from Alport Castles, Derbyshire, UK[J]. Petroleum Geoscience, 10(4): 343-352. doi: 10.1144/1354-079303-617

    CrossRef Google Scholar

    [42] QU H J, YANG X C, CAO J Z, et al., 2011. Oil accumulation rules in deep zones of Upper Triassic Yanchang Formation in Ordos Basin[J]. Acta Petrolei Sinica, 32(2): 243-248. (in Chinese with English abstract

    Google Scholar

    [43] RASHID B, MUGGERIDGE A H, BAL A, et al., 2012. Quantifying the impact of permeability heterogeneity on secondary-recovery performance[J]. SPE Journal, 17(2): 455-468. doi: 10.2118/135125-PA

    CrossRef Google Scholar

    [44] SCHLAGER W, 2004. Fractal nature of stratigraphic sequences[J]. Geology, 32(3): 185-188. doi: 10.1130/G20253.1

    CrossRef Google Scholar

    [45] VAN WAGONER J C, MITCHUM R M, CAMPION K M, et al. , 1990. Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: concepts for high-resolution correlation of time and facies[M]. Tulsa: American Association of Petroleum Geologists.

    Google Scholar

    [46] VAN WAGONER J C, 1995. Sequence stratigraphy and marine to nonmarine facies architecture of foreland basin strata, Book Cliffs, Utah, U. S. A. [M]//VAN WAGONER J C, BERTRAM G T. Sequence stratigraphy of foreland basin deposits: outcrop and subsurface examples from the cretaceous of north America. Tulsa: American Association of Petroleum Geologists.

    Google Scholar

    [47] WANG D Y, XIN B S, YANG H, et al., 2014. Zircon SHRIMP U-Pb age and geological implications of tuff at the bottom of Chang-7 member of Yanchang Formation in the Ordos Basin[J]. Science China Earth Sciences, 57(12): 2966-2977. doi: 10.1007/s11430-014-4979-0

    CrossRef Google Scholar

    [48] WEBER K J, 1978. Computation of initial well productivities in aeolian sandstone on the basis of a geological model, Leman gas field, U K [M]//TILLMAN R W, WEBER K J. Reservoir Sedimentology. Tulsa, Oklahoma, U. S. A: Society of Economic Paleontologists and Mineralogists: 333-354.

    Google Scholar

    [49] WEBER K J, 1986. How heterogeneity affects oil recovery[M]//LAKE L W, CARROLL JR H B. Reservoir characterization. New York: Academic Press: 487-544.

    Google Scholar

    [50] WORDEN R H, ARMITAGE P J, BUTCHER A R, et al., 2018. Petroleum reservoir quality prediction: overview and contrasting approaches from sandstone and carbonate communities[J]. Geological Society, London, Special Publications, 435(1): 1-31. doi: 10.1144/SP435.21

    CrossRef Google Scholar

    [51] WU C D, LIU J M, WANG J, et al., 2003. The reservoir heterogeneity and analysis of sedimentary architecture in river deposits[J]. Chinese Journal of Geology, 38(1): 60-73. (in Chinese with English abstract

    Google Scholar

    [52] WU S H, JI Y L, YUE D L, et al., 2013. Discussion on hierarchical scheme of architectural units in clastic deposits[J]. Geological Journal of China Universities, 19(1): 12-22. (in Chinese with English abstract

    Google Scholar

    [53] ZEITO G A, 1956. Interbedding of shale breaks and reservoir heterogeneities[J]. Journal of Petroleum Technology,, 17((10):): 1223-1228. doi: 10.2118/1128-PA

    CrossRef Google Scholar

    [54] ZHANG X H, XIN H G, CAO R R, et al., 2023. Differences in Microscopic Pore-Throat Structure of Reservoirs and Their Significance for Hydrocarbon Accumulation of Chang 8 Reservoir in the Nanliang-Huachi Area, Ordos Basin[J]. Geology and Exploration, 59(2): 418-432. (in Chinese with English abstract

    Google Scholar

    [55] ZHAO J Z, YANG X C, WU F L, et al., 2006. Controlling of uplifts on the Triassic petroleum accumulation and distribution in north Shaanxi Slope, Ordos Basin[J]. Acta Geologica Sinica, 80(5): 648-655. (in Chinese with English abstract

    Google Scholar

    [56] ZHOU Y, JI Y L, XU L M, et al., 2016. Controls on reservoir heterogeneity of tight sand oil reservoirs in Upper Triassic Yanchang Formation in Longdong Area, southwest Ordos Basin, China: implications for reservoir quality prediction and oil accumulation[J]. Marine and Petroleum Geology, 78: 110-135. doi: 10.1016/j.marpetgeo.2016.09.006

    CrossRef Google Scholar

    [57] ZHU X M, PAN R, ZHU S F, et al., 2018. Research progress and core issues in tight reservoir exploration[J]. Earth Science Frontiers, 25(2): 141-146. (in Chinese with English abstract

    Google Scholar

    [58] 陈飞,罗平,张兴阳,等,2010. 鄂尔多斯盆地东缘上三叠统延长组砂体结构与层序地层学研究[J]. 地学前缘,17(1):330-338.

    Google Scholar

    [59] 陈欢庆,王珏,杜宜静,2017. 储层非均质性研究方法进展[J]. 高校地质学报,23(1):104-116.

    Google Scholar

    [60] 陈军军,赵靖舟,柳朝阳,等,2023. 鄂尔多斯盆地七里村油田长6油层储层物性影响因素[J]. 地质与勘探,59(3):647-656.

    Google Scholar

    [61] 陈全红,李文厚,高永祥,等,2007. 鄂尔多斯盆地上三叠统延长组深湖沉积与油气聚集意义[J]. 中国科学D辑:地球科学,31(S1):39-48.

    Google Scholar

    [62] 崔景伟,朱如凯,吴松涛,等,2013. 致密砂岩层内非均质性及含油下限:以鄂尔多斯盆地三叠系延长组长7段为例[J]. 石油学报,34(5):877-882.

    Google Scholar

    [63] 邓胜徽,卢远征,罗忠,等,2018. 鄂尔多斯盆地延长组的划分、时代及中—上三叠统界线[J]. 中国科学:地球科学,48(10):1293-1311.

    Google Scholar

    [64] 邓秀芹,李文厚,刘新社,等,2009. 鄂尔多斯盆地中三叠统与上三叠统地层界线讨论[J]. 地质学报,83(8):1089-1096. doi: 10.3321/j.issn:0001-5717.2009.08.005

    CrossRef Google Scholar

    [65] 杜贵超,石立华,马晓峰,等,2019. 七里村油田长6油层浊沸石胶结特征及其对物性影响[J]. 新疆石油地质,40(2):174-180.

    Google Scholar

    [66] 付金华,郭正权,邓秀芹,2005. 鄂尔多斯盆地西南地区上三叠统延长组沉积相及石油地质意义[J]. 古地理学报,7(1):34-44. doi: 10.7605/gdlxb.2005.01.004

    CrossRef Google Scholar

    [67] 吉利明,徐金鲤,宋之光,2012. 鄂尔多斯盆地延长组湖相蓝藻及其油源意义[J]. 微体古生物学报,29(3):270-281.

    Google Scholar

    [68] 江德昕,王永栋,魏江,2006. 陕西铜川晚三叠世孢粉植物群及其环境意义[J]. 古地理学报,8(1):23-33.

    Google Scholar

    [69] 罗静兰,罗晓容,白玉彬,等,2016. 差异性成岩演化过程对储层致密化时序与孔隙演化的影响:以鄂尔多斯盆地西南部长7致密浊积砂岩储层为例[J]. 地球科学与环境学报,38(1):79-92.

    Google Scholar

    [70] 罗晓容,王忠楠,雷裕红,等,2016a. 特超低渗砂岩油藏储层非均质性特征与成藏模式:以鄂尔多斯盆地西部延长组下组合为例[J]. 石油学报,37(S1):87-98.

    Google Scholar

    [71] 罗晓容,张立宽,雷裕红,等,2016b. 储层结构非均质性及其在深层油气成藏中的意义[J]. 中国石油勘探,21(1):28-36.

    Google Scholar

    [72] 马立元,胡才志,邱桂强,等,2020. 鄂尔多斯盆地镇泾地区长8段储层非均质性及其结构模式[J]. 沉积学报,38(5):1088-1098.

    Google Scholar

    [73] 屈红军,杨县超,曹金舟,等,2011. 鄂尔多斯盆地上三叠统延长组深层油气聚集规律[J]. 石油学报,32(2):243-248.

    Google Scholar

    [74] 王多云,辛补社,杨华,等,2014. 鄂尔多斯盆地延长组长7底部凝灰岩锆石SHRIMP U-Pb年龄及地质意义[J]. 中国科学:地球科学,44(10):2160-2171.

    Google Scholar

    [75] 吴朝东,刘建民,王军,等,2003. 河流沉积单元分析与储层宏观非均质性[J]. 地质科学,38(1):60-73.

    Google Scholar

    [76] 吴胜和,纪友亮,岳大力,等,2013. 碎屑沉积地质体构型分级方案探讨[J]. 高校地质学报,19(1):12-22.

    Google Scholar

    [77] 张晓辉,辛红刚,曹润荣,等,2023. 鄂尔多斯盆地南梁-华池地区长8储层微观孔喉结构差异及成藏意义[J]. 地质与勘探,59(2):418-432.

    Google Scholar

    [78] 赵靖舟,杨县超,武富礼,等,2006. 论隆起背景对鄂尔多斯盆地陕北斜坡区三叠系油藏形成和分布的控制作用[J]. 地质学报,80(5):648-655.

    Google Scholar

    [79] 朱筱敏,潘荣,朱世发,等,2018. 致密储层研究进展和热点问题分析[J]. 地学前缘,25(2):141-146.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(244) PDF downloads(41) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint