2024 Vol. 30, No. 4
Article Contents

LIU Shengxin, FU Huiqi, FENG Xingqiang, HAN Xiaoxiang, WANG Bingqian. 2024. Fracture network complexity of tight sandstone and its influencing factors. Journal of Geomechanics, 30(4): 563-578. doi: 10.12090/j.issn.1006-6616.2023128
Citation: LIU Shengxin, FU Huiqi, FENG Xingqiang, HAN Xiaoxiang, WANG Bingqian. 2024. Fracture network complexity of tight sandstone and its influencing factors. Journal of Geomechanics, 30(4): 563-578. doi: 10.12090/j.issn.1006-6616.2023128

Fracture network complexity of tight sandstone and its influencing factors

    Fund Project: This research is financially supported by the Geological Survey Projects of the China Geological Survey (Grant No. DD20221660) and National Natural Science Foundation of China (Grant No. 42277167).
More Information
  • Objective

    Fracture network analysis plays an important role in oil and gas exploration and development. However, complexity analysis of tight sandstone fracture networks and their control factors is relatively lagging. Based on an experimental study of the dynamic evolution of the complex fracture network in tight sandstone, the fractal and multifractal spectral characteristics of the fracture network were defined, and the complexity and main controlling factors of the fracture network were analyzed. Fracture network complexity analysis of tight sandstone plays an important role in hydraulic fracturing optimization, fracture network prediction, and fracture modeling.

    Methods

    Rock mechanics and X-ray computed tomography scan experiments determined the characteristics of rock mechanics and fracture networks . The microstructure and fracture network fractal characteristics of tight sandstone were quantitatively characterized by SEM and fracture network fractal analysis.

    Results

    The results showed that the quartz content of tight sandstone ranges from 28.08 to 52.88%, clay content ranges from 11.54 to 25.45%, particle size ranges from 61.18 to 184.55 μm, and porosity ranges from 8.125 to 10.296%. Uniaxial compressive strength ranges from 69.09 to 188.33 MPa, and the elastic modulus ranges from 31.69 to 92.76 GPa. The fractal dimension (DB) ranges from 1.28 to 2.35 and average spectral width (Δα) ranges from 1.0851 to 1.3638.

    Conclusion

    The initiation and propagation of fractures extend through the entire stress–strain process. The complexity of the fracture network of tight sandstone is mainly controlled by microscopic fabric characteristics, and has obvious confining pressure as well as scale effects. The DB of the three-dimensional fracture network and average Δα of the multifractal spectrum represents the complexity and heterogeneity of the fracture spatial distribution, respectively, and are relatively independent. As the content of quartz, feldspar, and other brittle minerals in sandstone increases, the porosity of the reservoir increases, particle size of the sandstone decreases, DB of the fracture network increases, and average Δα decreases. In the absence of confining pressure, the complexity of the sample fracture network is mainly controlled by the microscopic fabric characteristics, and the complexity increases with increase of axial pressure. When present confining pressure plays a leading role; the higher it is, the lower the DB value, and the higher the mean Δα value. Clay minerals are unconducive to complex fractures formation. The mean values of DB and Δα of small-scale samples are greater than those of large-scale samples. The elastic modulus and compressive strength of sandstone are positively correlated with DB and mean Δα.

  • 加载中
  • [1] BARTON C C, 1995. Fractal analysis of scaling and spatial clustering of fractures[M]. In: Fractals in the Earth Sciences. Springer, 141–178.

    Google Scholar

    [2] BERKOWITZ B. , HADAD A, 1997. Fractal and multifractal measures of natural and synthetic fracture networks[J]. Journal Of Geophysical Research-solid Earth 102: 12205–12218

    Google Scholar

    [3] BIENIAWSKI Z T, 1967. Mechanism of brittle fracture of rock: Part II-experimental studies[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 4(4): 407-423.

    Google Scholar

    [4] CAI M, KAISER P K, TASAKA Y, et al., 2004. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences, 41(5): 833-847. doi: 10.1016/j.ijrmms.2004.02.001

    CrossRef Google Scholar

    [5] CAI M, MORIOKA H, KAISER P K, et al., 2007. Back-analysis of rock mass strength parameters using AE monitoring data[J]. International Journal of Rock Mechanics and Mining Sciences, 44(4): 538-549. doi: 10.1016/j.ijrmms.2006.09.012

    CrossRef Google Scholar

    [6] CHEN X, MA L T, SHI C L, et al., 2022. Water occurrence and identification method of the water-bearing degree of tight sandstone reservoirs in the Linxing block[J]. Geology and Exploration, 58(6): 1331-1340. (in Chinese with English abstract

    Google Scholar

    [7] DERSHOWITZ W S, HERDA H H, et al. , 1992. Interpretation of fracture spacing and intensity[C]. In: The 33th Us Symposium on Rock Mechanics. USRMS, American Rock. Mechanics Association.

    Google Scholar

    [8] DING C D, ZHANG Y, YANG X T, et al., 2019. Permeability evolution of tight sandstone under high confining pressure and high pore pressure and its microscopic mechanism[J]. Rock and Soil Mechanics, 40(9): 3300-3308. (in Chinese with English abstract

    Google Scholar

    [9] DUAN M K, JIANG C B, GAN Q, et al., 2020. Experimental investigation on the permeability, acoustic emission and energy dissipation of coal under tiered cyclic unloading[J]. Journal of Natural Gas Science and Engineering, 73: 103054. doi: 10.1016/j.jngse.2019.103054

    CrossRef Google Scholar

    [10] DUNCAN P M, EISNER L, 2010. Reservoir characterization using surface microseismic monitoring[J]. Geophysics, 75(5): 75A139-75A146. doi: 10.1190/1.3467760

    CrossRef Google Scholar

    [11] EBERHARDT E, STIMPSON B, STEAD D, 1999. Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures[J]. Rock Mechanics and Rock Engineering, 32(2): 81-99. doi: 10.1007/s006030050026

    CrossRef Google Scholar

    [12] FAN J M, CHEN X D, LEI Z D, et al., 2019. Characteristics of natural and hydraulic fractures in tight oil reservoir in Ordos Basin and its implication to field development[J]. Journal of China University of Petroleum, 43(3): 98-106. (in Chinese with English abstract

    Google Scholar

    [13] GAO C Y, ZHAO F H, GAO L F, et al., 2023. The methods of fracture prediction based on structural strain analysis and its application[J]. Journal of Geomechanics, 29(1): 21-33. (in Chinese with English abstract

    Google Scholar

    [14] GHASEMI S, KHAMEHCHIYAN M, TAHERI A, et al., 2020. Crack evolution in damage stress thresholds in different minerals of granite rock[J]. Rock Mechanics and Rock Engineering, 53(3): 1163-1178. doi: 10.1007/s00603-019-01964-9

    CrossRef Google Scholar

    [15] GRIFFITH A A, 1924. The theory of rupture[C]. In: Proceedings of the First International Congress for Applied Mechanics, 55-63.

    Google Scholar

    [16] GRIFFITH A. A., 1920. The Phenomena of Rupture and Flow in Solids[J]. Phil Trans Roy Soc(London), A221: 162-198.

    Google Scholar

    [17] GUO Y H, 2018. Experimental study on the effect of particle size on the mechanical properties of sandstone[D]. Qingdao: Shandong University of Science and Technology. (in Chinese with English abstract

    Google Scholar

    [18] HOU B, ZHANG R X, ZENG Y J, et al., 2018. Analysis of hydraulic fracture initiation and propagation in deep shale formation with high horizontal stress difference[J]. Journal of Petroleum Science and Engineering, 170: 231-243. doi: 10.1016/j.petrol.2018.06.060

    CrossRef Google Scholar

    [19] JARVIE D M, HILL R J, RUBLE T E, et al., 2007. Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 91(4): 475-499. doi: 10.1306/12190606068

    CrossRef Google Scholar

    [20] LI B, LI J L, WANG P, et al., 2023. Confining pressure effect and quantitative characterization of rock shear strength parameters[J]. China Mining Magazine, 32(2): 157-164. (in Chinese with English abstract

    Google Scholar

    [21] LI M, GUO Y H, WANG H C, et al., 2020. Effects of mineral composition on the fracture propagation of tight sandstones in the Zizhou area, east Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 78: 103334. doi: 10.1016/j.jngse.2020.103334

    CrossRef Google Scholar

    [22] LI S Y, HE T M, YIN X C, 2010. Introduction of rock fracture mechanics[M]. Hefei: University of Science and Technology of China Press. (in Chinese)

    Google Scholar

    [23] LI Y W, YANG S, ZHAO W C, et al., 2018. Experimental of hydraulic fracture propagation using fixed-point multistage fracturing in a vertical well in tight sandstone reservoir[J]. Journal of Petroleum Science and Engineering, 171: 704-713. doi: 10.1016/j.petrol.2018.07.080

    CrossRef Google Scholar

    [24] LING J M, 1993. Study on the mesoscopical characteristics of rock damage under compressive loading[J]. Journal of Tongji University, 21(2): 219-226. (in Chinese with English abstract

    Google Scholar

    [25] LIU F Y, YANG T H, ZHANG P H, et al., 2018. Dynamic inversion of rock fracturing stress field based on acoustic emission[J]. Rock and Soil Mechanics, 39(4): 1517-1524. (in Chinese with English abstract

    Google Scholar

    [26] LIU J S, DING W L, XIAO Z K, et al., 2019. Advances in comprehensive characterization and prediction of reservoir fractures[J]. Progress in Geophysics, 34(6): 2283-2300. (in Chinese with English abstract

    Google Scholar

    [27] LIU S X, WANG Z X, ZHANG L Y, 2018. Experimental study on the cracking process of layered shale using X-ray microCT[J]. Energy Exploration & Exploitation, 36(2): 297-313.

    Google Scholar

    [28] LIU S X, WANG Z X, ZHANG L Y, et al., 2018. Micromechanics properties analysis of shale based on nano-indentation[J]. Journal of Experimental Mechanics, 33(6): 957-968. (in Chinese with English abstract

    Google Scholar

    [29] LIU S X, WANG Z X, ZHANG L Y, et al., 2019. Effects of microstructure characteristics of shale on development of complex fracture network[J]. Journal of Mining and Safety Engineering, 36(2): 420-428. (in Chinese with English abstract

    Google Scholar

    [30] MA S W, WEI L, WANG Y J, et al., 2022. Characterization and evaluation of microscopic pore structures of tight sandstone reservoir in the 8th member of Shihezi Formation in southern Ordos Basin[J]. Geology and Exploration, 58(6): 1321-1330. (in Chinese with English abstract

    Google Scholar

    [31] MANDELBROT B B, 1982. The Fractal Geometry of Nature, vol. 1. WH freeman, New York. Matsumoto, N., Yomogida, K., Honda, S., 1992. Fractal analysis of fault systems in Japan and the Philippines[J]. Geophys. Res. Lett, 19: 357-360. doi: 10.1029/92GL00202

    CrossRef Google Scholar

    [32] MIAO S Y, ZHANG H J, CHEN Y K, et al. , 2019. Surface microseismic monitoring of shale gas hydraulic fracturing based on microseismic location and tomography[J]. Geophysical Prospecting for Petroleum, 58(2): 262-271, 284. (in Chinese with English abstract

    Google Scholar

    [33] NASSERI M H, RAO K S, RAMAMURTHY T, 1997. Failure mechanism in schistose rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 34(3-4): 219. e1-219. e15.

    Google Scholar

    [34] PAN L Y, HAO L H, LIU K X, et al., 2023. Fracture Propagation Law of Hydraulic Fracturing in High-Salinity Reservoir of Fengcheng Formation in Mahu[J]. Xinjiang Oil & Gas, 19(4): 20-28

    Google Scholar

    [35] PESTMAN B J, VAN MUNSTER J G, 1996. An acoustic emission study of damage development and stress-memory effects in sandstone[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 33(6): 585-593.

    Google Scholar

    [36] RENARD F, MCBECK J, CORDONNIER B, et al., 2019. Dynamic in situ three-dimensional imaging and digital volume correlation analysis to quantify strain localization and fracture coalescence in sandstone[J]. Pure and Applied Geophysics, 176(3): 1083-1115. doi: 10.1007/s00024-018-2003-x

    CrossRef Google Scholar

    [37] SHANG C J, KANG Y S, DENG Z, et al., 2019. The influence mechanism of filled natural fractures on the variation law of shale permeability in loading process[J]. Journal of Geomechanics, 25(3): 382-391. (in Chinese with English abstract

    Google Scholar

    [38] SHI X, PAN J, HOU Q, et al. , 2018. Micrometer-scale fractures in coal related to coal rank based on micro-ct scanning and fractal theory[J]. Fuel 212: 162–172.

    Google Scholar

    [39] TAN Y L, WANG Z X, FENG X Q, et al., 2021. Structural preservation conditions analysis of oil and gas in complex structural area: A case study of structural analysis in the Well Wanjingdi-1, Anhui, China[J]. Journal of Geomechanics, 27(3): 441-452. (in Chinese with English abstract

    Google Scholar

    [40] THIELE S T, GROSE L, SAMSU A, MICKLETHWAITE S, et al. , 2017. Rapid, semi-automatic fracture and contact mapping for point clouds, images and geophysical data[J]. Solid Earth 8: 1241–1253.

    Google Scholar

    [41] WANG D K, ZENG F C, WEI J P, et al., 2021. Quantitative analysis of fracture dynamic evolution in coal subjected to uniaxial and triaxial compression loads based on industrial CT and fractal theory[J]. Journal of Petroleum Science and Engineering, 196: 108051. doi: 10.1016/j.petrol.2020.108051

    CrossRef Google Scholar

    [42] WANG L S, SUN D S, ZHENG X H, et al., 2017. Size effect experiment of uniaxial compressive strength of three typical rocks[J]. Journal of Geomechanics, 23(2): 327-333. (in Chinese with English abstract

    Google Scholar

    [43] WANG S, XU Y, ZHANG Y B, et al., 2023. Effects of sandstone mineral composition heterogeneity on crack initiation and propagation through a microscopic analysis technique[J]. International Journal of Rock Mechanics and Mining Sciences, 162: 105307. doi: 10.1016/j.ijrmms.2022.105307

    CrossRef Google Scholar

    [44] WANG Y, WANG H M, ZHU H B, 2021. Preliminary study on physical experimental simulation of hydraulic fracturing[J]. Progress in Geophysics, 36(3): 1130-1137. (in Chinese with English abstract

    Google Scholar

    [45] WEIBULL W, 1939. A statistical theory of the strength of materials[M]. Stockholm: Generalstabens Litografiska Anstalts Förlag: 1-29.

    Google Scholar

    [46] WEN X L, KONG M W, LUO Y, et al., 2021. Study and Application of Fracturing Technology for Tight Reservoir With HPHT Closure Stress in the Southern Margin of Junggar Basin[J]. Xinjiang oil & Gas, 17(4): 15-20.

    Google Scholar

    [47] WEN S S, YIN C, SHI X W, et al., 2023. Multi-scale rupture characteristics dominated by pre-existing fractures of Longmaxi shale during hydraulic fracturing in Luzhou block[J]. Progress in Geophysics, 38(5): 2172-2181. (in Chinese with English abstract

    Google Scholar

    [48] WU F Q, QIAO L, GUAN S G, et al., 2021. Uniaxial compression test study on size effect of small size rock samples[J]. Chinese Journal of Rock Mechanics and Engineering, 40(5): 865-873. (in Chinese with English abstract

    Google Scholar

    [49] WU H, ZHOU Y, YAO Y, et al., 2019. Imaged based fractal characterization of microfracture structure in coal[J]. Fuel, 239: 53-62. doi: 10.1016/j.fuel.2018.10.117

    CrossRef Google Scholar

    [50] WU N, SHI S, ZHENG S Q, et al., 2022. Formation pressure calculation of tight sandstone gas reservoir based on material balance inversion method[J]. Coal Geology & Exploration, 50(9): 115-121. (in Chinese with English abstract

    Google Scholar

    [51] WU S T, YANG Z, PAN S Q, et al., 2020. Three-dimensional imaging of fracture propagation in tight sandstones of the Upper Triassic Chang 7 member, Ordos Basin, Northern China[J]. Marine and Petroleum Geology, 120: 104501. doi: 10.1016/j.marpetgeo.2020.104501

    CrossRef Google Scholar

    [52] XIE H P, CHEN Z D, 1989. Analysis of rock fracture micro-mechanism[J]. Journal of China Coal Society(2): 57-66. (in Chinese with English abstract

    Google Scholar

    [53] XING H T, ZHANG X L, HE J X, et al., 2022. Mineral composition characteristics and petroleum geological significance of tight sandstone of Longtan Formation in Weixin area, eastern Yunnan[J]. Coal Geology & Exploration, 50(4): 52-60. (in Chinese with English abstract

    Google Scholar

    [54] XIONG L F, 2021. Mechanisms and factors of the localized deformation in porous rocks[D]. Beijing: University of Science and Technology Beijing. (in Chinese with English abstract

    Google Scholar

    [55] XIONG L F, 2022. Study on deformation and failure mechanism of porous rock and its influencing factors [ D ]. Beijing University of Science and Technology.

    Google Scholar

    [56] YANG F, MEI W B, LI L, et al., 2023. Propagation of hydraulic fractures in thin interbedded tight sandstones[J]. Coal Geology & Exploration, 51(7): 61-71. (in Chinese with English abstract

    Google Scholar

    [57] YANG S Q, SU C D, XU W Y, 2005. Experimental and theoretical study of size effect of rock material[J]. Engineering Mechanics, 22(4): 112-118. (in Chinese with English abstract

    Google Scholar

    [58] YU X, LI G, CHEN Z, et al., 2021. Experimental study on physical and mechanical characteristics of tight sandstones in the Xujiahe Formation in western Sichuan after high-temperature exposure[J]. Journal of Geomechanics, 27(1): 1-9. (in Chinese with English abstract

    Google Scholar

    [59] ZENG L B, LYU W Y, LI J, et al., 2016. Natural fractures and their influence on shale gas enrichment in Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 30: 1-9. doi: 10.1016/j.jngse.2015.11.048

    CrossRef Google Scholar

    [60] ZHANG D M, WANG P, ZANG D G, et al., 2023. Pre-stack reservoir prediction of tight sandstone of the fifth member of Xujiahe Formation in the Wubaochang area of northeastern Sichuan[J]. Geology and Exploration, 59(6): 1356-1365. (in Chinese with English abstract

    Google Scholar

    [61] ZHANG H, KANG Y L, CHEN J S, et al., 2007. Experimental study on mechanical properties of dense sandstone under different confining pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 26(S2): 4227-4231. (in Chinese with English abstract

    Google Scholar

    [62] ZHANG Y F, NIU S Y, DU Z M, et al., 2020. Dynamic fracture evolution of tight sandstone under uniaxial compression in high resolution 3D X-ray microscopy[J]. Journal of Petroleum Science and Engineering, 195: 107585. doi: 10.1016/j.petrol.2020.107585

    CrossRef Google Scholar

    [63] ZHAO C, LIU F M, TIAN J Y, et al., 2016. Study on single crack propagation and damage evolution mechanism of rock-like materials under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 35(S2): 3626-3632. (in Chinese with English abstract

    Google Scholar

    [64] ZHAO N, WANG L, ZHANG L, et al. , 2022. Mechanical properties and fracturing characteristics of tight sandstones based on granularity classification: a case study of Permian Lower Shihezi Formation, Ordos Basin[J]. Petroleum Geology & Experiment, 44(4): 720-729, 738. (in Chinese with English abstract

    Google Scholar

    [65] ZHONG J H, LIU S X, MA Y S, et al., 2015. Macro-fracture mode and micro-fracture mechanism of shale[J]. Petroleum Exploration and Development, 42(2): 242-250. (in Chinese with English abstract

    Google Scholar

    [66] ZHOU J, SHEN Z Z, 2021. The effect of grain size on the mechanical properties of sandstone[J]. China Petroleum and Chemical Standard and Quality, 41(18): 81-82. (in Chinese with English abstract

    Google Scholar

    [67] ZHU H Y, SONG Y J, LEI Z D, et al., 2022a. 4D-stress evolution of tight sandstone reservoir during horizontal wells injection and production: A case study of Yuan 284 block, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 49(1): 156-169. doi: 10.1016/S1876-3804(22)60012-0

    CrossRef Google Scholar

    [68] ZHU W W, HE X P, LI Y T, et al., 2022b. Impacts of fracture properties on the formation and development of stimulated reservoir volume: a global sensitivity analysis[J]. Journal of Petroleum Science and Engineering, 217: 110852. doi: 10.1016/j.petrol.2022.110852

    CrossRef Google Scholar

    [69] ZHU W W, LEI G, HE X P, et al., 2022c. Fractal and multifractal characterization of stochastic fracture networks and real outcrops[J]. Journal of Structural Geology, 155: 104508. doi: 10.1016/j.jsg.2021.104508

    CrossRef Google Scholar

    [70] ZHU W W, LEI G, HE X P, et al., 2022d. Can we infer the percolation status of 3D fractured media from 2D outcrops?[J]. Engineering Geology, 302: 106648. doi: 10.1016/j.enggeo.2022.106648

    CrossRef Google Scholar

    [71] 陈鑫,马立涛,史长林,等,2022. 临兴区块致密砂岩储层水赋存状态及气层含水程度识别方法[J]. 地质与勘探,58(6):1331-1340.

    Google Scholar

    [72] 丁长栋,张杨,杨向同,等,2019. 致密砂岩高围压和高孔隙水压下渗透率演化规律及微观机制[J]. 岩土力学,40(9):3300-3308.

    Google Scholar

    [73] 樊建明,陈小东,雷征东,等,2019. 鄂尔多斯盆地致密油藏天然裂缝与人工裂缝特征及开发意义[J]. 中国石油大学学报(自然科学版),43(3):98-106. doi: 10.3969/j.issn.1673-5005.2019.03.011

    CrossRef Google Scholar

    [74] 高晨阳,赵福海,高莲凤,等,2023. 基于构造应变分析的裂缝预测方法及其应用[J]. 地质力学学报,29(1):21-33. doi: 10.12090/j.issn.1006-6616.2022089

    CrossRef Google Scholar

    [75] 郭宇航,2018. 粒度对红砂岩力学性质的影响规律试验研究[D]. 青岛:山东科技大学.

    Google Scholar

    [76] 李斌,李佳伦,王鹏,等,2023. 岩石抗剪强度参数的围压效应与定量表征[J]. 中国矿业,32(2):157-164.

    Google Scholar

    [77] 李世愚,和泰名,尹祥础,2010. 岩石断裂力学导论[M]. 合肥:中国科学技术大学出版社.

    Google Scholar

    [78] 凌建明,1993. 压缩荷载条件下岩石细观损伤特征的研究[J]. 同济大学学报,21(2):219-226.

    Google Scholar

    [79] 刘飞跃,杨天鸿,张鹏海,等,2018. 基于声发射的岩石破裂应力场动态反演[J]. 岩土力学,39(4):1517-1524.

    Google Scholar

    [80] 刘敬寿,丁文龙,肖子亢,等,2019. 储层裂缝综合表征与预测研究进展[J]. 地球物理学进展,34(6):2283-2300. doi: 10.6038/pg2019CC0290

    CrossRef Google Scholar

    [81] 刘圣鑫,王宗秀,张林炎,等,2019. 页岩微观组构特征对复杂裂缝网络形成的影响[J]. 采矿与安全工程学报,36(2):420-428.

    Google Scholar

    [82] 马尚伟,魏丽,王一军,等,2022. 鄂尔多斯盆地南部盒8段致密砂岩储层微观孔隙结构表征与评价[J]. 地质与勘探,58(6):1321-1330. doi: 10.12134/j.dzykt.2022.06.016

    CrossRef Google Scholar

    [83] 缪思钰,张海江,陈余宽,等,2019. 基于微地震定位和速度成像的页岩气水力压裂地面微地震监测[J]. 石油物探,58(2):262-271,284. doi: 10.3969/j.issn.1000-1441.2019.02.012

    CrossRef Google Scholar

    [84] 潘丽燕,郝丽华,刘凯新,等,2023. 玛湖风城组高含盐储层水力压裂裂缝扩展规律[J]. 新疆石油天然气,19(4):20-28 doi: 10.12388/j.issn.1673-2677.2023.04.003

    CrossRef Google Scholar

    [85] 尚春江,康永尚,邓泽,等,2019. 充填天然裂缝对页岩受载过程中渗透率变化规律影响机理分析[J]. 地质力学学报,25(3):382-391.

    Google Scholar

    [86] 谭元隆,王宗秀,冯兴强,等,2021. 复杂构造区油气构造保存条件分析:来自皖泾地1井的构造解析[J]. 地质力学学报,27(3):441-452. doi: 10.12090/j.issn.1006-6616.2021.27.03.040

    CrossRef Google Scholar

    [87] 王连山,孙东生,郑秀华,等,2017. 三种典型岩石单轴抗压强度的尺寸效应试验研究[J]. 地质力学学报,23(2):327-333.

    Google Scholar

    [88] 王瑜,王辉明,朱海波,2021. 水力压裂物理实验模拟初探[J]. 地球物理学进展,36(3):1130-1137. doi: 10.6038/pg2021EE0258

    CrossRef Google Scholar

    [89] 文贤利,孔明炜,罗垚,等,2021,准噶尔盆地南缘高温高压高闭合应力致密储层改造技术研究及应用[J]. 新疆石油天然气,17(4):15-20

    Google Scholar

    [90] 文山师,尹陈,石学文,等,2023. 天然裂缝主导模式下泸州龙马溪组页岩水力压裂多尺度破裂特征[J]. 地球物理学进展,38(5):2172-2181.

    Google Scholar

    [91] 伍法权,乔磊,管圣功,等,2021. 小尺寸岩样单轴压缩试验尺寸效应研究[J]. 岩石力学与工程学报,40(5):865-873.

    Google Scholar

    [92] 武男,石石,郑世琪,等,2022. 基于物质平衡反演法的致密砂岩气藏地层压力计算[J]. 煤田地质与勘探,50(9):115-121. doi: 10.12363/issn.1001-1986.21.12.0801

    CrossRef Google Scholar

    [93] 谢和平,陈至达,1989. 岩石断裂的微观机理分析[J]. 煤炭学报(2):57-66.

    Google Scholar

    [94] 邢慧通,张晓丽,何金先,等,2022. 滇东威信地区龙潭组致密砂岩矿物组成特征及其油气地质意义[J]. 煤田地质与勘探,50(4):52-60. doi: 10.12363/issn.1001-1986.21.07.0403

    CrossRef Google Scholar

    [95] 熊良锋,2021. 孔隙岩石变形破坏机制及其影响因素研究[D]. 北京:北京科技大学.

    Google Scholar

    [96] 熊良锋,2022. 孔隙岩石变形破坏机制及其影响因素研究[D]. 北京科技大学.

    Google Scholar

    [97] 杨帆,梅文博,李亮,等,2023. 薄互层致密砂岩水力压裂裂缝扩展特征研究[J]. 煤田地质与勘探,51(7):61-71. doi: 10.12363/issn.1001-1986.22.10.0788

    CrossRef Google Scholar

    [98] 杨圣奇,苏承东,徐卫亚,2005. 岩石材料尺寸效应的试验和理论研究[J]. 工程力学,22(4):112-118. doi: 10.3969/j.issn.1000-4750.2005.04.022

    CrossRef Google Scholar

    [99] 于鑫,李皋,陈泽,等,2021. 川西须家河组致密砂岩高温后的物理力学特征参数试验研究[J]. 地质力学学报,27(1):1-9.

    Google Scholar

    [100] 张德明,王鹏,臧殿光,等,2023. 川东北五宝场地区须五段致密砂岩叠前储层预测[J]. 地质与勘探,59(6):1356-1365. doi: 10.12134/j.dzykt.2023.06.020

    CrossRef Google Scholar

    [101] 张浩,康毅力,陈景山,等,2007. 变围压条件下致密砂岩力学性质实验研究[J]. 岩石力学与工程学报,26(S2):4227-4231.

    Google Scholar

    [102] 赵程,刘丰铭,田加深,等,2016. 基于单轴压缩试验的岩石单裂纹扩展及损伤演化规律研究[J]. 岩石力学与工程学报,35(S2):3626-3632.

    Google Scholar

    [103] 钟建华,刘圣鑫,马寅生,等,2015. 页岩宏观破裂模式与微观破裂机理[J]. 石油勘探与开发,42(2):242-250.

    Google Scholar

    [104] 周婧,沈振振,2021. 粒度对砂岩力学性质的作用[J]. 中国石油和化工标准与质量,41(18):81-82.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(4)

Article Metrics

Article views(170) PDF downloads(23) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint