
Citation: | LIU Luyong, LI Kaizhou, WANG Nengwei, YANG Zhijie, YANG Dongming, SUN Yao. 2023. In-situ stress characteristics and rockburst tendency of surrounding rocks in the Shuiwangzhuang gold deposit, Zhaoyuan, Shandong province. Journal of Geomechanics, 29(3): 417-429. doi: 10.12090/j.issn.1006-6616.20232910 |
We carried out hydraulic fracturing in-situ stress measurements in an 1881-m deep borehole at the Shuiwangzhuang gold deposit and obtained the variation law of deep in-situ stress with depth in the mining area. The measurement results show that the maximum principal stress has an increasing linear trend with depth. The horizontal stress dominates the in-situ stress state within 800 m, and the vertical stress gradually transitions to the maximum principal stress with increasing depth. The maximum horizontal principal stress ranges from 11.22 to 45.69 MPa, the minimum horizontal principal stress from 7.28 to 36.17 MPa, and the vertical principal stress from 8.44 to 48.27 MPa; The direction of the maximum horizontal principal stress is NWW-trending. We analyzed the characteristics of the deep orebody’s in-situ stress according to the stress value and the direction of the maximum horizontal principal stress, which reveals that the deep in-situ stress of the Shuiwangzhuang mining area belongs to the generally low level in the Zhaoyuan–Laizhou area. We discussed the tendency of rockburst in the underground roadway during deep excavation under a high confining pressure environment based on rock mechanics parameters of drill cores, engineering rock grading standards, and elastic strain energy theory of rock bodies. The Shuiwangzhuang gold orebodies generally belong to the rockburst-free strata or strata with weak rockbursts. However, there is a strong rockburst tendency at depths such as 1102.78 m and 1379.40 m. The gold ore body is at a depth of 1680.40~1684.90 m, generally in the rockburst-free area. The above research results can provide an essential scientific basis for deep mine construction and mining design.
地应力是指地层中未受到人为活动扰动的天然应力,主要由区域构造应力、上覆岩层的重力及其产生的侧向压力、孔隙压力和热应力等组成(李四光,1976;王连捷等,1991;蔡美峰,1995;刘建等,2021),是引起地下工程变形、破坏的根本作用力(于学馥等,1983;蔡美峰,2001;何满潮等,2005)。随着经济发展对矿产资源需求的提升,矿井开采深度不断增加,深部矿山高地应力环境对巷道的稳定性影响越来越明显,矿山深部巷道和工作面的高应力环境易引起硬岩岩爆、软岩大变形、冲击地压和位移等工程灾害,严重影响着矿山开采的安全。因此,通过地应力测量,准确掌握矿区及施工中段地应力特征,对地下采矿工程设计、施工及安全生产有着重要的指导意义。目前主流的地应力测量方法有水压致裂法(Haimson and Fairhurst, 1967;Haimson and Cornet, 2003;彭华等,2011;陈群策等,2019)、套芯应力解除法(Leeman,1971;乔兰和蔡美峰,1995;蔡美峰等,2013)、岩芯滞弹性恢复法(Tofel,1985;杨跃辉等,2019;孙东生等,2020)等。而岩爆预测极为复杂,目前岩爆判定主要从岩体强度、刚度、稳定、断裂、损伤、突变、分形和能量等方面提出多种假设和判据(费鸿禄等,1995;彭祝等,1996;谢和平等,2005a;张镜剑和傅冰骏,2008;何满潮等,2018)。
随着中国“找矿突破战略行动”的实施,胶东深部金矿累计探明金的资源量已超5000 t,其中水旺庄金矿床为近年来招平成矿带北段探明的一处特大型金矿床,累计探明金资源量超过180 t(李士先等,2007;鲍中义等,2014;刘国栋等,2017,2019;刘向东等,2022)。由于现今胶东金矿开采深度大,开采中段可能存在高地应力引发岩爆或软岩大变形的风险,有必要对工程区进行原位地应力测量,结合岩石力学参数来分析深部开采区围岩岩爆风险,为水旺庄金矿深部矿井设计、开挖和巷道支护提供重要科学依据。
水旺庄矿区位于胶东半岛西北部的玲珑矿田内,矿区内沉积地层简单,主要为第四系,多沿河流分布;构造发育,以断裂构造为主,控矿断裂主要为招远−平度断裂带北东段的破头青断裂(区内一级控矿断裂)、九曲蒋家断裂及矿区东部出露的栾家河断裂带(图1);岩浆岩分布广泛,以新太古代谭格庄序列及中生代燕山早期玲珑序列为主体,派生脉岩亦较为发育,岩性主要为奥长花岗岩与绢石英化花岗岩。水旺庄金矿矿体位于矿区埋深1600 m以下的黄铁绢石英化花岗岩岩层(图2)。
水压致裂原地应力测量是20世纪70年代发展起来的能够测量地壳深部二维应力可靠而有效的方法,也是1987年国际岩石力学学会(ISRM)试验方法委员会颁布的确定岩石应力建议方法中所推荐的方法之一(彭华等,2006,2011)。该方法是以弹性力学理论为基础,以实际测量地点为依托,并基于3个理论假设为前提的二维地应力测量方法(王连捷等,1996)。这3个假设分别为①岩石是线弹性并且各向同性;②岩石完整且压裂液体对岩石非渗透;③岩层内3个正交的主应力中有1个主应力(一般是铅直应力)方向和孔轴平行。该方法可在测量过程中直接通过压力监测曲线读取最小水平主应力及岩石原位抗拉强度,无需知道岩石力学参数就可直接获得地层中现今地应力的多种参数。
水旺庄矿区地应力测点位于招远市吕家村,测试钻孔编号为6ZKC1,钻孔终孔深度为1881.08 m。结合现场地质资料、岩芯状况、岩芯柱状图和测井资料,选择孔壁较为完整的区段,作为地应力压裂测段,文章累计完成了21段地应力测试和2段印模定向试验。
水压致裂试验采用单循环水路测量系统,使用Φ50 mm钻杆作为管路将压裂装置送至各测段处,钻杆单根长度约4.7 m,所有钻杆均对其长度进行精确测量,并通过地表高压试压和保压试验。现场试验过程按照DB/T 14—2018原地应力测量水压致裂法和套芯解除法技术规范进行(中国地震局,2018)。压裂过程中水泵泵量控制不大于10 L/min,加压时管路及封隔器内压力快速上升,当压力上升趋于停止时,表明测段位置岩石已被压裂,随后关泵、保压,持续1 min后,最后泄压;每个测段均需重复3~4次压裂过程。根据此测试获取的压力−时间曲线图(图3)判断,总体测试效果较为理想,各循环重复测量的规律性较好,特征比较一致,可清楚地分辨出岩石破裂时的特征压力点,由此可较为确信地判定各测段的地应力状态。
采用单切线法、dp/dt、dt/dp法(丰成君等,2012),平均获取了各个测段的水压破裂面的瞬时闭合压力(Ps),并从压裂曲线读取破裂压力(Pb)、裂缝重张压力(Pr)及测段处岩石原位抗拉强度(T)。根据测得的压力参数及相关公式,得到最大、最小水平主应力(SH、Sh)及铅直主应力(Sv),详见表1。其中铅直主应力值是根据水压致裂理论,按照上覆岩层的厚度计算得到的,计算中6ZKC1钻孔岩石的密度取2.7 g/cm3;岩层的岩石孔隙压力(P0)由测点上方钻孔水柱高度产生的压强计算得出。
测段深度/m | 压裂参数/MPa | 主应力值/MPa | 破裂方位 | |||||||
Pb | Pr | Ps | P0 | T | SH | Sh | Sv | |||
318.80 | 10.48 | 4.36 | 4.15 | 3.12 | 6.12 | 11.22 | 7.28 | 8.44 | ||
370.00 | 8.34 | 4.66 | 4.42 | 3.63 | 3.68 | 12.24 | 8.05 | 9.79 | ||
430.60 | 8.06 | 4.83 | 4.66 | 4.22 | 3.23 | 13.38 | 8.88 | 11.39 | ||
470.40 | 10.06 | 5.43 | 5.04 | 4.61 | 4.63 | 14.29 | 9.65 | 12.45 | ||
528.60 | 11.27 | 5.75 | 5.33 | 5.18 | 5.52 | 15.43 | 10.51 | 13.99 | ||
618.60 | 16.43 | 10.04 | 7.48 | 6.06 | 6.39 | 18.47 | 13.54 | 16.37 | ||
702.50 | 13.51 | 6.85 | 6.29 | 6.88 | 6.66 | 18.91 | 13.18 | 18.59 | ||
818.40 | 11.95 | 7.57 | 6.92 | 8.02 | 4.38 | 21.22 | 14.94 | 21.65 | NW66.2° | |
931.30 | 15.22 | 8.43 | 7.61 | 9.13 | 6.79 | 23.52 | 16.73 | 24.64 | ||
1045.50 | 17.90 | 15.53 | 11.07 | 10.25 | 2.37 | 27.93 | 21.32 | 27.66 | ||
1196.00 | 22.16 | 16.52 | 11.92 | 11.72 | 5.64 | 30.95 | 23.64 | 31.65 | ||
1286.00 | 29.23 | 23.11 | 15.09 | 12.60 | 6.12 | 34.75 | 27.69 | 34.03 | ||
1379.50 | 28.76 | 25.08 | 16.21 | 13.52 | 3.68 | 37.08 | 29.73 | 36.50 | ||
1459.00 | 25.31 | 22.08 | 15.09 | 14.30 | 3.23 | 37.50 | 29.39 | 38.61 | ||
1481.00 | 25.45 | 20.82 | 14.59 | 14.51 | 4.63 | 37.47 | 29.11 | 39.19 | ||
1546.00 | 26.83 | 21.31 | 14.99 | 15.15 | 5.52 | 38.80 | 30.14 | 40.91 | ||
1583.20 | 27.85 | 21.46 | 15.15 | 15.52 | 6.39 | 39.51 | 30.67 | 41.89 | ||
1652.80 | 25.92 | 19.26 | 14.36 | 16.20 | 6.66 | 40.02 | 30.56 | 43.73 | NW71.5° | |
1737.50 | 27.12 | 22.74 | 16.14 | 17.03 | 4.38 | 42.70 | 33.17 | 45.97 | ||
1757.40 | 31.17 | 24.38 | 16.92 | 17.22 | 6.79 | 43.60 | 34.14 | 46.50 | ||
1824.10 | 32.45 | 27.08 | 18.30 | 17.88 | 5.37 | 45.69 | 36.17 | 48.27 |
6ZKC1钻孔实测最大水平主应力为11.22~45.69 MPa,最小水平主应力为7.28~36.17 MPa。各测段的最大水平主应力(SH)和最小水平主应力(Sh)与钻孔深度呈线性回归(图4),其回归方程和相关系数如下:
SH=3.44+0.023D;R2=0.9949 | (1) |
Sh=0.41+0.019D;R2=0.9872 | (2) |
其中:D—钻孔深度(向下为正),m。
由上述地应力测量结果可以看出,研究区应力场浅部主要以水平应力为主导,铅直应力由中间主应力随深度增加逐渐过渡为最大主应力。其中,最大水平主应力(SH)与铅直主应力(Sv)的比值为0.92~1.33,平均为1.03;最大水平主应力(SH)与最小水平主应力(Sh)比值为1.26~1.54,平均为1.36;铅直主应力(Sv)与最小水平应力(Sh)比值为1.16~1.47,平均为1.32。按照水压致裂地应力测量基本原理,水压致裂所产生的破裂面走向就是最大水平主应力方向,通过印模定向,获得6ZKC1钻孔818.40 m及1652.80 m深度破裂面方位分别为NW66.2°、NW71.5°(表1),即测点最大水平主应力方向为北西西向。
通过收集相关资料获得招远−莱州地区焦家金矿、瑞海金矿、纱岭金矿、三山岛金矿、大尹各庄金矿5个矿区8个钻孔地应力数据(彭华和孙尧,2016a,2016b;裴峰,2020;孙尧和彭华,2021;侯奎奎等,2022),形成区域上各个深度水平主应力绝对值分布图(图5a)和SH、Sh、Sv之间比值分布图(图5b),相比较而言,水旺庄金矿6ZKC1孔地应力绝对值大小及SH/Sh、SH/Sv相对比值在整个区域上均属于一般偏低水平。该钻孔岩芯及测井资料显示,钻孔深部破碎带较多(例如1131.40~1722.82 m、1765.69~1821.93 m多构造破碎带),这是由于矿区原应力场可能不易发生应力聚积所致。
岩爆是指在开挖或其他外界扰动下,地下工程岩体突然发生爆裂、弹射的动力现象,具有很强的突发性、随机性和危害性(奥特利普和连志升,1987;冯夏庭等,2019)。岩爆的外因是岩体开挖引起地下洞室围岩应力重新分布、应力集中造成的局部高地应力;其内因是岩石硬度,一般来讲在高应力作用下的硬岩极易发生岩爆现象,而软岩则具有大变形特征(张广泽等,2022)。水旺庄金矿矿体位于6ZKC1孔1680.40~1684.90 m之间,地应力测量结果显示,该位置最大水平主应力值为40.00~42.00 MPa,最小水平主应力值为31.00~33.00 MPa,推算铅直主应力值为44.00~45.00 MPa,地应力绝对数值较大。因此,需要对深部矿体开采过程中的岩爆倾向性进行分析评估,并依据评估结果在深部矿体开采巷道等地下工程施工时,投入必要的防护措施。
在工程地质中,一般将工程区岩石单轴抗压强度(Rc)与巷道截面内最大主应力(σmax)的比值Rc/σmax作为岩爆判定标准之一(马秀敏等,2006)。根据《工程岩体分级标准GB 50218—2014》(中华人民共和国住房和城乡建设部,2015),4<Rc/σmax<7时为高地应力,开挖过程中可能出现岩爆;Rc/σmax<4时为极高地应力,开挖过程中常有岩爆发生。根据测试钻孔岩芯岩石物理力学测试数据,6ZKC1钻孔岩样的单轴抗压强度为17.72 ~140.27 MPa,结合地应力实测数据(因岩石力学试验段与地应力测段深度无法完全对应,岩石力学数据采用相应深度的实测数据,地应力值采用线性拟合后相应深度的数值,下文相同)。钻孔岩爆判定见表2,可见6ZKC1钻孔700 m以下Rc/σmax均小于4,为极高应力区,而矿体所在深度的Rc/σmax为1.71,表明具备发生强烈岩爆的条件。
开挖 深度/m | 单轴抗压 强度Rc/MPa | 最大主应力 σmax/MPa | Rc/σmax | 岩爆倾向 | 开挖 深度/m | 单轴抗压 强度Rc/MPa | 最大主应力 σmax/MPa | Rc/σmax | 岩爆倾向 | |
22.28 | 17.72 | 3.95 | 4.49 | 高应力,中等岩爆 | 1123.05 | 11.87 | 30.32 | 0.39 | 极高应力,强烈岩爆 | |
88.50 | 49.02 | 5.48 | 8.95 | 低应力,无岩爆 | 1162.42 | 15.91 | 31.39 | 0.51 | ||
95.28 | 19.09 | 5.63 | 3.39 | 极高应力,强烈岩爆 | 1178.00 | 22.82 | 31.81 | 0.72 | ||
163.58 | 77.28 | 7.20 | 10.73 | 低应力,无岩爆 | 1229.85 | 16.93 | 33.21 | 0.51 | ||
181.27 | 99.08 | 7.61 | 13.02 | 1279.40 | 47.86 | 34.54 | 1.39 | |||
250.44 | 43.52 | 9.20 | 4.73 | 高应力,中等岩爆 | 1304.74 | 12.55 | 35.23 | 0.36 | ||
316.40 | 100.08 | 10.72 | 9.34 | 低应力,无岩爆 | 1349.40 | 86.98 | 36.43 | 2.39 | ||
349.20 | 67.28 | 11.47 | 5.87 | 高应力,中等岩爆 | 1394.46 | 55.07 | 37.65 | 1.46 | ||
415.40 | 52.81 | 12.99 | 4.07 | 1429.00 | 41.86 | 38.58 | 1.09 | |||
486.96 | 48.01 | 14.64 | 3.28 | 极高应力,强烈岩爆 | 1446.31 | 62.49 | 39.05 | 1.60 | ||
530.32 | 98.77 | 15.64 | 6.32 | 高应力,中等岩爆 | 1463.00 | 25.29 | 39.50 | 0.64 | ||
586.78 | 60.52 | 16.94 | 3.57 | 极高应力,强烈岩爆 | 1498.87 | 32.35 | 40.47 | 0.80 | ||
610.10 | 4.61 | 17.47 | 0.26 | 1513.00 | 48.88 | 40.85 | 1.20 | |||
653.72 | 125.18 | 18.48 | 6.77 | 高应力,中等岩爆 | 1522.00 | 44.28 | 41.09 | 1.08 | ||
694.53 | 140.27 | 19.41 | 7.23 | 低应力,无岩爆 | 1547.65 | 53.08 | 41.79 | 1.27 | ||
748.61 | 54.16 | 20.66 | 2.62 | 极高应力,强烈岩爆 | 1593.27 | 69.49 | 43.02 | 1.62 | ||
794.66 | 20.25 | 21.72 | 0.93 | 1641.49 | 26.34 | 44.32 | 0.59 | |||
843.12 | 22.24 | 22.83 | 0.97 | 1671.59 | 77.37 | 45.13 | 1.71 | |||
876.86 | 19.58 | 23.68 | 0.83 | 1712.61 | 34.41 | 46.24 | 0.74 | |||
919.31 | 56.22 | 24.82 | 2.27 | 1719.00 | 71.88 | 46.41 | 1.55 | |||
947.11 | 63.32 | 25.57 | 2.48 | 1738.96 | 48.45 | 46.95 | 1.03 | |||
980.95 | 58.57 | 26.49 | 2.21 | 1775.32 | 62.19 | 47.93 | 1.30 | |||
1018.55 | 41.48 | 27.50 | 1.51 | 1811.42 | 121.4 | 48.91 | 2.48 | |||
1049.68 | 28.08 | 28.34 | 0.99 | 1862.34 | 48.4 | 50.28 | 0.96 | |||
1102.78 | 6.46 | 29.78 | 0.22 |
国内外研究表明,岩体变形破坏实质上是能量释放与耗散的综合结果(Mikhalyuk and Zakharov,1997;Steffler et al.,2003;Sujatha and Kishen,2003;谢和平等,2005b),地下岩体在开挖过程中由于卸荷引起围岩应力重新分布,在岩体临空面产生应力集中现象,弹性应变能大量聚集。当岩体中可释放弹性应变能达到岩体破坏所需的能量时,岩体就会发生破坏。若硬岩弹性能突然脆性释放,可能导致岩块弹射,形成岩爆。
考虑一个单位体积的岩体在外力作用下产生变形,假设该物理过程与外界没有热交换,外力做功所产生的总输入能量为U,根据能量守恒原理,可得:
U=Ud+Ue | (3) |
式中:Ud—岩石耗散能;Ue—岩石可释放弹性应变能。
为适用于工程应用的岩体单元可释放应变能计算,将弹性模量和泊松比分别取为E0与ν,得到:
Ue=12E0[σ21+σ22+σ23−2ν(σ1σ2+σ2σ3+σ1σ3)] | (4) |
式中:σ1、σ2、σ3分别为岩体所承受的最大主应力、中间应力、最小主应力。
假定U0为围岩的岩石极限储能,当岩体中Ue=U0时,岩体发生静态破坏;当Ue >U0时,岩体发生动态破坏,能量差额Ue−U0构成分裂岩体的动能。因此,岩体发生岩爆的破坏准则(郭建强等,2015;张勇等,2022)为:
Ue>U0 | (5) |
单轴压缩条件下,岩石极限储能经验公式为:
U0=R2c2E0 | (6) |
结合刘焕新等(2020)三轴卸围压试验结果,花岗岩在围压环境下岩石极限储能公式为:
U0=0.0305σ3+R2c2E0 | (7) |
拟合得到不同围压条件下
以外力对岩体做功所产生的总输入能量(U)与极限储存能(U0)比值作为岩爆能量指标,将岩爆等级分为4级(陈卫忠等,2009,2010),具体判据为:U/U0=0.3(Ⅰ级,弱岩爆);U/U0=0.4(Ⅱ级,中等岩爆);U/U0=0.5(Ⅲ级,强烈岩爆);U/U0≥0.7(Ⅳ级,严重岩爆)。其中U为耗散能和弹性应变能量之和,而耗散能在岩体开挖过程中形成岩石内部损伤和塑性变形,该过程是不可逆的,故在计算过程中可用Ue代替。
综合6ZKC1孔地应力测量结果和实验室获得的钻孔岩芯样品单轴抗压强度、弹性模量、泊松比等力学参数,采用能量积聚方法,评判了钻孔不同深度的岩爆倾向性等级(表3)。
开挖深度/m | 单轴抗压强度/MPa | σ1/MPa | σ2/MPa | σ3/MPa | 泊松比 | 弹性模量 | 弹性应变能/(kJ/m3) | 极限储能/(kJ/m3) | U/U0 | 岩爆倾向 |
22.28 | 17.72 | 3.95 | 0.83 | 0.60 | 0.22 | 3.49 | 2.00 | 494.35 | 0.0040 | 无岩爆 |
88.50 | 49.02 | 5.48 | 2.39 | 2.09 | 0.17 | 3.21 | 4.68 | 539.79 | 0.0087 | 无岩爆 |
95.28 | 19.09 | 5.63 | 2.57 | 2.22 | 0.26 | 2.00 | 6.56 | 543.72 | 0.0121 | 无岩爆 |
163.58 | 77.28 | 7.20 | 4.42 | 3.52 | 0.22 | 7.40 | 3.50 | 583.30 | 0.0060 | 无岩爆 |
181.27 | 99.08 | 7.61 | 4.89 | 3.85 | 0.23 | 9.46 | 3.03 | 593.55 | 0.0051 | 无岩爆 |
250.44 | 43.52 | 9.20 | 6.76 | 5.17 | 0.21 | 4.63 | 10.40 | 633.63 | 0.0164 | 无岩爆 |
316.40 | 100.08 | 10.72 | 8.54 | 6.42 | 0.20 | 4.26 | 16.78 | 671.86 | 0.0250 | 无岩爆 |
349.20 | 67.28 | 11.47 | 9.43 | 7.04 | 0.17 | 6.60 | 13.89 | 690.87 | 0.0201 | 无岩爆 |
415.40 | 52.81 | 12.99 | 11.22 | 8.30 | 0.21 | 6.10 | 17.86 | 729.23 | 0.0245 | 无岩爆 |
486.96 | 48.01 | 14.64 | 13.15 | 9.66 | 0.20 | 4.06 | 36.47 | 770.70 | 0.0473 | 无岩爆 |
530.32 | 98.77 | 15.64 | 14.32 | 10.49 | 0.21 | 6.89 | 24.20 | 795.83 | 0.0304 | 无岩爆 |
586.78 | 60.52 | 16.94 | 15.84 | 11.56 | 0.24 | 7.20 | 25.05 | 828.54 | 0.0302 | 无岩爆 |
610.10 | 4.61 | 17.47 | 16.47 | 12.00 | 0.27 | 1.15 | 150.11 | 842.06 | 0.1783 | 无岩爆 |
653.72 | 125.18 | 18.48 | 17.65 | 12.83 | 0.16 | 7.06 | 40.00 | 867.34 | 0.0461 | 无岩爆 |
694.53 | 140.27 | 19.41 | 18.75 | 13.61 | 0.21 | 6.89 | 39.38 | 890.99 | 0.0442 | 无岩爆 |
748.61 | 54.16 | 20.66 | 20.21 | 14.63 | 0.13 | 4.02 | 97.68 | 922.32 | 0.1059 | 无岩爆 |
794.66 | 20.25 | 21.72 | 21.46 | 15.51 | 0.20 | 3.20 | 112.23 | 949.01 | 0.1183 | 无岩爆 |
843.12 | 22.24 | 22.83 | 22.76 | 16.43 | 0.18 | 3.52 | 121.11 | 977.09 | 0.1240 | 无岩爆 |
876.86 | 19.58 | 23.68 | 23.61 | 17.07 | 0.17 | 3.35 | 141.01 | 996.65 | 0.1415 | 无岩爆 |
919.31 | 56.22 | 24.82 | 24.58 | 17.88 | 0.22 | 4.88 | 90.47 | 1021.25 | 0.0886 | 无岩爆 |
947.11 | 63.32 | 25.57 | 25.22 | 18.41 | 0.17 | 4.95 | 110.28 | 1037.36 | 0.1063 | 无岩爆 |
980.95 | 58.57 | 26.49 | 26.00 | 19.05 | 0.16 | 5.22 | 114.95 | 1056.97 | 0.1088 | 无岩爆 |
1018.55 | 41.48 | 27.50 | 26.87 | 19.76 | 0.20 | 3.00 | 190.56 | 1078.75 | 0.1766 | 无岩爆 |
1049.68 | 28.08 | 28.34 | 27.58 | 20.35 | 0.22 | 3.50 | 161.93 | 1096.79 | 0.1476 | 无岩爆 |
1102.78 | 6.46 | 29.78 | 28.80 | 21.36 | 0.37 | 0.32 | 956.08 | 1127.57 | 0.8479 | 严重岩爆 |
1123.05 | 11.87 | 30.32 | 29.27 | 21.75 | 0.26 | 1.26 | 441.95 | 1139.31 | 0.3879 | 弱岩爆 |
1162.42 | 15.91 | 31.39 | 30.18 | 22.50 | 0.27 | 1.19 | 480.01 | 1162.13 | 0.4130 | 中等岩爆 |
1178.00 | 22.82 | 31.81 | 30.53 | 22.79 | 0.25 | 1.85 | 342.54 | 1171.16 | 0.2925 | 无岩爆 |
1229.85 | 16.93 | 33.21 | 31.73 | 23.78 | 0.18 | 2.78 | 312.86 | 1201.20 | 0.2605 | 无岩爆 |
1279.40 | 47.86 | 34.54 | 32.87 | 24.72 | 0.15 | 1.85 | 552.43 | 1229.92 | 0.4492 | 中等岩爆 |
1304.74 | 12.55 | 35.23 | 33.45 | 25.20 | 0.20 | 4.38 | 209.05 | 1244.60 | 0.1680 | 无岩爆 |
1349.40 | 86.98 | 36.43 | 34.48 | 26.05 | 0.19 | 1.23 | 819.24 | 1270.48 | 0.6448 | 强烈岩爆 |
1394.46 | 55.07 | 37.65 | 35.51 | 26.90 | 0.23 | 6.89 | 136.58 | 1296.59 | 0.1053 | 无岩爆 |
1429.00 | 41.86 | 38.58 | 36.31 | 27.56 | 0.18 | 4.07 | 284.90 | 1316.61 | 0.2164 | 无岩爆 |
1446.31 | 62.49 | 39.05 | 36.71 | 27.89 | 0.23 | 5.15 | 196.00 | 1326.64 | 0.1477 | 无岩爆 |
1463.00 | 25.29 | 39.50 | 37.09 | 28.21 | 0.27 | 2.08 | 426.40 | 1336.31 | 0.3191 | 弱岩爆 |
1498.87 | 32.35 | 40.47 | 37.91 | 28.89 | 0.19 | 5.43 | 227.10 | 1357.10 | 0.1673 | 无岩爆 |
1513.00 | 48.88 | 40.85 | 38.24 | 29.16 | 0.17 | 3.31 | 402.72 | 1365.29 | 0.2950 | 无岩爆 |
1522.00 | 44.28 | 41.09 | 38.45 | 29.33 | 0.19 | 5.09 | 249.52 | 1370.50 | 0.1821 | 无岩爆 |
1547.65 | 53.08 | 41.79 | 39.04 | 29.82 | 0.24 | 4.68 | 237.10 | 1385.37 | 0.1711 | 无岩爆 |
1593.27 | 69.49 | 43.02 | 40.09 | 30.68 | 0.22 | 2.14 | 588.35 | 1411.80 | 0.4167 | 中等岩爆 |
1641.49 | 26.34 | 44.32 | 41.19 | 31.60 | 0.23 | 4.20 | 306.77 | 1439.75 | 0.2131 | 无岩爆 |
1671.59 | 77.37 | 45.13 | 41.89 | 32.17 | 0.23 | 3.73 | 357.78 | 1457.19 | 0.2455 | 无岩爆 |
1712.61 | 34.41 | 46.24 | 42.83 | 32.95 | 0.18 | 3.77 | 436.17 | 1480.96 | 0.2945 | 无岩爆 |
1719.00 | 71.88 | 46.41 | 42.98 | 33.07 | 0.21 | 3.69 | 408.60 | 1484.67 | 0.2752 | 无岩爆 |
1738.96 | 48.45 | 46.95 | 43.44 | 33.45 | 0.20 | 5.60 | 284.37 | 1496.23 | 0.1901 | 无岩爆 |
1775.32 | 62.19 | 47.93 | 44.27 | 34.14 | 0.24 | 5.54 | 261.16 | 1517.30 | 0.1721 | 无岩爆 |
1811.42 | 121.40 | 48.91 | 45.10 | 34.83 | 0.16 | 3.38 | 574.79 | 1538.22 | 0.3737 | 弱岩爆 |
1862.34 | 48.40 | 50.28 | 46.27 | 35.79 | 0.24 | 7.28 | 218.07 | 1567.73 | 0.1391 | 无岩爆 |
由表3得出,水旺庄金矿6ZKC1钻孔全孔U/U0在0.0040~0.8479之间,平均值为0.1847,总体为少量片帮的无岩爆或弱岩爆区。其中,1162.42 m、1279.40 m、1593.27 m深度的U/U0值分别达到了0.4130、0.4492和0.4167,具备出现严重片帮的条件,为中等岩爆区;1349.40 m深度的U/U0值为0.6448,属于强烈岩爆区,硐室开挖需进行支护;1102.78 m深度的U/U0值为0.8479,属于严重岩爆区,必须进行特别支护(图6)。水旺庄金矿矿体位于6ZKC1钻孔深度1680.40~1684.90 m之间,整体为无岩爆区。因此,矿体开采过程中岩爆的危险性较低,但在开挖竖井(主井、副井和通风井)过程中,要穿越中等岩爆区(1162.42 m、1279.40 m、1593.27 m)、强烈岩爆区(1349.40 m)和严重岩爆区(1102.78 m),建议加强防护措施。
由于实验室测得的Rc是岩石单轴抗压强度,而深部岩体由于有围压的存在,实际的抗压强度要大于实验室测定的单轴抗压强度值。对比表2和表3可以看出,工程岩体分级标准下6ZKC1钻孔多为极高应力区段,有发生强烈岩爆可能性,在700 m深度以下全部为强烈岩爆;而基于能量积聚方法评价时,仅在岩石弹性模量较低的区段存在中强岩爆可能性。使用工程岩体分级标准对岩爆倾向进行判定时,在不考虑构造应力的情况下,单纯由上覆岩体产生的铅直应力在足够深度条件下就可以使得Rc/σmax突破该标准中对于岩爆判定的临界值,而在很多深井实际掘进过程中,因高地应力条件下的巷道临空面发生破裂自动卸压,高应力集中区延伸至远离临空面的岩体深部,岩爆危险性反而会降低(李春林,2019)。因此,传统的基于工程岩体分级标准的岩爆评价方法,在深部同时存在高应力及高围压环境下存在一定的局限性。
使用能量积聚的方法进行岩爆评价,则可以充分考虑围压的影响。总体来讲,岩体承受的最大主应力(σ1)是发生岩爆的诱因,在单轴压缩条件下,公式(4)简化为:
Ue=σ122E0 | (8) |
则工程岩体分级标准的岩爆评价与能量积聚的岩爆评价在此条件下具备等价的表达形式:
Rcσmax | (9) |
表明在浅部无围压或围压较小的环境中,可以使用Rc/σmax作为岩爆评价的指标。
在围压环境下,最小主应力(即围压σ3)可以增大岩石的极限储能,使之更有可能抵抗岩爆的发生。由公式(7)可知,σ3的值越大,岩石的极限储能越大,则可能抑制岩爆的发生;反之,σ3的值越小,则岩石极限储能就越小,可能促使岩爆的发生。
而岩石弹性应变能受σ3影响的情况较为复杂,当σ1恒定时,对公式(4)求导数,得到:
\frac{{{\text{d}}{U_{\text{e}}}}}{{{\text{d}}{\sigma _3}}} = \frac{1}{{{E_0}}}\left[ {{\sigma _3} - \nu \left( {{\sigma _1} + {\sigma _2}} \right)} \right] | (10) |
这里σ3取值区间为[0, σ2],当泊松比
当σ2与σ3相等的伪三轴条件下,对公式(4)求导得到:
\frac{{{\text{d}}{U_{\text{e}}}}}{{{\text{d}}{\sigma _3}}} = \frac{2}{{{E_0}}}\left[ {{\sigma _3} - \nu \left( {{\sigma _1} + {\sigma _3}} \right)} \right] | (11) |
这里σ3的取值区间为[0,σ1],由于岩石泊松比ν均小于0.5,则围压σ3值增大,使得岩石的弹性应变能先减后增,且岩石泊松比越大,弹性应变能就越小。
由表3也可看出,岩体弹性模量对深部岩体发生岩爆倾向性影响较大,中高岩爆风险区其值均较低。岩体弹性模量同时决定了岩体的弹性应变能和极限储能,根据公式(4),弹性模量与岩体的弹性应变能成反比关系;而在公式(7)中,弹性模量仅与岩体极限储能的线性表达式中截距部分成反比,因此在深部高围压环境下岩体弹性模量对弹性应变能的影响远大于其对极限储能的影响,故在钻孔深部,高弹性模量的岩体岩爆可能性较小,低弹性模量的岩体发生岩爆的危险性较高。
由于岩石的变异性较大,即便是同种岩石,其力学特性也可能存在较大差别,对于不同岩性的深埋巷道,其围岩的极限储能计算公式(7)中的斜率及截距数值会有所不同,造成同样围压下极限储能数值的不同,文中仅参考了招远地区临近矿区的经验参数。
综上,在深部高围压环境中,需要综合考虑最大主应力、最小主应力、岩石抗压强度、弹性模量、泊松比等力学指标,才能更加合理地做出岩爆倾向性评价。而工程岩体分级标准作为一个相对保守且简易的评价指标,在其可以得出无岩爆评价时,大致可以确信无岩爆风险。但需要注意矿山后期地下巷道开挖后对矿区原生构造应力场产生扰动,可能会产生局部应力集中现象,使局部主应力值大小及最大主应力方向发生变化。
(1)水旺庄金矿矿区应力场浅部主要以水平应力为主导,铅直主应力由中间主应力随深度增加过渡为最大主应力。其中,最大水平主应力(SH)与铅直主应力(Sv)的比值为0.92~1.33,平均为1.03;两个水平主应力比值为1.26~1.54,平均为1.36;铅直主应力(Sv)与最小水平主应力(Sh)的比值为1.16~1.47,平均为1.32。与招远−莱州地区其他构造应力场相比较,水旺庄金矿的地应力大小属于一般偏低水平,钻孔破碎带较多,是矿区应力场不易发生应力聚积的主要因素。
(2)6ZKC1钻孔实测最大水平主应力方向分别为NW66.2°、NW71.5°,表明研究区最大水平主应力方位为北西西向。这一结果与新构造活动反映的区域构造应力场方向基本一致。
(3)水旺庄金矿矿体位于1680.40~1684.90 m深度,该部位的最大主应力为铅直主应力,其应力值为45.37~45.79 MPa;最小主应力值为32.34~32.42 MPa,矿体位置未发现有构造应力集中的现象。
(4)通过围压环境下的岩石能量积聚方法分析,水旺庄金矿总体属于无岩爆或弱岩爆的地层岩性,但局部存在岩爆倾向性,如1349.40 m深度为强烈岩爆区,硐室开挖需进行支护;1102.78 m深度为严重岩爆区,必须加强特别支护;金矿矿体大体位于无岩爆区域。
[1] | ALTLIP W D, LIAN Z S, 1987. Understanding and control of rockbursts: past, present and future[J]. Mining Technology, 3(8): 5-7. (in Chinese) |
[2] | BAO Z Y, SUN Z Q, LIU G D, et al. , 2014. Geological characteristics and prospecting direction of deposits in Shuiwangzhuang Area in Potouqing fault[J]. Shandong Land and Resources, 30(2): 29-33. (in Chinese with English abstract) |
[3] | CAI M F, 1995. The principle and techniques of in-situ stress measurement[M]. Beijing: Science Press. (in Chinese) |
[4] | CAI M F, 2001. Optimization of mining design and control of ground pressure in metal mines-theory and practice[M]. Beijing: Science Press. (in Chinese) |
[5] | CAI M F, GUO Q F, LI Y, et al. , 2013. In situ stress measurement and its application in the 10th Mine of Pingdingshan Coal Group[J]. Journal of University of Science and Technology Beijing, 35(11): 1399-1406. (in Chinese with English abstract) |
[6] | CHEN Q C, SUN D S, CUI J J, et al. , 2019. Hydraulic fracturing stress measurements in Xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5): 853-865. (in Chinese with English abstract) |
[7] | CHEN W Z, LÜ S P, GUO X H, et al. , 2009. Research on unloading confining pressure tests and rockburst criterion based on energy theory[J]. Chinese Journal of Rock Mechanics and Engineering, 28(8): 1530-1540. (in Chinese with English abstract) |
[8] | CHEN W Z, LÜ S P, GUO X H, et al. , 2010. Unloading confining pressure for brittle rock and mechanism of rock burst[J]. Chinese Journal of Geotechnical Engineering, 32(6): 963-969. (in Chinese with English abstract) |
[9] | China Earthquake Administration, 2018. Specification of hydraulic fracturing and overcoring method for in-situ stress measurement: DB/T 14-201[S]. Beijing: Science Press. (in Chinese) |
[10] | FEI H L, XU X H, TANG C A, 1995. Research on theory of catastrophe of rock burst in underground chamber[J]. Journal of China Coal Society, 20(1): 29-33. (in Chinese with English abstract) |
[11] | FENG C J, CHEN Q C, WU M L, et al. , 2012. Analysis of hydraulic fracturing stress measurement data: discussion of methods frequently used to determine instantaneous shut-in pressure[J]. Rock and Soil Mechanics, 33(7): 2149-2159. (in Chinese with English abstract) |
[12] | FENG X T, XIAO Y X, FENG G L, et al. , 2019. Study on the development process of rockbursts[J]. Chinese Journal of Rock Mechanics and Engineering, 38(4): 649-673. (in Chinese with English abstract) |
[13] | GUO J Q, ZHAO Q, WANG J B, et al. , 2015. Rockburst prediction based on elastic strain energy[J]. Chinese Journal of Rock Mechanics and Engineering, 34(9): 1886-1893. (in Chinese with English abstract) |
[14] | HAIMSON B, FAIRHURST C, 1967. Initiation and extension of hydraulic fractures in rock[J]. Society of Petroleum Engineers Journal, 7(3): 310-318. doi: 10.2118/1710-PA |
[15] | HAIMSON B C, CORNET F H, 2003. ISRM Suggested Methods for rock stress estimation-Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1011-1020. doi: 10.1016/j.ijrmms.2003.08.002 |
[16] | HE M C, XIE H P, PENG S P, et al. , 2005. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 24(16): 2803-2813. (in Chinese with English abstract) |
[17] | HE M C, WANG Y, SU J S, et al. , 2018. Analysis of fractal characteristics of fragment of sandstone impact rock burst under static and dynamic coupled loads[J]. Journal of China University of Mining & Technology, 47(4): 699-705. (in Chinese with English abstract) |
[18] | HOU K K, WU Q Z, ZHANG F P, et al. , 2022. Application of different in-situ stress test methods in the area of 2 005 m shaft construction of Sanshandao gold mine and distribution law of in-situ stress[J]. Rock and Soil Mechanics, 43(4): 1093-1102. (in Chinese with English abstract) |
[19] | LEE J S, 1976. Geomechanical method[M]. Beijing: Science Press. (in Chinese) |
[20] | LEEMAN E R, 1971. The CSIR “doorstopper” and triaxial rock stress measuring instruments[J]. Rock Mechanics and Rock Engineering, 3(1): 25-50. |
[21] | LI C L, 2019. Rockburst conditions and rockburst support[J]. Chinese Journal of Rock Mechanics and Engineering, 38(4): 674-682. (in Chinese with English abstract) |
[22] | LI S X, LIU C C, AN Y H, et al. , 2007. Geology of gold deposits in Jiaodong[M]. Beijing: Geology Press. (in Chinese) |
[23] | LIU G D, WEN G J, LIU C J, et al. , 2017. Discovery, characteristics and prospecting direction of Shuiwangzhuang deep super-large gold deposit in the northern section of Zhaoping fault[J]. Gold Science and Technology, 25(3): 38-45. (in Chinese with English abstract) |
[24] | LIU G D, SONG G Z, BAO Z Y, et al. , 2019. New breakthrough of deep prospecting in the northern section of the Zhaoping fault zone and the new understanding of fault distribution in the Jiaodong district[J]. Geotectonica et Metallogenia, 43(2): 226-234. (in Chinese with English abstract) |
[25] | LIU H X, TAN Z Y, WANG X, et al. , 2020. Prediction of rock burst risk in deep shaft excavation of Xincheng gold mine[J]. Journal of China University of Mining & Technology, 49(2): 296-304. (in Chinese with English abstract) |
[26] | LIU J, HUI C, FAN J M, et al. , 2021. Distribution characteristics of the present-day in-situ stress in the Chang 6 tight sandstone reservoirs of the Yanchang Formation in the Heshui Area, Ordos Basin, China and suggestions for development[J]. Journal of Geomechanics, 27(1): 31-39. (in Chinese with English abstract) |
[27] | LIU X D, ZHOU M L, XU S H, et al. , 2022. Prospecting prediction and verification at a depth of 3000 m in the Shuiwangzhuang gold deposit, northwestern Jiaodong Peninsula, eastern China[J]. Geological Bulletin of China, 41(6): 946-957. (in Chinese with English abstract) |
[28] | MA X M, PENG H, LI J S, et al. , 2006. In-situ stress measurement and its application to rock burst analysis in Xinbaiyanzhai tunnel of the Xiangyu railway[J]. Acta Geoscientica Sinica, 27(2): 181-186. (in Chinese with English abstract) |
[29] | MIKHALYUK A V, ZAKHAROV V V, 1997. Dissipation of dynamic-loading energy in quasi-elastic deformation processes in rocks[J]. Journal of Applied Mechanics and Technical Physics, 38(2): 312-318. doi: 10.1007/BF02467918 |
[30] | Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2015. Standard for engineering classification of rock mass: GB/T 50218-2014[S]. Beijing: China Planning Press. (in Chinese) |
[31] | PEI F, 2020. Mechanical properties of rock in deep stratum and analysis and control of shaft surrounding rock stability in Shaling gold mine[D]. Beijing: University of Science and Technology Beijing. (in Chinese with English abstract) |
[32] | PENG H, CUI W, MA X M, et al. , 2006. Hydrofracturing in-situ stress measurements of the water diversion area in the first stage of the South-North Water Diversion Project (western line)[J]. Journal of Geomechanics, 12(2): 182-190. (in Chinese with English abstract) |
[33] | PENG H, MA X M, JIANG J J, et al. , 2011. Research on stress field and hydraulic fracturing in-situ stress measurement of 1 000 m deep hole in Zhaolou Coal Mine[J]. Chinese Journal of Rock Mechanics and Engineering, 30(8): 1638-1645. (in Chinese with English abstract) |
[34] | PENG H, SUN Y, 2016. Analysis report of hydraulic fracturing in-situ stress measurement of #2 Borehole in Ruihai Gold Mine[R]. Beijing: Institute of Geomechanics, Chinese Academy of Geological Sciences. (in Chinese) |
[35] | PENG H, SUN Y, 2016. Analysis report on Hydraulic fracturing in-situ stress measurement of deep exploration borehole in Jiaojia Gold Deposit, Laizhou, Shandong Province[R]. Beijing: Institute of Geomechanics, Chinese Academy of Geological Sciences. (in Chinese) |
[36] | PENG Z, WANG Y H, LI T J, 1996. Griffith theory and the criteria of rock burst[J]. Chinese Journal of Rock Mechanics and Engineering, 15(S1): 491-495. (in Chinese with English abstract) |
[37] | QIAO L, CAI M F, 1995. New development of stress relief method for determination of in-situ stresses in a Gold Mine[J]. Chinese Journal of Rock Mechanics and Engineering, 14(1): 25-32. (in Chinese with English abstract) |
[38] | STEFFLER E D, EPSTEIN J S, CONLEY E G, 2003. Energy partitioning for a crack under remote shear and compression[J]. International Journal of Fracture, 120(4): 563-580. doi: 10.1023/A:1025511703698 |
[39] | SUJATHA V, KISHEN J M C, 2003. Energy release rate due to friction at bimaterial interface in dams[J]. Journal of Engineering Mechanics, 129(7): 793-800. doi: 10.1061/(ASCE)0733-9399(2003)129:7(793) |
[40] | SUN D S, CHEN Q C, ZHANG Y Q, et al. , 2020. Analysis on the application prospect of ASR in-situ stress measurement method in underground mine[J]. Journal of Geomechanics, 26(1): 33-38. (in Chinese with English abstract) |
[41] | SUN Y, PENG H, 2021. Analysis report on Hydraulic fracturing in-situ stress measurement of Borehole in Dayinggezhuang Gold Mine, Zhaoyuan City, Shandong Province[R]. Beijing: Institute of Geomechanics, Chinese Academy of Geological Sciences. (in Chinese) |
[42] | TOFEL L W, 1985. Determination of in-situ stress based on the results of visco-elastic strain recovery of oriented core and comparison with the results of hydraulic fracturing stress[J]. Seismological and Geological Science and Technology Trends, (5): 13-17. |
[43] | WANG L J, PAN L Z, LIAO C T, et al. , 1991. In-situ stress measurement and its application in engineering[M]. Beijing: Geological Publishing House. (in Chinese) |
[44] | WANG L J, DING Y C, LIU Q S, et al. , 1996. Rock stress measurements in a planned tunnel for diversion of water from the Yellow River[J]. Journal of Geomechanics, 2(1): 62-69. (in Chinese with English abstract) |
[45] | XIE H P, JU Y, LI L Y, et al. , 2005a. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 24(17): 3003-3010. (in Chinese with English abstract) |
[46] | XIE H P, PENG R D, JU Y, et al. , 2005b. On energy analysis of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 24(15): 2603-2608. (in Chinese with English abstract) |
[47] | YANG Y H, SUN D S, ZHENG X H, et al. , 2019. A method of diametrical core deformation analysis and its application on stress investigation in SK2 well[J]. Journal of Central South University (Science and Technology), 50(12): 3106-3113. (in Chinese with English abstract) |
[48] | YU X F, ZHENG Y R, LIU H H, et al. , 1983. Stability analysis of underground cavern[M]. Beijing: China Coal Industry Publishing House. (in Chinese) |
[49] | ZHANG G Z, JIA Z Q, FENG J, et al. , 2022. Definition for dual-index high geostress and classification standard for rock burst and large deformation in railway tunnels[J]. Journal of Railway Engineering Society, 39(8): 53-58, 65. (in Chinese with English abstract) |
[50] | ZHANG J J, FU B J, 2008. Rockburst and its criteria and control[J]. Chinese Journal of Rock Mechanics and Engineering, 27(10): 2034-2042. (in Chinese with English abstract) |
[51] | ZHANG Y, DENG X Y, LI X H, et al. , 2022. Prediction of rockburst dangerousness based on elastic strain energy characteristics[J]. Chinese Journal of Underground Space and Engineering, 18(S1): 305-311. (in Chinese with English abstract) |
[52] | 奥特利普W D, 连志升, 1987. 对岩爆的了解与控制: 过去、现在及将来[J]. 国外采矿技术快报, 3(8): 5-7 |
[53] | 鲍中义, 孙忠全, 刘国栋, 等, 2014. 破头青断裂水旺庄矿区矿床地质特征及找矿方向[J]. 山东国土资源, 30(2): 29-33. |
[54] | 蔡美峰, 1995. 地应力测量原理和技术[M]. 北京: 科学出版社. |
[55] | 蔡美峰, 2001. 金属矿山采矿设计优化与地压控制-理论与实践[M]. 北京: 科学出版社. |
[56] | 蔡美峰, 郭奇峰, 李远, 等, 2013. 平煤十矿地应力测量及其应用[J]. 北京科技大学学报, 35(11): 1399-1406. |
[57] | 陈群策, 孙东生, 崔建军, 等, 2019. 雪峰山深孔水压致裂地应力测量及其意义[J]. 地质力学学报, 25(5): 853-865. |
[58] | 陈卫忠, 吕森鹏, 郭小红, 等, 2009. 基于能量原理的卸围压试验与岩爆判据研究[J]. 岩石力学与工程学报, 28(8): 1530-1540. |
[59] | 陈卫忠, 吕森鹏, 郭小红, 等, 2010. 脆性岩石卸围压试验与岩爆机理研究[J]. 岩土工程学报, 32(6): 963-969. |
[60] | 费鸿禄, 徐小荷, 唐春安, 1995. 地下硐室岩爆的突变理论研究[J]. 煤炭学报, 20(1): 29-33. |
[61] | 丰成君, 陈群策, 吴满路, 等, 2012. 水压致裂应力测量数据分析: 对瞬时关闭压力ps的常用判读方法讨论[J]. 岩土力学, 33(7): 2149-2159. |
[62] | 冯夏庭, 肖亚勋, 丰光亮, 等, 2019. 岩爆孕育过程研究[J]. 岩石力学与工程学报, 38(4): 649-673. |
[63] | 郭建强, 赵青, 王军保, 等, 2015. 基于弹性应变能岩爆倾向性评价方法研究[J]. 岩石力学与工程学报, 34(9): 1886-1893. |
[64] | 何满潮, 谢和平, 彭苏萍, 等, 2005. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 24(16): 2803-2813. |
[65] | 何满潮, 王炀, 苏劲松, 等, 2018. 动静组合荷载下砂岩冲击岩爆碎屑分形特征[J]. 中国矿业大学学报, 47(4): 699-705. |
[66] | 侯奎奎, 吴钦正, 张凤鹏, 等, 2022. 不同地应力测试方法在三山岛金矿2 005 m竖井建井区域的应用及其地应力分布规律研究[J]. 岩土力学, 43(4): 1093-1102. |
[67] | 李春林, 2019. 岩爆条件和岩爆支护[J]. 岩石力学与工程学报, 38(4): 674-682. |
[68] | 李士先, 刘长春, 安郁宏, 等, 2007. 胶东金矿地质[M]. 北京: 地质出版社. |
[69] | 李四光, 1976. 地质力学方法[M]. 北京: 科学出版社. |
[70] | 刘国栋, 温桂军, 刘彩杰, 等, 2017. 招平断裂北段水旺庄深部超大型金矿床的发现、特征和找矿方向[J]. 黄金科学技术, 25(3): 38-45. |
[71] | 刘国栋, 宋国政, 鲍中义, 等, 2019. 胶东招平断裂北段深部找矿新突破及对断裂空间展布的新认识[J]. 大地构造与成矿学, 43(2): 226-234. |
[72] | 刘焕新, 谭卓英, 王玺, 等, 2020. 新城金矿深竖井开挖岩爆危险性预测[J]. 中国矿业大学学报, 49(2): 296-304. |
[73] | 刘建, 惠晨, 樊建明, 等, 2021. 鄂尔多斯盆地合水地区长6致密砂岩储层现今地应力分布特征及其开发建议[J]. 地质力学学报, 27(1): 31-39. |
[74] | 刘向东, 周明岭, 徐韶辉, 等, 2022. 胶西北水旺庄金矿床3000 m深度找矿预测[J]. 地质通报, 41(6): 946-957. |
[75] | 马秀敏, 彭华, 李金锁, 等, 2006. 襄渝铁路增建二线: 新白岩寨隧道地应力测量及其在岩爆分析中的应用[J]. 地球学报, 27(2): 181-186. |
[76] | 裴峰, 2020. 纱岭金矿深部地层岩体力学性能与深竖井围岩稳定性分析及控制[D]. 北京: 北京科技大学. |
[77] | 彭华, 崔巍, 马秀敏, 等, 2006. 南水北调西线第一期工程调水区水压致裂地应力测量及其工程意义[J]. 地质力学学报, 12(2): 182-190. |
[78] | 彭华, 马秀敏, 姜景捷, 等, 2011. 赵楼煤矿1000m深孔水压致裂地应力测量及其应力场研究[J]. 岩石力学与工程学报, 30(8): 1638-1645. |
[79] | 彭华, 孙尧, 2016a. 瑞海金矿2#钻孔水压致裂地应力测量分析报告[R]. 北京: 中国地质科学院地质力学研究所. |
[80] | 彭华, 孙尧, 2016b. 山东省莱州市焦家金矿床深部勘探钻孔水压致裂地应力测量分析报告[R]. 北京: 中国地质科学院地质力学研究所. |
[81] | 彭祝, 王元汉, 李廷芥, 1996. Griffith理论与岩爆的判别准则[J]. 岩石力学与工程学报, 15(S1): 491-495. |
[82] | 乔兰, 蔡美峰, 1995. 应力解除法在某金矿地应力测量中的新进展[J]. 岩石力学与工程学报, 14(1): 25-32. |
[83] | 孙东生, 陈群策, 张延庆, 2020. ASR法在井下矿山地应力测试中的应用前景分析[J]. 地质力学学报, 26(1): 33-38. doi: 10.12090/j.issn.1006-6616.2020.26.01.003 |
[84] | 孙尧, 彭华, 2021. 山东省招远市大尹格庄金矿钻孔水压致裂地应力测量分析报告[R]. 北京: 中国地质科学院地质力学研究所. |
[85] | 王连捷, 潘立宙, 廖椿庭, 等, 1991. 地应力测量及其在工程中的应用[M]. 北京: 地质出版社. |
[86] | 王连捷, 丁原辰, 刘琦胜, 等, 1996. 引黄隧洞地应力测量[J]. 地质力学学报, 2(1): 62-69. |
[87] | 谢和平, 鞠杨, 黎立云, 2005a. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 24(17): 3003-3010. |
[88] | 谢和平, 彭瑞东, 鞠杨, 等, 2005b. 岩石破坏的能量分析初探[J]. 岩石力学与工程学报, 24(15): 2603-2608. |
[89] | 杨跃辉, 孙东生, 郑秀华, 等, 2019. 岩芯直径变形分析法及其在松科2井深部地应力调查中的应用[J]. 中南大学学报(自然科学版), 50(12): 3106-3113. |
[90] | 于学馥, 郑颖人, 刘怀恒, 等, 1983. 地下工程围岩稳定分析[M]. 北京: 煤炭工业出版社. |
[91] | 张广泽, 贾哲强, 冯君, 等, 2022. 铁路隧道双指标高地应力界定及岩爆大变形分级标准[J]. 铁道工程学报, 39(8): 53-58, 65. |
[92] | 张镜剑, 傅冰骏, 2008. 岩爆及其判据和防治[J]. 岩石力学与工程学报, 27(10): 2034-2042. doi: 10.3321/j.issn:1000-6915.2008.10.010 |
[93] | 张勇, 邓兴洋, 李学华, 等, 2022. 基于弹性应变能特征的岩爆危险性预测研究[J]. 地下空间与工程学报, 18(S1): 305-311. |
[94] | 中国地震局, 2018. 原地应力测量水压致裂法和套芯解除法技术规范: DB/T 14—2018[S]. 北京: 中国标准出版社. |
[95] | 中华人民共和国住房和城乡建设部, 2015. 工程岩体分级标准: GB/T 50218—2014[S]. 北京: 中国计划出版社. |
1. | 沙仙武,陈才贤,李佳建. 巨龙铜矿地应力对大断面巷道稳定性与岩爆倾向性数值模拟. 矿产保护与利用. 2024(02): 52-57 .
![]() |
|
2. | 王建华,高永,秦绍龙,曹学文,赵兴东. 多宝山铜矿非稳固巷道岩爆倾向性与楔形体稳定性分析. 金属矿山. 2024(11): 37-44 .
![]() |
测段深度/m | 压裂参数/MPa | 主应力值/MPa | 破裂方位 | |||||||
Pb | Pr | Ps | P0 | T | SH | Sh | Sv | |||
318.80 | 10.48 | 4.36 | 4.15 | 3.12 | 6.12 | 11.22 | 7.28 | 8.44 | ||
370.00 | 8.34 | 4.66 | 4.42 | 3.63 | 3.68 | 12.24 | 8.05 | 9.79 | ||
430.60 | 8.06 | 4.83 | 4.66 | 4.22 | 3.23 | 13.38 | 8.88 | 11.39 | ||
470.40 | 10.06 | 5.43 | 5.04 | 4.61 | 4.63 | 14.29 | 9.65 | 12.45 | ||
528.60 | 11.27 | 5.75 | 5.33 | 5.18 | 5.52 | 15.43 | 10.51 | 13.99 | ||
618.60 | 16.43 | 10.04 | 7.48 | 6.06 | 6.39 | 18.47 | 13.54 | 16.37 | ||
702.50 | 13.51 | 6.85 | 6.29 | 6.88 | 6.66 | 18.91 | 13.18 | 18.59 | ||
818.40 | 11.95 | 7.57 | 6.92 | 8.02 | 4.38 | 21.22 | 14.94 | 21.65 | NW66.2° | |
931.30 | 15.22 | 8.43 | 7.61 | 9.13 | 6.79 | 23.52 | 16.73 | 24.64 | ||
1045.50 | 17.90 | 15.53 | 11.07 | 10.25 | 2.37 | 27.93 | 21.32 | 27.66 | ||
1196.00 | 22.16 | 16.52 | 11.92 | 11.72 | 5.64 | 30.95 | 23.64 | 31.65 | ||
1286.00 | 29.23 | 23.11 | 15.09 | 12.60 | 6.12 | 34.75 | 27.69 | 34.03 | ||
1379.50 | 28.76 | 25.08 | 16.21 | 13.52 | 3.68 | 37.08 | 29.73 | 36.50 | ||
1459.00 | 25.31 | 22.08 | 15.09 | 14.30 | 3.23 | 37.50 | 29.39 | 38.61 | ||
1481.00 | 25.45 | 20.82 | 14.59 | 14.51 | 4.63 | 37.47 | 29.11 | 39.19 | ||
1546.00 | 26.83 | 21.31 | 14.99 | 15.15 | 5.52 | 38.80 | 30.14 | 40.91 | ||
1583.20 | 27.85 | 21.46 | 15.15 | 15.52 | 6.39 | 39.51 | 30.67 | 41.89 | ||
1652.80 | 25.92 | 19.26 | 14.36 | 16.20 | 6.66 | 40.02 | 30.56 | 43.73 | NW71.5° | |
1737.50 | 27.12 | 22.74 | 16.14 | 17.03 | 4.38 | 42.70 | 33.17 | 45.97 | ||
1757.40 | 31.17 | 24.38 | 16.92 | 17.22 | 6.79 | 43.60 | 34.14 | 46.50 | ||
1824.10 | 32.45 | 27.08 | 18.30 | 17.88 | 5.37 | 45.69 | 36.17 | 48.27 |
开挖 深度/m | 单轴抗压 强度Rc/MPa | 最大主应力 σmax/MPa | Rc/σmax | 岩爆倾向 | 开挖 深度/m | 单轴抗压 强度Rc/MPa | 最大主应力 σmax/MPa | Rc/σmax | 岩爆倾向 | |
22.28 | 17.72 | 3.95 | 4.49 | 高应力,中等岩爆 | 1123.05 | 11.87 | 30.32 | 0.39 | 极高应力,强烈岩爆 | |
88.50 | 49.02 | 5.48 | 8.95 | 低应力,无岩爆 | 1162.42 | 15.91 | 31.39 | 0.51 | ||
95.28 | 19.09 | 5.63 | 3.39 | 极高应力,强烈岩爆 | 1178.00 | 22.82 | 31.81 | 0.72 | ||
163.58 | 77.28 | 7.20 | 10.73 | 低应力,无岩爆 | 1229.85 | 16.93 | 33.21 | 0.51 | ||
181.27 | 99.08 | 7.61 | 13.02 | 1279.40 | 47.86 | 34.54 | 1.39 | |||
250.44 | 43.52 | 9.20 | 4.73 | 高应力,中等岩爆 | 1304.74 | 12.55 | 35.23 | 0.36 | ||
316.40 | 100.08 | 10.72 | 9.34 | 低应力,无岩爆 | 1349.40 | 86.98 | 36.43 | 2.39 | ||
349.20 | 67.28 | 11.47 | 5.87 | 高应力,中等岩爆 | 1394.46 | 55.07 | 37.65 | 1.46 | ||
415.40 | 52.81 | 12.99 | 4.07 | 1429.00 | 41.86 | 38.58 | 1.09 | |||
486.96 | 48.01 | 14.64 | 3.28 | 极高应力,强烈岩爆 | 1446.31 | 62.49 | 39.05 | 1.60 | ||
530.32 | 98.77 | 15.64 | 6.32 | 高应力,中等岩爆 | 1463.00 | 25.29 | 39.50 | 0.64 | ||
586.78 | 60.52 | 16.94 | 3.57 | 极高应力,强烈岩爆 | 1498.87 | 32.35 | 40.47 | 0.80 | ||
610.10 | 4.61 | 17.47 | 0.26 | 1513.00 | 48.88 | 40.85 | 1.20 | |||
653.72 | 125.18 | 18.48 | 6.77 | 高应力,中等岩爆 | 1522.00 | 44.28 | 41.09 | 1.08 | ||
694.53 | 140.27 | 19.41 | 7.23 | 低应力,无岩爆 | 1547.65 | 53.08 | 41.79 | 1.27 | ||
748.61 | 54.16 | 20.66 | 2.62 | 极高应力,强烈岩爆 | 1593.27 | 69.49 | 43.02 | 1.62 | ||
794.66 | 20.25 | 21.72 | 0.93 | 1641.49 | 26.34 | 44.32 | 0.59 | |||
843.12 | 22.24 | 22.83 | 0.97 | 1671.59 | 77.37 | 45.13 | 1.71 | |||
876.86 | 19.58 | 23.68 | 0.83 | 1712.61 | 34.41 | 46.24 | 0.74 | |||
919.31 | 56.22 | 24.82 | 2.27 | 1719.00 | 71.88 | 46.41 | 1.55 | |||
947.11 | 63.32 | 25.57 | 2.48 | 1738.96 | 48.45 | 46.95 | 1.03 | |||
980.95 | 58.57 | 26.49 | 2.21 | 1775.32 | 62.19 | 47.93 | 1.30 | |||
1018.55 | 41.48 | 27.50 | 1.51 | 1811.42 | 121.4 | 48.91 | 2.48 | |||
1049.68 | 28.08 | 28.34 | 0.99 | 1862.34 | 48.4 | 50.28 | 0.96 | |||
1102.78 | 6.46 | 29.78 | 0.22 |
开挖深度/m | 单轴抗压强度/MPa | σ1/MPa | σ2/MPa | σ3/MPa | 泊松比 | 弹性模量 | 弹性应变能/(kJ/m3) | 极限储能/(kJ/m3) | U/U0 | 岩爆倾向 |
22.28 | 17.72 | 3.95 | 0.83 | 0.60 | 0.22 | 3.49 | 2.00 | 494.35 | 0.0040 | 无岩爆 |
88.50 | 49.02 | 5.48 | 2.39 | 2.09 | 0.17 | 3.21 | 4.68 | 539.79 | 0.0087 | 无岩爆 |
95.28 | 19.09 | 5.63 | 2.57 | 2.22 | 0.26 | 2.00 | 6.56 | 543.72 | 0.0121 | 无岩爆 |
163.58 | 77.28 | 7.20 | 4.42 | 3.52 | 0.22 | 7.40 | 3.50 | 583.30 | 0.0060 | 无岩爆 |
181.27 | 99.08 | 7.61 | 4.89 | 3.85 | 0.23 | 9.46 | 3.03 | 593.55 | 0.0051 | 无岩爆 |
250.44 | 43.52 | 9.20 | 6.76 | 5.17 | 0.21 | 4.63 | 10.40 | 633.63 | 0.0164 | 无岩爆 |
316.40 | 100.08 | 10.72 | 8.54 | 6.42 | 0.20 | 4.26 | 16.78 | 671.86 | 0.0250 | 无岩爆 |
349.20 | 67.28 | 11.47 | 9.43 | 7.04 | 0.17 | 6.60 | 13.89 | 690.87 | 0.0201 | 无岩爆 |
415.40 | 52.81 | 12.99 | 11.22 | 8.30 | 0.21 | 6.10 | 17.86 | 729.23 | 0.0245 | 无岩爆 |
486.96 | 48.01 | 14.64 | 13.15 | 9.66 | 0.20 | 4.06 | 36.47 | 770.70 | 0.0473 | 无岩爆 |
530.32 | 98.77 | 15.64 | 14.32 | 10.49 | 0.21 | 6.89 | 24.20 | 795.83 | 0.0304 | 无岩爆 |
586.78 | 60.52 | 16.94 | 15.84 | 11.56 | 0.24 | 7.20 | 25.05 | 828.54 | 0.0302 | 无岩爆 |
610.10 | 4.61 | 17.47 | 16.47 | 12.00 | 0.27 | 1.15 | 150.11 | 842.06 | 0.1783 | 无岩爆 |
653.72 | 125.18 | 18.48 | 17.65 | 12.83 | 0.16 | 7.06 | 40.00 | 867.34 | 0.0461 | 无岩爆 |
694.53 | 140.27 | 19.41 | 18.75 | 13.61 | 0.21 | 6.89 | 39.38 | 890.99 | 0.0442 | 无岩爆 |
748.61 | 54.16 | 20.66 | 20.21 | 14.63 | 0.13 | 4.02 | 97.68 | 922.32 | 0.1059 | 无岩爆 |
794.66 | 20.25 | 21.72 | 21.46 | 15.51 | 0.20 | 3.20 | 112.23 | 949.01 | 0.1183 | 无岩爆 |
843.12 | 22.24 | 22.83 | 22.76 | 16.43 | 0.18 | 3.52 | 121.11 | 977.09 | 0.1240 | 无岩爆 |
876.86 | 19.58 | 23.68 | 23.61 | 17.07 | 0.17 | 3.35 | 141.01 | 996.65 | 0.1415 | 无岩爆 |
919.31 | 56.22 | 24.82 | 24.58 | 17.88 | 0.22 | 4.88 | 90.47 | 1021.25 | 0.0886 | 无岩爆 |
947.11 | 63.32 | 25.57 | 25.22 | 18.41 | 0.17 | 4.95 | 110.28 | 1037.36 | 0.1063 | 无岩爆 |
980.95 | 58.57 | 26.49 | 26.00 | 19.05 | 0.16 | 5.22 | 114.95 | 1056.97 | 0.1088 | 无岩爆 |
1018.55 | 41.48 | 27.50 | 26.87 | 19.76 | 0.20 | 3.00 | 190.56 | 1078.75 | 0.1766 | 无岩爆 |
1049.68 | 28.08 | 28.34 | 27.58 | 20.35 | 0.22 | 3.50 | 161.93 | 1096.79 | 0.1476 | 无岩爆 |
1102.78 | 6.46 | 29.78 | 28.80 | 21.36 | 0.37 | 0.32 | 956.08 | 1127.57 | 0.8479 | 严重岩爆 |
1123.05 | 11.87 | 30.32 | 29.27 | 21.75 | 0.26 | 1.26 | 441.95 | 1139.31 | 0.3879 | 弱岩爆 |
1162.42 | 15.91 | 31.39 | 30.18 | 22.50 | 0.27 | 1.19 | 480.01 | 1162.13 | 0.4130 | 中等岩爆 |
1178.00 | 22.82 | 31.81 | 30.53 | 22.79 | 0.25 | 1.85 | 342.54 | 1171.16 | 0.2925 | 无岩爆 |
1229.85 | 16.93 | 33.21 | 31.73 | 23.78 | 0.18 | 2.78 | 312.86 | 1201.20 | 0.2605 | 无岩爆 |
1279.40 | 47.86 | 34.54 | 32.87 | 24.72 | 0.15 | 1.85 | 552.43 | 1229.92 | 0.4492 | 中等岩爆 |
1304.74 | 12.55 | 35.23 | 33.45 | 25.20 | 0.20 | 4.38 | 209.05 | 1244.60 | 0.1680 | 无岩爆 |
1349.40 | 86.98 | 36.43 | 34.48 | 26.05 | 0.19 | 1.23 | 819.24 | 1270.48 | 0.6448 | 强烈岩爆 |
1394.46 | 55.07 | 37.65 | 35.51 | 26.90 | 0.23 | 6.89 | 136.58 | 1296.59 | 0.1053 | 无岩爆 |
1429.00 | 41.86 | 38.58 | 36.31 | 27.56 | 0.18 | 4.07 | 284.90 | 1316.61 | 0.2164 | 无岩爆 |
1446.31 | 62.49 | 39.05 | 36.71 | 27.89 | 0.23 | 5.15 | 196.00 | 1326.64 | 0.1477 | 无岩爆 |
1463.00 | 25.29 | 39.50 | 37.09 | 28.21 | 0.27 | 2.08 | 426.40 | 1336.31 | 0.3191 | 弱岩爆 |
1498.87 | 32.35 | 40.47 | 37.91 | 28.89 | 0.19 | 5.43 | 227.10 | 1357.10 | 0.1673 | 无岩爆 |
1513.00 | 48.88 | 40.85 | 38.24 | 29.16 | 0.17 | 3.31 | 402.72 | 1365.29 | 0.2950 | 无岩爆 |
1522.00 | 44.28 | 41.09 | 38.45 | 29.33 | 0.19 | 5.09 | 249.52 | 1370.50 | 0.1821 | 无岩爆 |
1547.65 | 53.08 | 41.79 | 39.04 | 29.82 | 0.24 | 4.68 | 237.10 | 1385.37 | 0.1711 | 无岩爆 |
1593.27 | 69.49 | 43.02 | 40.09 | 30.68 | 0.22 | 2.14 | 588.35 | 1411.80 | 0.4167 | 中等岩爆 |
1641.49 | 26.34 | 44.32 | 41.19 | 31.60 | 0.23 | 4.20 | 306.77 | 1439.75 | 0.2131 | 无岩爆 |
1671.59 | 77.37 | 45.13 | 41.89 | 32.17 | 0.23 | 3.73 | 357.78 | 1457.19 | 0.2455 | 无岩爆 |
1712.61 | 34.41 | 46.24 | 42.83 | 32.95 | 0.18 | 3.77 | 436.17 | 1480.96 | 0.2945 | 无岩爆 |
1719.00 | 71.88 | 46.41 | 42.98 | 33.07 | 0.21 | 3.69 | 408.60 | 1484.67 | 0.2752 | 无岩爆 |
1738.96 | 48.45 | 46.95 | 43.44 | 33.45 | 0.20 | 5.60 | 284.37 | 1496.23 | 0.1901 | 无岩爆 |
1775.32 | 62.19 | 47.93 | 44.27 | 34.14 | 0.24 | 5.54 | 261.16 | 1517.30 | 0.1721 | 无岩爆 |
1811.42 | 121.40 | 48.91 | 45.10 | 34.83 | 0.16 | 3.38 | 574.79 | 1538.22 | 0.3737 | 弱岩爆 |
1862.34 | 48.40 | 50.28 | 46.27 | 35.79 | 0.24 | 7.28 | 218.07 | 1567.73 | 0.1391 | 无岩爆 |
测段深度/m | 压裂参数/MPa | 主应力值/MPa | 破裂方位 | |||||||
Pb | Pr | Ps | P0 | T | SH | Sh | Sv | |||
318.80 | 10.48 | 4.36 | 4.15 | 3.12 | 6.12 | 11.22 | 7.28 | 8.44 | ||
370.00 | 8.34 | 4.66 | 4.42 | 3.63 | 3.68 | 12.24 | 8.05 | 9.79 | ||
430.60 | 8.06 | 4.83 | 4.66 | 4.22 | 3.23 | 13.38 | 8.88 | 11.39 | ||
470.40 | 10.06 | 5.43 | 5.04 | 4.61 | 4.63 | 14.29 | 9.65 | 12.45 | ||
528.60 | 11.27 | 5.75 | 5.33 | 5.18 | 5.52 | 15.43 | 10.51 | 13.99 | ||
618.60 | 16.43 | 10.04 | 7.48 | 6.06 | 6.39 | 18.47 | 13.54 | 16.37 | ||
702.50 | 13.51 | 6.85 | 6.29 | 6.88 | 6.66 | 18.91 | 13.18 | 18.59 | ||
818.40 | 11.95 | 7.57 | 6.92 | 8.02 | 4.38 | 21.22 | 14.94 | 21.65 | NW66.2° | |
931.30 | 15.22 | 8.43 | 7.61 | 9.13 | 6.79 | 23.52 | 16.73 | 24.64 | ||
1045.50 | 17.90 | 15.53 | 11.07 | 10.25 | 2.37 | 27.93 | 21.32 | 27.66 | ||
1196.00 | 22.16 | 16.52 | 11.92 | 11.72 | 5.64 | 30.95 | 23.64 | 31.65 | ||
1286.00 | 29.23 | 23.11 | 15.09 | 12.60 | 6.12 | 34.75 | 27.69 | 34.03 | ||
1379.50 | 28.76 | 25.08 | 16.21 | 13.52 | 3.68 | 37.08 | 29.73 | 36.50 | ||
1459.00 | 25.31 | 22.08 | 15.09 | 14.30 | 3.23 | 37.50 | 29.39 | 38.61 | ||
1481.00 | 25.45 | 20.82 | 14.59 | 14.51 | 4.63 | 37.47 | 29.11 | 39.19 | ||
1546.00 | 26.83 | 21.31 | 14.99 | 15.15 | 5.52 | 38.80 | 30.14 | 40.91 | ||
1583.20 | 27.85 | 21.46 | 15.15 | 15.52 | 6.39 | 39.51 | 30.67 | 41.89 | ||
1652.80 | 25.92 | 19.26 | 14.36 | 16.20 | 6.66 | 40.02 | 30.56 | 43.73 | NW71.5° | |
1737.50 | 27.12 | 22.74 | 16.14 | 17.03 | 4.38 | 42.70 | 33.17 | 45.97 | ||
1757.40 | 31.17 | 24.38 | 16.92 | 17.22 | 6.79 | 43.60 | 34.14 | 46.50 | ||
1824.10 | 32.45 | 27.08 | 18.30 | 17.88 | 5.37 | 45.69 | 36.17 | 48.27 |
开挖 深度/m | 单轴抗压 强度Rc/MPa | 最大主应力 σmax/MPa | Rc/σmax | 岩爆倾向 | 开挖 深度/m | 单轴抗压 强度Rc/MPa | 最大主应力 σmax/MPa | Rc/σmax | 岩爆倾向 | |
22.28 | 17.72 | 3.95 | 4.49 | 高应力,中等岩爆 | 1123.05 | 11.87 | 30.32 | 0.39 | 极高应力,强烈岩爆 | |
88.50 | 49.02 | 5.48 | 8.95 | 低应力,无岩爆 | 1162.42 | 15.91 | 31.39 | 0.51 | ||
95.28 | 19.09 | 5.63 | 3.39 | 极高应力,强烈岩爆 | 1178.00 | 22.82 | 31.81 | 0.72 | ||
163.58 | 77.28 | 7.20 | 10.73 | 低应力,无岩爆 | 1229.85 | 16.93 | 33.21 | 0.51 | ||
181.27 | 99.08 | 7.61 | 13.02 | 1279.40 | 47.86 | 34.54 | 1.39 | |||
250.44 | 43.52 | 9.20 | 4.73 | 高应力,中等岩爆 | 1304.74 | 12.55 | 35.23 | 0.36 | ||
316.40 | 100.08 | 10.72 | 9.34 | 低应力,无岩爆 | 1349.40 | 86.98 | 36.43 | 2.39 | ||
349.20 | 67.28 | 11.47 | 5.87 | 高应力,中等岩爆 | 1394.46 | 55.07 | 37.65 | 1.46 | ||
415.40 | 52.81 | 12.99 | 4.07 | 1429.00 | 41.86 | 38.58 | 1.09 | |||
486.96 | 48.01 | 14.64 | 3.28 | 极高应力,强烈岩爆 | 1446.31 | 62.49 | 39.05 | 1.60 | ||
530.32 | 98.77 | 15.64 | 6.32 | 高应力,中等岩爆 | 1463.00 | 25.29 | 39.50 | 0.64 | ||
586.78 | 60.52 | 16.94 | 3.57 | 极高应力,强烈岩爆 | 1498.87 | 32.35 | 40.47 | 0.80 | ||
610.10 | 4.61 | 17.47 | 0.26 | 1513.00 | 48.88 | 40.85 | 1.20 | |||
653.72 | 125.18 | 18.48 | 6.77 | 高应力,中等岩爆 | 1522.00 | 44.28 | 41.09 | 1.08 | ||
694.53 | 140.27 | 19.41 | 7.23 | 低应力,无岩爆 | 1547.65 | 53.08 | 41.79 | 1.27 | ||
748.61 | 54.16 | 20.66 | 2.62 | 极高应力,强烈岩爆 | 1593.27 | 69.49 | 43.02 | 1.62 | ||
794.66 | 20.25 | 21.72 | 0.93 | 1641.49 | 26.34 | 44.32 | 0.59 | |||
843.12 | 22.24 | 22.83 | 0.97 | 1671.59 | 77.37 | 45.13 | 1.71 | |||
876.86 | 19.58 | 23.68 | 0.83 | 1712.61 | 34.41 | 46.24 | 0.74 | |||
919.31 | 56.22 | 24.82 | 2.27 | 1719.00 | 71.88 | 46.41 | 1.55 | |||
947.11 | 63.32 | 25.57 | 2.48 | 1738.96 | 48.45 | 46.95 | 1.03 | |||
980.95 | 58.57 | 26.49 | 2.21 | 1775.32 | 62.19 | 47.93 | 1.30 | |||
1018.55 | 41.48 | 27.50 | 1.51 | 1811.42 | 121.4 | 48.91 | 2.48 | |||
1049.68 | 28.08 | 28.34 | 0.99 | 1862.34 | 48.4 | 50.28 | 0.96 | |||
1102.78 | 6.46 | 29.78 | 0.22 |
开挖深度/m | 单轴抗压强度/MPa | σ1/MPa | σ2/MPa | σ3/MPa | 泊松比 | 弹性模量 | 弹性应变能/(kJ/m3) | 极限储能/(kJ/m3) | U/U0 | 岩爆倾向 |
22.28 | 17.72 | 3.95 | 0.83 | 0.60 | 0.22 | 3.49 | 2.00 | 494.35 | 0.0040 | 无岩爆 |
88.50 | 49.02 | 5.48 | 2.39 | 2.09 | 0.17 | 3.21 | 4.68 | 539.79 | 0.0087 | 无岩爆 |
95.28 | 19.09 | 5.63 | 2.57 | 2.22 | 0.26 | 2.00 | 6.56 | 543.72 | 0.0121 | 无岩爆 |
163.58 | 77.28 | 7.20 | 4.42 | 3.52 | 0.22 | 7.40 | 3.50 | 583.30 | 0.0060 | 无岩爆 |
181.27 | 99.08 | 7.61 | 4.89 | 3.85 | 0.23 | 9.46 | 3.03 | 593.55 | 0.0051 | 无岩爆 |
250.44 | 43.52 | 9.20 | 6.76 | 5.17 | 0.21 | 4.63 | 10.40 | 633.63 | 0.0164 | 无岩爆 |
316.40 | 100.08 | 10.72 | 8.54 | 6.42 | 0.20 | 4.26 | 16.78 | 671.86 | 0.0250 | 无岩爆 |
349.20 | 67.28 | 11.47 | 9.43 | 7.04 | 0.17 | 6.60 | 13.89 | 690.87 | 0.0201 | 无岩爆 |
415.40 | 52.81 | 12.99 | 11.22 | 8.30 | 0.21 | 6.10 | 17.86 | 729.23 | 0.0245 | 无岩爆 |
486.96 | 48.01 | 14.64 | 13.15 | 9.66 | 0.20 | 4.06 | 36.47 | 770.70 | 0.0473 | 无岩爆 |
530.32 | 98.77 | 15.64 | 14.32 | 10.49 | 0.21 | 6.89 | 24.20 | 795.83 | 0.0304 | 无岩爆 |
586.78 | 60.52 | 16.94 | 15.84 | 11.56 | 0.24 | 7.20 | 25.05 | 828.54 | 0.0302 | 无岩爆 |
610.10 | 4.61 | 17.47 | 16.47 | 12.00 | 0.27 | 1.15 | 150.11 | 842.06 | 0.1783 | 无岩爆 |
653.72 | 125.18 | 18.48 | 17.65 | 12.83 | 0.16 | 7.06 | 40.00 | 867.34 | 0.0461 | 无岩爆 |
694.53 | 140.27 | 19.41 | 18.75 | 13.61 | 0.21 | 6.89 | 39.38 | 890.99 | 0.0442 | 无岩爆 |
748.61 | 54.16 | 20.66 | 20.21 | 14.63 | 0.13 | 4.02 | 97.68 | 922.32 | 0.1059 | 无岩爆 |
794.66 | 20.25 | 21.72 | 21.46 | 15.51 | 0.20 | 3.20 | 112.23 | 949.01 | 0.1183 | 无岩爆 |
843.12 | 22.24 | 22.83 | 22.76 | 16.43 | 0.18 | 3.52 | 121.11 | 977.09 | 0.1240 | 无岩爆 |
876.86 | 19.58 | 23.68 | 23.61 | 17.07 | 0.17 | 3.35 | 141.01 | 996.65 | 0.1415 | 无岩爆 |
919.31 | 56.22 | 24.82 | 24.58 | 17.88 | 0.22 | 4.88 | 90.47 | 1021.25 | 0.0886 | 无岩爆 |
947.11 | 63.32 | 25.57 | 25.22 | 18.41 | 0.17 | 4.95 | 110.28 | 1037.36 | 0.1063 | 无岩爆 |
980.95 | 58.57 | 26.49 | 26.00 | 19.05 | 0.16 | 5.22 | 114.95 | 1056.97 | 0.1088 | 无岩爆 |
1018.55 | 41.48 | 27.50 | 26.87 | 19.76 | 0.20 | 3.00 | 190.56 | 1078.75 | 0.1766 | 无岩爆 |
1049.68 | 28.08 | 28.34 | 27.58 | 20.35 | 0.22 | 3.50 | 161.93 | 1096.79 | 0.1476 | 无岩爆 |
1102.78 | 6.46 | 29.78 | 28.80 | 21.36 | 0.37 | 0.32 | 956.08 | 1127.57 | 0.8479 | 严重岩爆 |
1123.05 | 11.87 | 30.32 | 29.27 | 21.75 | 0.26 | 1.26 | 441.95 | 1139.31 | 0.3879 | 弱岩爆 |
1162.42 | 15.91 | 31.39 | 30.18 | 22.50 | 0.27 | 1.19 | 480.01 | 1162.13 | 0.4130 | 中等岩爆 |
1178.00 | 22.82 | 31.81 | 30.53 | 22.79 | 0.25 | 1.85 | 342.54 | 1171.16 | 0.2925 | 无岩爆 |
1229.85 | 16.93 | 33.21 | 31.73 | 23.78 | 0.18 | 2.78 | 312.86 | 1201.20 | 0.2605 | 无岩爆 |
1279.40 | 47.86 | 34.54 | 32.87 | 24.72 | 0.15 | 1.85 | 552.43 | 1229.92 | 0.4492 | 中等岩爆 |
1304.74 | 12.55 | 35.23 | 33.45 | 25.20 | 0.20 | 4.38 | 209.05 | 1244.60 | 0.1680 | 无岩爆 |
1349.40 | 86.98 | 36.43 | 34.48 | 26.05 | 0.19 | 1.23 | 819.24 | 1270.48 | 0.6448 | 强烈岩爆 |
1394.46 | 55.07 | 37.65 | 35.51 | 26.90 | 0.23 | 6.89 | 136.58 | 1296.59 | 0.1053 | 无岩爆 |
1429.00 | 41.86 | 38.58 | 36.31 | 27.56 | 0.18 | 4.07 | 284.90 | 1316.61 | 0.2164 | 无岩爆 |
1446.31 | 62.49 | 39.05 | 36.71 | 27.89 | 0.23 | 5.15 | 196.00 | 1326.64 | 0.1477 | 无岩爆 |
1463.00 | 25.29 | 39.50 | 37.09 | 28.21 | 0.27 | 2.08 | 426.40 | 1336.31 | 0.3191 | 弱岩爆 |
1498.87 | 32.35 | 40.47 | 37.91 | 28.89 | 0.19 | 5.43 | 227.10 | 1357.10 | 0.1673 | 无岩爆 |
1513.00 | 48.88 | 40.85 | 38.24 | 29.16 | 0.17 | 3.31 | 402.72 | 1365.29 | 0.2950 | 无岩爆 |
1522.00 | 44.28 | 41.09 | 38.45 | 29.33 | 0.19 | 5.09 | 249.52 | 1370.50 | 0.1821 | 无岩爆 |
1547.65 | 53.08 | 41.79 | 39.04 | 29.82 | 0.24 | 4.68 | 237.10 | 1385.37 | 0.1711 | 无岩爆 |
1593.27 | 69.49 | 43.02 | 40.09 | 30.68 | 0.22 | 2.14 | 588.35 | 1411.80 | 0.4167 | 中等岩爆 |
1641.49 | 26.34 | 44.32 | 41.19 | 31.60 | 0.23 | 4.20 | 306.77 | 1439.75 | 0.2131 | 无岩爆 |
1671.59 | 77.37 | 45.13 | 41.89 | 32.17 | 0.23 | 3.73 | 357.78 | 1457.19 | 0.2455 | 无岩爆 |
1712.61 | 34.41 | 46.24 | 42.83 | 32.95 | 0.18 | 3.77 | 436.17 | 1480.96 | 0.2945 | 无岩爆 |
1719.00 | 71.88 | 46.41 | 42.98 | 33.07 | 0.21 | 3.69 | 408.60 | 1484.67 | 0.2752 | 无岩爆 |
1738.96 | 48.45 | 46.95 | 43.44 | 33.45 | 0.20 | 5.60 | 284.37 | 1496.23 | 0.1901 | 无岩爆 |
1775.32 | 62.19 | 47.93 | 44.27 | 34.14 | 0.24 | 5.54 | 261.16 | 1517.30 | 0.1721 | 无岩爆 |
1811.42 | 121.40 | 48.91 | 45.10 | 34.83 | 0.16 | 3.38 | 574.79 | 1538.22 | 0.3737 | 弱岩爆 |
1862.34 | 48.40 | 50.28 | 46.27 | 35.79 | 0.24 | 7.28 | 218.07 | 1567.73 | 0.1391 | 无岩爆 |
Simplified tectonic map around the Shuiwangzhuang gold deposit(Liu et al.,2022)
Section of the deep orebody of the Shuiwangzhuang gold deposit
Typical hydraulic fracturing measurement curves of the borehole 6ZKC1 in the Shuiwangzhuang gold deposit
Principal stress values with depth in the borehole 6ZKC1 in the Shuiwangzhuang gold deposit
Comparison of the principal stress values between the Shuiwangzhuang gold deposit and the Zhaoyuan–Laizhou area (In-situ stress data of the Zhaoyuan–Laizhou area are cited from Peng and Sun, 2016a, 2016b; Pei, 2020; Sun and Peng, 2021; Hou et al., 2022)
The distribution map of rockburst tendency of the Shuiwangzhuang gold deposit based on the theory of elastic strain energy