2024 Vol. 30, No. 1
Article Contents

TONG Hengmao, ZHANG Hongxiang, HOU Quanlin, CHEN Zhengle, HOU Guiting. 2024. Generalized fracturing activation criteria. Journal of Geomechanics, 30(1): 3-14. doi: 10.12090/j.issn.1006-6616.2023180
Citation: TONG Hengmao, ZHANG Hongxiang, HOU Quanlin, CHEN Zhengle, HOU Guiting. 2024. Generalized fracturing activation criteria. Journal of Geomechanics, 30(1): 3-14. doi: 10.12090/j.issn.1006-6616.2023180

Generalized fracturing activation criteria

    Fund Project: This research is financially supported by the National Natural Science Foundation of China (Grants No. 41272160 and 20772086) and the National Oil and Gas Major Projects (Grants No. 2011zx05-006-02-01 and 2011zx5023-004-012).
  • Objective

    Rock fracturing and its subsequent activations are the most basic tectonic deformation modes. However, the classical fracturing criteria (Coulomb-Mohr criterion, Griffith criterion, and Byerlee sliding-friction law) have different limitations in practical applications.

    Methods

    Based on the classical fracturing criteria and the analysis of the physical nature of fracturing generation (extensional fracturing and shear fracturing), combined with the generalized shear activation criterion and long-term research practice, a "generalized fracturing activation criterion" is proposed through theoretical analysis in this paper.

    Conclusion

    This criterion can be used to quantitatively determine the possibility and types of fracturing of any medium, under any triaxial stress state, and at any orientation interface (including pre-existing weak surface and non-weakness surface). It unifies the Coulomb-Mohr criterion, Byerlee's law, and Griffith's criterion, and extends fracturing to fracturing activation.

    Significance

    The proposed criterion has broad application prospects in the fracturing activation-related resource (such as shale gas and hot, dry rock) exploration and development and prediction and prevention of natural disasters (such as earthquakes and landslides).

  • 加载中
  • [1] ANDERSON E M, 1951. The dynamics of faultingand dyke formation with applications to Britain[M]. 2nd ed. Edinburgh: Oliver and Boyd.

    Google Scholar

    [2] BAILEY I W, BEN-ZION Y, 2009. Statistics of earthquake stress drops on a heterogeneous fault in an elastic half-space[J]. Bulletin of the Seismological Society of America, 99(3): 1786-1800. doi: 10.1785/0120080254

    CrossRef Google Scholar

    [3] BOTT M H P, 1959. The mechanics of oblique slip faulting[J]. Geological Magazine, 96(2): 109-117. doi: 10.1017/S0016756800059987

    CrossRef Google Scholar

    [4] BYERLEE J, 1978. Friction of rocks[J]. Pure and AppliedGeophysics, 116(4-5): 615-626.

    Google Scholar

    [5] CÉLÉRIER B, 2008. Seeking Anderson’s faulting in seismicity: a centennial celebration[J]. Reviews of Geophysics, 46(4): RG4001.

    Google Scholar

    [6] GRIFFITH A A, 1921. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal SocietyA: Mathematical, Physical and Engineering Sciences, 221(582-593): 163-198.

    Google Scholar

    [7] GUDMUNDSSON A, SIMMENES T H, LARSEN B, et al. , 2010. Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones[J]. Journal of Structural Geology, 32(11): 1643-1655. doi: 10.1016/j.jsg.2009.08.013

    CrossRef Google Scholar

    [8] JAEGER J C, COOK N G W, 1979. Fundamentals of rock mechanics[M]. 3rd ed. London: Chapman and Hall.

    Google Scholar

    [9] MCKENZIE D P, 1969. The relation between fault plane solutions for earthquakes and the directions of the principal stresses[J]. Bulletin of the Seismological Society of America, 59(2): 591-601. doi: 10.1785/BSSA0590020591

    CrossRef Google Scholar

    [10] MORLEY C K, GABDI S, SEUSUTTHIYAK, 2007. Fault superimposition and linkage resulting from stress changes during rifting: examples from 3D seismic data, Phitsanulok Basin, Thailand[J]. Journal of Structural Geology, 29(4): 646-663. doi: 10.1016/j.jsg.2006.11.005

    CrossRef Google Scholar

    [11] MORRIS A, FERRILL D A, HENDERSON D B, 1996. Slip-tendency analysis and fault reactivation[J]. Geology, 24(3): 275-278. doi: 10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2

    CrossRef Google Scholar

    [12] TONG H M, MENG L J, CAI D S, et al. , 2009. Fault formation and evolution in rift basins: sandbox modeling and cognition[J]. Acta Geologica Sinica, 83(6): 759-774. (in Chinese with English abstract)

    Google Scholar

    [13] TONG H M, CAI D S, WU Y P, et al. , 2010. Activity criterion of pre-existing fabrics in non-homogeneous deformation domain[J]. Science China Earth Sciences, 53(8): 1115-1125. doi: 10.1007/s11430-010-3080-6

    CrossRef Google Scholar

    [14] TONG H M, YIN A, 2011. Reactivation tendency analysis: a theory for predicting the temporal evolution of preexisting weakness under uniform stress state[J]. Tectonophysics, 503(3-4): 195-200. doi: 10.1016/j.tecto.2011.02.012

    CrossRef Google Scholar

    [15] TONG H M, KOYI H, HUANG S, et al. , 2014. The effect of multiple pre-existing weaknesses on formation and evolution of faults in extended sandbox models[J]. Tectonophysics, 626: 197-212. doi: 10.1016/j.tecto.2014.04.046

    CrossRef Google Scholar

    [16] TONG H M, WANG J J, ZHAO H T, et al. , 2014. Mohr space and its application to the activation prediction of pre-existing weakness[J]. Science China Earth Sciences, 57(7): 1595-1604. doi: 10.1007/s11430-014-4860-1

    CrossRef Google Scholar

    [17] TONG H M, CHEN Z L, LIU R X, 2015. Generalized shear activation criterion[J]. Chinese Journal of Nature, 37(6): 441-447. (in Chinese with English abstract)

    Google Scholar

    [18] TONG H M, LIU Z P, ZHANG H X, et al. , 2021. Theory and method of temporary macrofracture plugging to prevent casing deformation in shale gas horizontal wells[J]. Natural Gas Industry, 41(5): 92-100. (in Chinese with English abstract)

    Google Scholar

    [19] TONG H M, ZHANG P, ZHANG H X, et al. , 2021. Geomechanical mechanisms and prevention countermeasures of casing deformation in shale gas horizontal wells[J]. Natural Gas Industry, 41(1): 189-197. (in Chinese with English abstract)

    Google Scholar

    [20] TWISS R J, MOORES E M, 1992. Structural geology[M]. San Francisco: W. H. Freeman & Co. : 532.

    Google Scholar

    [21] WALLACE R E, 1951. Geometry of shearing stress and relation to faulting[J]. The Journal of Geology, 59(2): 118-130. doi: 10.1086/625831

    CrossRef Google Scholar

    [22] XU K L, ZHUZ C, 1989. Structural geology[M]. 2nd ed. Beijing: Geology Press: 270. (in Chinese)

    Google Scholar

    [23] YIN A, 1994. Mechanics of monoclinal systems in the Colorado plateau during the Laramide orogeny[J]. Journal of Geophysical Research: Solid Earth, 99(B11): 22043-22058. doi: 10.1029/94JB01408

    CrossRef Google Scholar

    [24] ZOBACK M D, 2007. Reservoir geomechanics[M]. New York: Cambridge University Press.

    Google Scholar

    [25] 童亨茂, 孟令箭, 蔡东升, 等, 2009. 裂陷盆地断层的形成和演化: 目标砂箱模拟实验与认识[J]. 地质学报, 83(6): 759-774. doi: 10.3321/j.issn:0001-5717.2009.06.002

    CrossRef Google Scholar

    [26] 童亨茂, 王建君, 赵海涛, 等, 2014. “摩尔空间”及其在先存构造活动性预测中的应用[J]. 中国科学: 地球科学, 44(9): 1948-1957.

    Google Scholar

    [27] 童亨茂, 陈正乐, 刘瑞珣, 2015. 广义剪切活动准则[J]. 自然杂志, 37(6): 441-447.

    Google Scholar

    [28] 童亨茂, 刘子平, 张宏祥, 等, 2021a. 暂堵大裂缝防治页岩气水平井套管变形的理论与方法[J]. 天然气工业, 41(5): 92-100.

    Google Scholar

    [29] 童亨茂, 张平, 张宏祥, 等, 2021b. 页岩气水平井开发套管变形的地质力学机理及其防治对策[J]. 天然气工业, 41(1): 189-197.

    Google Scholar

    [30] 徐开礼, 朱志澄, 1989. 构造地质学[M]. 2版. 北京: 地质出版社: 270.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(545) PDF downloads(9) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint