2024 Vol. 30, No. 2
Article Contents

YANG Yongzhong, LI Zhanfei, REN Junjie, XU Xiwei, LI Kang, CHENG Jia, KANG Wenjun. 2024. Control of bedrock geology on active structural deformation revealed by changes in geomorphic parameters: A case study of the Fodongmiao-Hongyazi Frontal Thrust, NE Tibet. Journal of Geomechanics, 30(2): 348-362. doi: 10.12090/j.issn.1006-6616.2023129
Citation: YANG Yongzhong, LI Zhanfei, REN Junjie, XU Xiwei, LI Kang, CHENG Jia, KANG Wenjun. 2024. Control of bedrock geology on active structural deformation revealed by changes in geomorphic parameters: A case study of the Fodongmiao-Hongyazi Frontal Thrust, NE Tibet. Journal of Geomechanics, 30(2): 348-362. doi: 10.12090/j.issn.1006-6616.2023129

Control of bedrock geology on active structural deformation revealed by changes in geomorphic parameters: A case study of the Fodongmiao-Hongyazi Frontal Thrust, NE Tibet

    Fund Project: This research is financially supported by the Research Fund of National Institute of Natural Hazards, Ministry of Emergency Management of China (Grant No.ZDJ2022-01), the National Natural Science Foundation of China (Grants No.U1839204, 41941016), and the Key Program of the Chinese Academy of Sciences (Grant No.KFZD-SW-422)
More Information
  • Objective

    Widely distributed active faults are natural carriers that produce surface-rupture events; multidisciplinary observations have revealed that geometric changes in active faults significantly influence surface-rupture development. However, previous studies on the interaction between the geometric characteristics of active faults and the underlying rock geology have been relatively limited and only confined to observing high-temperature and high-pressure experiments.

    Methods

    With the development of high-resolution geographic technology and quantitative research methods for active faults, it is now possible to finely characterize the geometric structure of large-scale faults and recognize multiparameter displaced landform characteristics. In this study, we utilized high-resolution topographic data (0.5 m) from the Fodongmiao-Hongyazi Frontal thrust (FFT) on the northeastern margin of the Tibetan Plateau, spanning approximately 120 km in length to identify and compare the parameters and characteristics of the faulted landform with the underlying bedrock geology.

    Result

    The research results indicate that the geometric characteristics of the fault are segmented and synchronized with the geological background of the bedrock. The shallow geometric structures of the eastern and western sections of the FFT are relatively simple and continuous, and the changes in parameters such as the strike, roughness, and deformation zone width of the fault are relatively small. The fault's geometric structure was rougher in the middle section of the fault, where Silurian granite is located, and the shallow deformation zone was broader than that in the eastern and western segments. The step-width distribution also varied more drastically along the fault.

    Conclusion

    This study revealed a significant correspondence between faulted landform parameter changes, the boundary of fault segments, and zones of vertical separation attenuation. Additionally, this study suggests that bedrock geology may exert substantial control over the shallow structural deformation of thrust faults.

    Significance

    The potential impact of the underlying geology should be considered for thrust faults and when analyzing seismic hazards related to active faults.

  • 加载中
  • BARKA A A, KADINSKY-CADE K, 1988. Strike-slip fault geometry in Turkey and its influence on earthquake activity[J]. Tectonics, 7(3): 663-684. doi: 10.1029/TC007i003p00663

    CrossRef Google Scholar

    BASTESEN E, BRAATHEN A, 2010. Extensional faults in fine grained carbonates-analysis of fault core lithology and thickness-displacement relationships[J]. Journal of Structural Geology, 32(11): 1609-1628. doi: 10.1016/j.jsg.2010.09.008

    CrossRef Google Scholar

    BEDFORD J D, FAULKNER D R, LAPUSTA N, 2022. Fault rock heterogeneity can produce fault weakness and reduce fault stability[J]. Nature Communications, 13(1): 326. doi: 10.1038/s41467-022-27998-2

    CrossRef Google Scholar

    CARPENTER B M, MARONE C, SAFFER D M, 2011. Weakness of the San Andreas Fault revealed by samples from the active fault zone[J]. Nature Geoscience, 4(4): 251-254. doi: 10.1038/ngeo1089

    CrossRef Google Scholar

    CHEN B L, LIU J S, ZHANG Y S, et al., 2010. Estimation of major earthquake cycle and future tendency in Hexi corridor and its adjacent area, NW China[J]. Journal of Geomechanics, 16(2): 159-175. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2010.02.006

    CrossRef Google Scholar

    CHEN T, LIU-ZENG J, SHAO Y X, et al., 2018. Geomorphic offsets along the creeping Laohu Shan section of the Haiyuan fault, northern Tibetan Plateau[J]. Geosphere, 14(3): 1165-1186. doi: 10.1130/GES01561.1

    CrossRef Google Scholar

    CHOI J H, KLINGER Y, FERRY M, et al., 2018. Geologic inheritance and earthquake rupture processes: The 1905 M ≥ 8 Tsetserleg-Bulnay strike-slip earthquake sequence, Mongolia[J]. Journal of Geophysical Research: Solid Earth, 123(2): 1925-1953. doi: 10.1002/2017JB013962

    CrossRef Google Scholar

    COLLETTINI C, NIEMEIJER A, VITI C, et al., 2009. Fault zone fabric and fault weakness[J]. Nature, 462(7275): 907-910. doi: 10.1038/nature08585

    CrossRef Google Scholar

    DUAN B C, OGLESBY D D, 2006. Heterogeneous fault stresses from previous earthquakes and the effect on dynamics of parallel strike-slip faults[J]. Journal of Geophysical Research: Solid Earth, 111(B5): B05309.

    Google Scholar

    GU G X, 1983. Catalogue of earthquakes in China (1831 BC-1969 AD)[M]. Beijing: Science Press. (in Chinese)

    Google Scholar

    HADDON E K, AMOS C B, ZIELKE O, et al., 2016. Surface slip during large Owens Valley earthquakes[J]. Geochemistry, Geophysics, Geosystems, 17(6): 2239-2269. doi: 10.1002/2015GC006033

    CrossRef Google Scholar

    HETZEL R, HAMPEL A, GEBBEKEN P, et al., 2019. A constant slip rate for the western Qilian Shan frontal thrust during the last 200 ka consistent with GPS-derived and geological shortening rates[J]. Earth and Planetary Science Letters, 509: 100-113. doi: 10.1016/j.epsl.2018.12.032

    CrossRef Google Scholar

    HU X F, PAN B T, KIRBY E, et al., 2015. Rates and kinematics of active shortening along the eastern Qilian Shan, China, inferred from deformed fluvial terraces[J]. Tectonics, 34(12): 2478-2493. doi: 10.1002/2015TC003978

    CrossRef Google Scholar

    HUANG X N, YANG H B, YANG X P, et al., 2021. Holocene paleoeseismology of the Fodongmiao-Hongyazi Fault along the Northern Tibetan margin (Western China) and implication to intraplate earthquake rupturing pattern[J]. Tectonophysics, 808: 228812. doi: 10.1016/j.tecto.2021.228812

    CrossRef Google Scholar

    Institute of Geology, State Seismological Bureau, Lanzhou Institute of Seismology, State Seismological Bureau. 1993. The Qilian Mountain-Hexi Corridor Active Fault System [M]. Seismological Press, Beijing: 19—228 (in Chinese)

    Google Scholar

    KANG W J, XU X W, OSKIN M E, et al., 2020. Characteristic slip distribution and earthquake recurrence along the eastern Altyn Tagh fault revealed by high-resolution topographic data[J]. Geosphere, 16(1): 392-406. doi: 10.1130/GES02116.1

    CrossRef Google Scholar

    KLINGER Y, ETCHEBES M, TAPPONNIER P, et al., 2011. Characteristic slip for five great earthquakes along the Fuyun fault in China[J]. Nature Geoscience, 4(6): 389-392. doi: 10.1038/ngeo1158

    CrossRef Google Scholar

    LI H Q, YUAN D Y, SU Q, et al., 2023. Geomorphic features of the Menyuan basin in the Qilian Mountains and its tectonic significance[J]. Journal of Geomechanics, 29(6): 824-841. (in Chinese with English Abstract)

    Google Scholar

    LI Z F, XU X W, TAPPONNIER P, et al., 2021. Post-20 ka earthquake scarps along NE-Tibet's Qilian Shan frontal Thrust: Multi-millennial return, ~characteristic co-seismic slip, and geological rupture control[J]. Journal of Geophysical Research: Solid Earth, 126(12): e2021JB021889. doi: 10.1029/2021JB021889

    CrossRef Google Scholar

    LIU X W, YUAN D Y, HE W G, 2014. Preliminary study of palaeo-earthquakes on the Fodongmiao-Hongyazi fault in the north margin of Qilian mountain [J]. Technology for Earthquake Disaster Prevention, 9(3): 411-419. (in Chinese with English Abstract)

    Google Scholar

    LIU X W, YUAN D Y, SU Q, 2019. Late Pleistocene slip rate on a blind thrust in the western Qilian Shan, NW China[J]. Geomorphology, 345: 106841. doi: 10.1016/j.geomorph.2019.106841

    CrossRef Google Scholar

    LIU X W, YUAN D Y, SHAO Y X, et al., 2022. Re-evaluation of surface ruptures produced by the 1609 M 7.3 Hongyazi earthquake in the northern Qilian Shan, China[J]. Arabian Journal of Geosciences, 15(6): 542. doi: 10.1007/s12517-021-08633-8

    CrossRef Google Scholar

    LIU-ZENG J, YAO W Q, LIU X L, et al., 2022. High-resolution structure-from-motion models covering 160 km-long surface ruptures of the 2021 MW 7.4 Madoiearthquake in northern Qinghai-Tibetan Plateau[J]. Earthquake Research Advances, 2(2): 100140. doi: 10.1016/j.eqrea.2022.100140

    CrossRef Google Scholar

    MANIGHETTI I, KING G C P, GAUDEMER Y, et al., 2001. Slip accumulation and lateral propagation of active normal faults in Afar[J]. Journal of Geophysical Research: Solid Earth, 106(B7): 13667-13696. doi: 10.1029/2000JB900471

    CrossRef Google Scholar

    MANIGHETTI I, MERCIER A, DE BARROS L, 2021. Fault trace corrugation and segmentation as a measure of fault structural maturity[J]. Geophysical Research Letters, 48(20): e2021GL095372. doi: 10.1029/2021GL095372

    CrossRef Google Scholar

    MATTÉO L, MANIGHETTI I, TARABALKA Y, et al., 2021. Automatic fault mapping in remote optical images and topographic data with deep learning[J]. Journal of Geophysical Research: Solid Earth, 126(4): e2020JB021269. doi: 10.1029/2020JB021269

    CrossRef Google Scholar

    PERRIN C, MANIGHETTI I, AMPUERO J P, et al., 2016. Location of largest earthquake slip and fast rupture controlled by along-strike change in fault structural maturity due to fault growth[J]. Journal of Geophysical Research: Solid Earth, 121(5): 3666-3685. doi: 10.1002/2015JB012671

    CrossRef Google Scholar

    REN J J, XU X W, ZHANG G W, et al., 2022. Coseismic surface ruptures, slip distribution, and 3D seismogenic fault for the 2021 Mw 7.3 Maduo earthquake, central Tibetan Plateau, and its tectonic implications[J]. Tectonophysics, 827: 229275. doi: 10.1016/j.tecto.2022.229275

    CrossRef Google Scholar

    REN Z K, ZHANG Z Q, CHEN T, et al., 2016. Clustering of offsets on the Haiyuan fault and their relationship to paleoearthquakes[J]. GSA Bulletin, 128(1-2): 3-18.

    Google Scholar

    SCHOLZ C H, ENGELDER J T, 1976. The role of asperity indentation and ploughing in rock friction—I: Asperity creep and stick-slip[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13(5): 149-154.

    Google Scholar

    SIBSON R H, 1977. Fault rocks and fault mechanisms[J]. Journal of the Geological Society, 133(3): 191-213. doi: 10.1144/gsjgs.133.3.0191

    CrossRef Google Scholar

    STEWART N, GAUDEMER Y, MANIGHETTI I, et al., 2018. "3D_Fault_Offsets, " a Matlab code to automatically measure lateral and vertical fault offsets in topographic data: application to San Andreas, Owens Valley, and Hope faults[J]. Journal of Geophysical Research: Solid Earth, 123(1): 815-835. doi: 10.1002/2017JB014863

    CrossRef Google Scholar

    TAPPONNIER P, MEYER B, AVOUAC J P, et al., 1990. Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet[J]. Earth and Planetary Science Letters, 97(3-4): 382-383, 387-403. doi: 10.1016/0012-821X(90)90053-Z

    CrossRef Google Scholar

    WESNOUSKY S G, 2008. Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture[J]. Bulletin of the Seismological Society of America, 98(4): 1609-1632. doi: 10.1785/0120070111

    CrossRef Google Scholar

    XIONG J G, LI Y L, ZHONG Y Z, et al., 2017. Latest Pleistocene to Holocene thrusting recorded by a flight of strath terraces in the eastern Qilian Shan, NE Tibetan Plateau[J]. Tectonics, 36(12): 2973-2986. doi: 10.1002/2017TC004648

    CrossRef Google Scholar

    XU X W, WEN X Z, YU G H, et al., 2009. Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China[J]. Geology, 37(6): 515-518. doi: 10.1130/G25462A.1

    CrossRef Google Scholar

    XU X W, WU X Y, YU G H, et al., 2017. Seismo-geological signatures for identifying M≥7.0 earthquake risk areas and their premilimary application in China's mainland[J]. Seismology and Geology, 39(2): 219-275. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2017.02.001

    CrossRef Google Scholar

    XU X W, YEATS R S, YU G H, 2010. Five short historical earthquake surface ruptures near the Silk Road, Gansu Province, China[J]. Bulletin of the Seismological Society of America, 100(2): 541-561. doi: 10.1785/0120080282

    CrossRef Google Scholar

    YANG H B, YANG X P, HUANG X N, 2017. A preliminary study about slip rate of middle segment of the northern Qilian thrust fault zone since late quaternary[J]. Seismology and Geology, 39(1): 20-42. (in Chinese with English abstract)

    Google Scholar

    YANG H B, YANG X P, HUANG X N, et al., 2018. New constraints on slip rates of the Fodongmiao-Hongyazi fault in the Northern Qilian Shan, NE Tibet, from the 10Be exposure dating of offset terraces[J]. Journal of Asian Earth Sciences, 151: 131-147. doi: 10.1016/j.jseaes.2017.10.034

    CrossRef Google Scholar

    YUAN D Y, GE W P, CHEN Z W, et al., 2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies[J]. Tectonics, 32(5): 1358-1370. doi: 10.1002/tect.20081

    CrossRef Google Scholar

    ZHANG D, LI J C, WU Z H, et al., 2021. Using terrestrial LiDAR to accurately measure the micro-geomorphologic geometry of active fault: A case study of fault scarp on the Maoyaba fault zone[J]. Journal of Geomechanics, 27(1): 63-72. (in Chinese with English abstract)

    Google Scholar

    ZHANG P Z, SHEN Z K, WANG M, et al., 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812. doi: 10.1130/G20554.1

    CrossRef Google Scholar

    ZHANG P Z, DENG Q D, ZHANG Z Q, et al., 2013. Active faults, earthquake disasters and their dynamic processes in Chinese Mainland[J]. Chinese Science: Earth Sciences, 43(10): 1607-1620. (in Chinese)

    Google Scholar

    ZHENG D W, CLARK M K, ZHANG P Z, et al., 2010. Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau)[J]. Geosphere, 6(6): 937-941. doi: 10.1130/GES00523.1

    CrossRef Google Scholar

    ZHENG W J, ZHANG H P, ZHANG P Z, et al., 2013. Late Quaternary slip rates of the thrust faults in western Hexi Corridor (Northern Qilian Shan, China) and their implications for northeastward growth of the Tibetan Plateau[J]. Geosphere, 9(2): 342-354. doi: 10.1130/GES00775.1

    CrossRef Google Scholar

    ZHENG W J, ZHANG Z Q, HAO M, et al., 2022. Physical basis for prediction of continental strong earthquakes: Development and prospect of active tectonic block theory[J]. Chinese Science Bulletin, 67(13): 1352-1361. (in Chinese with English abstract)

    Google Scholar

    ZHANG X Z, TIE Y B, LI G H, et al., 2022. Characteristics and risk assessment of debris flows in the Wandong catchment after the MS 6.8 Luding earthquake. Journal of Geomechanics, 28 (6): 1035-1045. (in Chinese with English abstract)

    Google Scholar

    ZIELKE O, 2010. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault (Science (1119))[J]. Science, 329(5990): 390.

    Google Scholar

    ZUZA A V, CHENG X G, YIN A, 2016. Testing models of Tibetan Plateau formation with Cenozoic shortening estimates across the Qilian Shan-Nan Shan thrust belt[J]. Geosphere, 12(2): 501-532.

    Google Scholar

    陈柏林, 刘建生, 张永双, 等, 2010. 河西走廊及邻区大震重复周期估算与未来地震趋势[J]. 地质力学学报, 16(2): 159-175.

    Google Scholar

    顾功叙, 1983. 中国地震目录(公元前1831-公元1969年)[M]. 北京: 科学出版社.

    Google Scholar

    国家地震局地质研究所, 国家地震局兰州地震研究所, 1993. 祁连山-河西走廊活动断层系[M]. 北京: 地震出版社.

    Google Scholar

    刘兴旺, 袁道阳, 何文贵, 2014. 祁连山北缘佛洞庙-红崖子断层古地震特征初步研究[J]. 震灾防御技术, 9(3): 411-419.

    Google Scholar

    李红强, 袁道阳, 苏琦, 等, 2023. 祁连山内部门源盆地地貌特征及构造意义[J]. 地质力学学报, 29(6): 824-841.

    Google Scholar

    徐锡伟, 吴熙彦, 于贵华, 等, 2017. 中国大陆高震级地震危险区判定的地震地质学标志及其应用[J]. 地震地质, 39(2): 219-275.

    Google Scholar

    杨海波, 杨晓平, 黄雄南, 2017. 祁连山北缘断层带中段晚第四纪活动速率初步研究[J]. 地震地质, 39(1): 20-42.

    Google Scholar

    张迪, 李家存, 吴中海, 等, 2021. 利用地面LiDAR精细化测量活断层微地貌形态: 以毛垭坝断层禾尼处断层崖为例[J]. 地质力学学报, 27(1): 63-72.

    Google Scholar

    张培震, 邓起东, 张竹琪, 等, 2013. 中国大陆的活动断层、地震灾害及其动力过程[J]. 中国科学: 地球科学, 43(10): 1607-1620.

    Google Scholar

    张宪政, 铁永波, 李光辉, 等, 2022. 四川泸定MS6.8级地震区湾东河流域泥石流活动性预测. 地质力学学报, 28 (6): 1035-1045.

    Google Scholar

    郑文俊, 张竹琪, 郝明, 等, 2022. 强震孕育发生的大陆活动地块理论未来发展与强震预测探索[J]. 科学通报, 67(13): 1352-1361.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(705) PDF downloads(57) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint