2024 Vol. 30, No. 3
Article Contents

LIU Xinshu, WANG Wei-(RZ), BAO Hong, GONG Tingnan, ZHAN Liqing, LIU Xiaochun, ZHAO Yue. 2024. Metamorphism and geochronology of the spinel−cordierite granulite in the Mirror Peninsula, East Antarctica. Journal of Geomechanics, 30(3): 487-505. doi: 10.12090/j.issn.1006-6616.2023172
Citation: LIU Xinshu, WANG Wei-(RZ), BAO Hong, GONG Tingnan, ZHAN Liqing, LIU Xiaochun, ZHAO Yue. 2024. Metamorphism and geochronology of the spinel−cordierite granulite in the Mirror Peninsula, East Antarctica. Journal of Geomechanics, 30(3): 487-505. doi: 10.12090/j.issn.1006-6616.2023172

Metamorphism and geochronology of the spinel−cordierite granulite in the Mirror Peninsula, East Antarctica

    Fund Project: This research is financially supported by the National Natural Science Foundation of China (Grants No. 42172068, 41941004, 41530209, and 41672062), the Fundamental Research Funds of the Chinese Academy of Geological Sciences (Grant No. JYYWF201819), and the Geological Survey Project of the China Geological Survey (Grant No. DD20221810).
More Information
  • Objective

    The Prydz Bay belt in East Antarctica recorded two significant tectono-thermal events, the Grenvillian event and the Pan-African event, which are considered to be closely related to the evolution of the Rodinia and Gondwana supercontinents. However, the geological history and the tectonic nature of the two events remain controversial.

    Methods

    Mineralogical and petrological analyses, phase equilibria modelling and zircon geochronology are combined to investigate the spinel−cordierite granulite from the Mirror Peninsula in order to better understand the tectono-thermal history of the Prydz Bay belt.

    Results

    The spinel−cordierite granulite contains different stages of mineral assemblages. The major stage of mineral assemblage involves cordierite, spinel, biotite, sillimanite, K-feldspar and minor garnet and ilmenite. The later stage of mineral assemblage is indicated by the emergence of magnetite as the increasing volumes of biotite and cordierite. Minor garnet and corundum are locally preserved, implying the mineral reaction ‘g+cor→sp+sill’ and more garnet and corundum in the peak stage. The garnet grains consist of 70%−72% almandine, 20%−22% pyrope, ~4% grossularite and ~4% spessartine. The XFe (Fe2+/(Fe2++Mg2+)) of representative garnet grains ranges from 0.77 to 0.80. The spinel exhibits an XFe range from 0.80 to 0.86. Different cordierite grains have similar compositions with Al of 3.89−3.93 a.p.f.u (atoms per formula unit) and XFe of 0.32−0.36. Biotite has high TiO2 (4.13%−5.23%) and Ti (0.23−0.30 a.p.f.u). K-feldspar grains consist of 78%−85% orthoclase, 15%−23% albite and ~1% anorthite. Based on the mineral compositions and phase equilibrium modelling, the pressure−temperature (PT) conditions of the major stage of mineral assemblage are constrained to 870−910 °C and 0.64−0.69 GPa, followed by later retrogression to 810−820°C and 0.49−0.53 GPa. A peak stage with higher PT conditions (T>910 ℃, P>0.69 GPa) can be inferred based on the relict peak minerals and characteristic mineral compositions (e.g. Ti in biotite). Zircon grains commonly show core-mantle-rim structures in cathodoluminescence (CL) images. The LA−ICP−MS zircon U−Pb dating analyses reveal a wide age range from 613±7 Ma to 877±9 Ma (except a maximum of 916±11 Ma) for the cores. The zircon bright rims yield a weighted mean age of 526±8 Ma with a wide range of Th/U (0.06−1.23), mostly higher than 0.1.

    Conclusion

    Based on the results, a few conclusions can be drawn: (1) The spinel−cordierite granulite recorded medium−low pressure/high-ultrahigh temperature metamorphism with a clockwise P−T evolution path and high dT/dP. (2) The results of zircon geochronological analysis show that zircon cores mainly record U−Pb ages in the range of 800~600 Ma, younger than typical ages of Grenvillian events, which may reflect younger inherited zircon cores or significant isotopic resetting. (3) The age of ~530 Ma of zircon rims is interpreted to represent the post-peak cooling stage of the Pan-African tectono-thermal event. [Significance] This study examined the P−T conditions and the zircon ages of the spinel−cordierite granulite in the Mirror Peninsula. In combination with previous results, the P−T−t path constructed for the spinel−cordierite granulite provides new constraints on the evolution of the Prydz Bay belt during the Pan-African period.

  • 加载中
  • [1] ARORA D, PANT N, PANDEY M, et al, 2020. Insights into geological evolution of Princess Elizabeth Land, East Antarctica-clues for continental suturing and breakup since Rodinian time[J]. Gondwana Research, 84: 260-283. doi: 10.1016/j.gr.2020.05.002

    CrossRef Google Scholar

    [2] BIAO X, WANG W, WU J, et al, 2022. Ultra-high temperature metamorphism in the Prydz Bay region, East Antarctica[J]. Chinese Journal of Polar Research, 34(4): 516-529. (in Chinese with English abstract

    Google Scholar

    [3] BROWN M, 2007. Metamorphic conditions in orogenic belts: A record of secular change[J]. International Geology Review, 49(3): 193-234. doi: 10.2747/0020-6814.49.3.193

    CrossRef Google Scholar

    [4] BROWN M, JOHNSON T, 2018. Secular change in metamorphism and the onset of global plate tectonics[J]. American Mineralogist, 103(2): 181-196. doi: 10.2138/am-2018-6166

    CrossRef Google Scholar

    [5] CARSON C J, FANNING C M, WILSON C J L, 1996. Timing of the Progress Granite, Larsemann Hills: additional evidence for early Palaeozoic orogenesis within the east Antarctic Shield and implications for Gondwana assembly[J]. Australian Journal of Earth Sciences, 43(5): 539-553. doi: 10.1080/08120099608728275

    CrossRef Google Scholar

    [6] CARSON C J, POWELL R, WILSON C J L, et al, 1997. Partial melting during tectonic exhumation of a granulite terrane: an example from the Larsemann Hills, East Antarctica[J]. Journal of Metamorphic Geology, 15(1): 105-126. doi: 10.1111/j.1525-1314.1997.00059.x

    CrossRef Google Scholar

    [7] CARSON C J, GREW E S, BOGER S D, et al , 2007. Age of boron- and phosphorus-rich paragneisses and associated orthogneisses in the Larsemann Hills: New constraints from SHRIMP U-Pb zircon geochronology. In: (Cooper A. K. &Raymond C. R. (eds)) [C]//A Keystone in a Changing World–Online Proceedings of the 10th ISAES USGS Open-File Report 1047, 1–4.

    Google Scholar

    [8] CHEN L Y, WANG W, LIU X C, et al, 2018. Metamorphism and zircon U-Pb dating of high-pressure pelitic granulites from glacial moraines in the Grove Mountains, East Antarctica[J]. Advances in Polar Science, 29(2): 118-134.

    Google Scholar

    [9] CHEN T Y, LI G C, XIE L Z, et al , 1995. Geological map and description of Antarctica (1: 5000000)[M]. Beijing: Geology Press: 1-36. (in Chinese)

    Google Scholar

    [10] DEER W A, HOWIE R A, ZUSSMAN J, 1992. An introduction to the rock-forming minerals[M]. 2nd ed. London: Longman Scientific & Technical: 695.

    Google Scholar

    [11] DIRKS P H G M, HAND M, 1995. Clarifying temperature-pressure paths via structures in granulite from the Bolingen Islands, Antarctica[J]. Australian Journal of Earth Sciences, 42(2): 157-172. doi: 10.1080/08120099508728189

    CrossRef Google Scholar

    [12] FITZSIMONS I C W, 1996. Metapelitic migmatites from brattstrand bluffs, East Antarctica-metamorphism, melting and exhumation of the mid crust[J]. Journal of Petrology, 37(2): 395-414. doi: 10.1093/petrology/37.2.395

    CrossRef Google Scholar

    [13] FITZSIMONS I C W, 1997. The brattstrand paragneiss and the Søstrene orthogneiss: a review of Pan-African metamorphism and Grenvillian relics in southern Prydz Bay[M]//RICCI C A. The Antarctic region: geological evolution and processes. Siena: Terra Antartica Publication: 121-130.

    Google Scholar

    [14] FOSTER M D, 1960. Interpretation of the composition of trioctahedral micas[R]. United States Department of the Interior, Washington: 11-49.

    Google Scholar

    [15] GREW E S, CARSON C J, CHRISTY A G, et al, 2012. New constraints from U-Pb, Lu-Hf and Sm-Nd isotopic data on the timing of sedimentation and felsic magmatism in the Larsemann Hills, Prydz Bay, East Antarctica[J]. Precambrian Research, 206-207: 87-108. doi: 10.1016/j.precamres.2012.02.016

    CrossRef Google Scholar

    [16] HARLEY S L, 1987. Precambrian geological relationships in high-grade gneisses of the Rauer Islands, East Antarctica[J]. Australian Journal of Earth Sciences, 34(2): 175-207. doi: 10.1080/08120098708729404

    CrossRef Google Scholar

    [17] HARLEY S L, 1998. On the occurrence and characterization of ultrahigh-temperature crustal metamorphism[J]. Geological Society, London, Special Publications, 138(1): 81-107. doi: 10.1144/GSL.SP.1996.138.01.06

    CrossRef Google Scholar

    [18] HARLEY S L, FITZSIMONS I C W, 1991. Pressure-temperature evolution of metapelitic granulites in a polymetamorphic terrane: the Rauer Group, East Antarctica[J]. Journal of Metamorphic Geology, 9(3): 231-243. doi: 10.1111/j.1525-1314.1991.tb00519.x

    CrossRef Google Scholar

    [19] HARLEY S L, SNAPE I, BLACK L P, 1998. The evolution of a layered metaigneous complex in the Rauer Group, East Antarctica: evidence for a distinct Archaean terrane[J]. Precambrian Research, 89(3-4): 175-205. doi: 10.1016/S0301-9268(98)00031-X

    CrossRef Google Scholar

    [20] HENSEN B J, ZHOU B, 1995. Retention of isotopic memory in garnets partially broken down during an overprinting granulite-facies metamorphism: Implications for the Sm-Nd closure temperature[J]. Geology, 23(3): 225-228. doi: 10.1130/0091-7613(1995)023<0225:ROIMIG>2.3.CO;2

    CrossRef Google Scholar

    [21] HOLLAND T J B, POWELL R, 1998. An internally consistent thermodynamic data set for phases of petrological interest[J]. Journal of Metamorphic Geology, 16(3): 309-343. doi: 10.1111/j.1525-1314.1998.00140.x

    CrossRef Google Scholar

    [22] HOLLAND T J B, POWELL R, 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of Metamorphic Geology, 29(3): 333-383. doi: 10.1111/j.1525-1314.2010.00923.x

    CrossRef Google Scholar

    [23] HU Z C, LIU Y S, CHEN L, et al, 2011. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution[J]. Journal of Analytical Atomic Spectrometry, 26(2): 425-430. doi: 10.1039/C0JA00145G

    CrossRef Google Scholar

    [24] INDARES A, MARTIGNOLE J, 1985. Biotite-garnet geothermometry in the granulite facies: the influence of Ti and Al in biotite[J]. American Mineralogist, 70(3-4): 272-278.

    Google Scholar

    [25] KELSEY D E, WHITE R W, POWELL R, et al, 2003. New constraints on metamorphism in the Rauer Group, Prydz Bay, East Antarctica[J]. Journal of Metamorphic Geology, 21(8): 739-759. doi: 10.1046/j.1525-1314.2003.00476.x

    CrossRef Google Scholar

    [26] KELSEY D E, WHITE R W, POWELL R, 2005. Calculated phase equilibria in K2O-FeO-MgO-Al2O3-SiO2-H2O for silica-undersaturated sapphirine-bearing mineral assemblages[J]. Journal of Metamorphic Geology, 23(4): 217-239. doi: 10.1111/j.1525-1314.2005.00573.x

    CrossRef Google Scholar

    [27] KELSEY D E, HAND M, CLARK C, et al, 2007. On the application of in situ monazite chemical geochronology to constraining P-T-t histories in high-temperature (>850 °C) polymetamorphic granulites from Prydz Bay, East Antarctica[J]. Journal of the Geological Society, 164(3): 667-683. doi: 10.1144/0016-76492006-013

    CrossRef Google Scholar

    [28] KELSEY D E, CLARK C, HAND M, 2008. Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammiticgranulites[J]. Journal of Metamorphic Geology, 26(2): 199-212. doi: 10.1111/j.1525-1314.2007.00757.x

    CrossRef Google Scholar

    [29] KINNY P D, BLACK L P, SHERATON J W, 1993. Zircon ages and the distribution of Archaean and Proterozoic rocks in the Rauer Islands[J]. Antarctic Science, 5(2): 193-206. doi: 10.1017/S0954102093000252

    CrossRef Google Scholar

    [30] LI M, LIU X C, ZHAO Y, 2007. Zircon U-Pb ages and geochemistry of granitoids from Prydz Bay, East Antarctica, and their tectonic significance[J]. Acta Petrologica Sinica, 23(5): 1055-1066. (in Chinese with English abstract

    Google Scholar

    [31] LIU X C, ZHAO Y, LIU X H, et al, 2007. Evolution of high-grade metamorphism in the Prydz Belt, East Antarctica[J]. Earth Science Frontiers, 14(1): 56-63. (in Chinese with English abstract

    Google Scholar

    [32] LIU X C, HU J M, ZHAO Y, et al, 2009a. Late Neoproterozoic/Cambrian high-pressure mafic granulites from the Grove Mountains, East Antarctica: P-T-t path, collisional orogeny and implications for assembly of East Gondwana[J]. Precambrian Research, 174(1-2): 181-199. doi: 10.1016/j.precamres.2009.07.001

    CrossRef Google Scholar

    [33] LIU X C, ZHAO Y, SONG B, et al, 2009b. SHRIMP U-Pb zircon geochronology of high-grade rocks and charnockites from the eastern Amery Ice Shelf and southwestern Prydz Bay, East Antarctica: Constraints on Late Mesoproterozoic to Cambrian tectonothermal events related to supercontinent assembly[J]. Gondwana Research, 16(2): 342-361. doi: 10.1016/j.gr.2009.02.003

    CrossRef Google Scholar

    [34] LIU X C, WANG W, ZHAO Y, et al, 2014. Early Neoproterozoic granulite facies metamorphism of mafic dykes from the Vestfold Block, East Antarctica[J]. Journal of Metamorphic Geology, 32(9): 1041-1062. doi: 10.1111/jmg.12106

    CrossRef Google Scholar

    [35] LIU Y S, ZONG K Q, KELEMEN P B, et al, 2008. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 247(1-2): 133-153. doi: 10.1016/j.chemgeo.2007.10.016

    CrossRef Google Scholar

    [36] LIU Y S, GAO S, HU Z C, et al, 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb Dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    [37] LUSTRINO M, 2005. How the delamination and detachment of lower crust can influence basaltic magmatism[J]. Earth-Science Reviews, 72(1-2): 21-38. doi: 10.1016/j.earscirev.2005.03.004

    CrossRef Google Scholar

    [38] MOTOYOSHI Y, THOST D E, HENSEN B J, 1991. Reaction textures in calc-silicate granulites from the Bolingen Islands, Prydz Bay, East Antarctica: implications for the retrograde P-T path[J]. Journal of Metamorphic Geology, 9(3): 293-300. doi: 10.1111/j.1525-1314.1991.tb00524.x

    CrossRef Google Scholar

    [39] POWELL R, HOLLAND T J B, 1988. An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program[J]. Journal of Metamorphic Geology, 6(2): 173-204. doi: 10.1111/j.1525-1314.1988.tb00415.x

    CrossRef Google Scholar

    [40] REN L D, 2021. Anatexis and enrichment mechanism of the Fe-Ti oxide minerals in the quartzofeldspathic gneisses from the Larsemann Hills, East Antarctica[J]. Journal of Geomechanics, 27(5): 736-746. (in Chinese with English abstract

    Google Scholar

    [41] SACK R O, GHIORSO M S, 1991. An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels[J]. Contributions to Mineralogy and Petrology, 107(3): 415. doi: 10.1007/BF00325108

    CrossRef Google Scholar

    [42] SADIQ M, DHARWADKAR A, ROY S K, et al, 2021. Thermal evolution of mafic granulites of Princess Elizabeth Land, East Antarctica[J]. Polar Science, 30: 100641. doi: 10.1016/j.polar.2021.100641

    CrossRef Google Scholar

    [43] SHAH M Y, SADIQ M, AYEMI K K, et al, 2021. P-T-t-d evolution of Brattnevet Peninsula, Larsemann Hills, East Antarctica[J]. Polar Science, 30: 100728. doi: 10.1016/j.polar.2021.100728

    CrossRef Google Scholar

    [44] SHE Y M, WANG W, CHENG S H, et al, 2020. Metamorphism of gneisses in the Stornes Peninsula and adjacent region of the Larsemann Hills: Phase equilibrium modelling and zircon geochronology[J]. Acta Petrologica Sinica, 36(9): 2799-2814. (in Chinese with English abstract doi: 10.18654/1000-0569/2020.09.12

    CrossRef Google Scholar

    [45] SHERATON J W, BLACK L P, MCCULLOCH M T, 1984. Regional geochemical and isotopic characteristics of high-grade metamorphics of the Prydz bay area: The extent of proterozoic reworking of Qrchaean continental crust in East Antarctica[J]. Precambrian Research, 26(2): 169-198. doi: 10.1016/0301-9268(84)90043-3

    CrossRef Google Scholar

    [46] SPREITZER S K, WALTERS J B, CRUZ-URIBE A, et al , 2021. Monazite petrochronology of polymetamorphic granulite-facies rocks of the Larsemann Hills, Prydz Bay, East Antarctica. Journal of Metamorphic Geology, 39(9): 1205-1228.

    Google Scholar

    [47] STÜWE K, POWELL R, 1989. Metamorphic segregations associated with garnet and orthopyroxene porphyroblast growth: two examples from the Larsemann Hills, East Antarctica[J]. Contributions to Mineralogy and Petrology, 103(4): 523-530. doi: 10.1007/BF01041757

    CrossRef Google Scholar

    [48] TONG L X, WILSON C J L, 2006. Tectonothermal evolution of the ultrahigh temperature metapelites in the Rauer Group, East Antarctica[J]. Precambrian Research, 149(1-2): 1-20. doi: 10.1016/j.precamres.2006.04.004

    CrossRef Google Scholar

    [49] TONG L X, LIU X H, WANG Y B, et al, 2012. Metamorphism evolution of Pelitic Granulites from the Larsemann Hills, East Antarctica[J]. Acta Geologica Sinica, 86(8): 1273-1290. (in Chinese with English abstract

    Google Scholar

    [50] TONG L X, LIU X H, WANG Y B, et al, 2014. Metamorphic P-T paths of metapelitic granulites from the Larsemann Hills, East Antarctica[J]. Lithos, 192-195: 102-115. doi: 10.1016/j.lithos.2014.01.013

    CrossRef Google Scholar

    [51] TONG L X, LIU Z, WANG Y B, 2021. Research progress of the ultrahigh-temperature granulites in the Rauer Group, East Antarctica[J]. Journal of Geomechanics, 27(5): 705-718. (in Chinese with English abstract

    Google Scholar

    [52] WANG W, LIU X S, HU J M, et al, 2014. Late Paleoproterozoic medium-P high grade metamorphism of basement rocks beneath the northern margin of the Ordos Basin, NW China: Petrology, phase equilibrium modelling and U–Pb geochronology[J]. Precambrian Research, 251: 181-196. doi: 10.1016/j.precamres.2014.06.016

    CrossRef Google Scholar

    [53] WANG W, ZHAO Y, WEI C J, et al, 2022. High-ultrahigh temperature metamorphism in the Larsemann Hills: Insights into the tectono-thermal evolution of the Prydz Bay Region, East Antarctica[J]. Journal of Petrology, 63(2): egac002. doi: 10.1093/petrology/egac002

    CrossRef Google Scholar

    [54] WANG W, ZHAO Y, WEI C J, et al, 2022. Ultrahigh temperature metamorphism in Antarctica and its tectonic setting[J]. Acta Geologica Sinica, 96(9): 3102-3119. (in Chinese with English abstract

    Google Scholar

    [55] WANG Y B, LIU D Y, CHUNG S L, et al, 2008. SHRIMP zircon age constraints from the Larsemann Hills region, Prydz Bay, for a late Mesoproterozoic to early Neoproterozoic tectono-thermal event in East Antarctica[J]. American Journal of Science, 308(4): 573-617. doi: 10.2475/04.2008.07

    CrossRef Google Scholar

    [56] WHITE R W, POWELL R, HOLLAND T J B, et al, 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems[J]. Journal of Metamorphic Geology, 32(3): 261-286. doi: 10.1111/jmg.12071

    CrossRef Google Scholar

    [57] WILSON C J L, QUINN C, TONG L X, et al, 2007. Early Palaeozoic intracratonic shears and post-tectonic cooling in the Rauer Group, Prydz Bay, East Antarctica constrained by 40Ar/39Ar thermochronology[J]. Antarctic Science, 19(3): 339-353. doi: 10.1017/S0954102007000478

    CrossRef Google Scholar

    [58] WU C M, CHEN H X, 2013. Estimation of minimum or maximum pressure or temperature conditions in metamorphic rocks[J]. Acta Petrologica Sinica, 29(5): 1499-1510. (in Chinese with English abstract

    Google Scholar

    [59] YAKYMCHUK C, BROWN M, 2014. Behaviour of zircon and monazite during crustal melting[J]. Journal of the Geological Society, 171(4): 465-479. doi: 10.1144/jgs2013-115

    CrossRef Google Scholar

    [60] ZHAO Y, SONG B, WANG Y J, et al , 1992. Geochronology of the late granite in the Larsemann Hills, East Antarctica[M]//YOSHIDA Y, KAMINUMA K, SHIRAISHI K. Recent progress in Antarctic earth science. Tokyo: Terra Scientific Publishing Company: 155-161.

    Google Scholar

    [61] ZHAO Y, LIU X H, SONG B, et al, 1995. Constraints on the stratigraphic age of metasedimentary rocks from the Larsemann Hills, East Antarctica: possible implications for Neoproterozoic tectonics[J]. Precambrian Research, 75(3-4): 175-188. doi: 10.1016/0301-9268(95)00038-0

    CrossRef Google Scholar

    [62] ZHOU X, TONG L X, LIU X H, et al, 2014. Metamorphism evolution of mafic granulite from the Larsemann Hills, East Antarctica[J]. Acta Petrologica Sinica, 30(6): 1731-1747. (in Chinese with English abstract

    Google Scholar

    [63] ZONG S, REN L D, WU M Q, 2020. Grenvillian metamorphism of sillimanite-garnet feldspar paragneiss in the Larsemann Hills, East Antarctica and tectonic implications[J]. Acta Petrologica Sinica, 36(6): 1931-1944. (in Chinese with English abstract doi: 10.18654/1000-0569/2020.06.18

    CrossRef Google Scholar

    [64] 表璇,王伟,吴江,等,2022. 东南极普里兹湾地区超高温变质作用[J]. 极地研究,34(4):516-529.

    Google Scholar

    [65] 陈廷愚,李光岑,谢良珍,等,1995. 南极洲地质图及说明书(1:500万)[M]. 北京:地质出版社:1-36.

    Google Scholar

    [66] 李淼,刘晓春,赵越,2007. 东南极普里兹湾地区花岗岩类的锆石U-Pb年龄、地球化学特征及其构造意义[J]. 岩石学报,23(5):1055-1066.

    Google Scholar

    [67] 刘晓春,赵越,刘小汉,等,2007. 东南极普里兹带高级变质作用演化[J]. 地学前缘,14(1):56-63.

    Google Scholar

    [68] 任留东,2021. 东南极拉斯曼丘陵长英质片麻岩的深熔作用与铁钛氧化物的聚集机制[J]. 地质力学学报,27(5):736-746.

    Google Scholar

    [69] 佘一民,王伟,程素华,等,2020. 东南极拉斯曼丘陵斯图尔内斯半岛及邻区片麻岩变质作用:相平衡模拟与锆石年代学[J]. 岩石学报,36(9):2799-2814.

    Google Scholar

    [70] 仝来喜,刘小汉,王彦斌,等,2012. 东南极拉斯曼丘陵泥质麻粒岩的变质作用演化[J]. 地质学报,86(8):1273-1290.

    Google Scholar

    [71] 仝来喜,刘兆,王彦斌,2021. 东南极茹尔群岛超高温麻粒岩的研究进展[J]. 地质力学学报,27(5):705-718.

    Google Scholar

    [72] 王伟,赵越,魏春景,等,2022. 南极大陆超高温变质作用及其大地构造背景[J]. 地质学报,96(9):3102-3119.

    Google Scholar

    [73] 吴春明,陈泓旭,2013. 变质作用温度与压力极限值的估算方法[J]. 岩石学报,29(5):1499-1510.

    Google Scholar

    [74] 周信,仝来喜,刘小汉,等,2014. 东南极拉斯曼丘陵镁铁质麻粒岩的变质作用演化[J]. 岩石学报,30(6):1731-1747.

    Google Scholar

    [75] 宗师,任留东,武梅千,2020. 东南极拉斯曼丘陵夕线石榴二长片麻岩的格林威尔期变质作用和构造意义[J]. 岩石学报,36(6):1931-1944.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(5)

Article Metrics

Article views(195) PDF downloads(9) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint