2024 Vol. 30, No. 1
Article Contents

KANG Qingqing, CHEN Zhengle, PAN Jiayong, LI Peng, LIU Yulong, LI Lei, JIANG Hongjun, GAO Cheng. 2024. Spatial and temporal distribution, geochemical characteristics of carbonatites and their relationship with U–REE mineralization in the Xiaoqinling area, Shaanxi Province. Journal of Geomechanics, 30(1): 147-167. doi: 10.12090/j.issn.1006-6616.2023106
Citation: KANG Qingqing, CHEN Zhengle, PAN Jiayong, LI Peng, LIU Yulong, LI Lei, JIANG Hongjun, GAO Cheng. 2024. Spatial and temporal distribution, geochemical characteristics of carbonatites and their relationship with U–REE mineralization in the Xiaoqinling area, Shaanxi Province. Journal of Geomechanics, 30(1): 147-167. doi: 10.12090/j.issn.1006-6616.2023106

Spatial and temporal distribution, geochemical characteristics of carbonatites and their relationship with U–REE mineralization in the Xiaoqinling area, Shaanxi Province

    Fund Project: This research is financially supported by the National Key R&D Program of China (Grant No. 2017YFC0602205), the Joint Innovation Fund of China Uranium Industry and the State Key Laboratory of Nuclear Resources and Environment of Donghua University of Science and Technology (Grant No. NRE2021-01), and the Scientific and Technological Research Project of Sino-Shaanxi Nuclear Industry Group (Grant No. 61230101).
  • [Objective] Carbonatites, as magmatic-origin rocks, are crucial source rocks for uranium, rare earth, and other minerals. They are widely distributed in the Xiaoqinling region of Shaanxi, giving rise to numerous large to super-large carbonatite deposits of uranium, molybdenum, and rare earth, represented by Huayangchuan and Dashigou, attracting attention from scholars in recent years. Previous studies on carbonatite deposits in the area focused on petrology, mineralogy, genesis, and mineralization chronology. However, they were often limited to individual deposits, needing more regional cross-sectional comparative studies. [Methods] This study employs field geological surveys, petrographic analysis, and geochemical characterization of typical rocks and ores to reclassify different types and stages of Xiaoqinling carbonatites. It analyzes the geochemical characteristics of various carbonatite types and explores the mineralization processes of uranium and rare earth elements associated with carbonatites. [Results] Xiaoqinling carbonatites exhibit a large vein, vein group, and vein network morphology, intruding into the Archean metamorphic basement, Xiong'er Group volcanic sedimentary rocks of the Changchengian System, and Gaoshanhe Group clastic rocks of the Jixianian System along fault structures. Based on field crosscutting relationships and primary mineral assemblage characteristics, Xiaoqinling carbonate rocks can be re-divided into five stages from old to new: aegirine syenite stage (I), aegirine carbonatite stage (II), potassium feldspar carbonatite stage (III), quartz carbonatite stage (IV) and zeolite-bearing carbonatite stage (V). Spatially, the division is roughly along the nearly EW-striking Xiaohe Fault, with northern carbonatite veins dominated by aegirine syenite and aegirine carbonatite, rich in aegirine, biotite and other dark minerals, distributed in the Archean gneiss basement. The southern part is mainly composed of light-colored potassic feldspar carbonatites and quartz carbonatites, almost devoid of dark minerals, with surrounding rocks consisting of Xiong'er Group volcanic sedimentary rocks and Gaoshanhe group clastic rocks. Zeolite-bearing carbonatites are distributed throughout the region. Temporally, the carbonatites formed in the Late Triassic, but distinct temporal differences exist among different sections. Previous data indicate a possible 30 Ma gap in the formation times of various carbonatite types in the Xiaoqinling area. The geochemical characteristics of Xiaoqinling carbonatites reveal an average SiO2 content of 30.43%, significantly higher than the global average for carbonatites. CaO is relatively low, with an average content of 28.71%, exhibiting a clear negative correlation with SiO2 content. Total alkali (Na2O+K2O) content is relatively high, averaging 2.25%, with a maximum value of 10.23%. The total alkali content decreases gradually from early to late stages, strongly correlating with CaO and Al2O3 content. The potassium-sodium ratio (w(K2O)/w(Na2O)) is exceptionally high, with an average of 4.625 and a maximum value of 36.55. Ferromagnesian content (TFe2O3+MgO) varies significantly, with early-stage carbonatites (Stages I, II, III) having higher ferromagnesian content (average 8.29%), while late-stage carbonatites (Stages IV, V) generally have lower ferromagnesian content (average 1.92%). Ferromagnesian content correlates positively with TiO2 content. MnO has an average content of 1.22%, reaching up to 4.49%, notably enriched in late-stage quartz carbonatites. REE content averages 0.26%, with a maximum value of 0.96%, exhibiting a positive correlation with MgO content. The ∑LREE/∑HREE ratio ranges from 0.47 to 27.72, with early-stage carbonatites (Stages I, II, III) showing strong heavy REE depletion. Late-stage quartz carbonatites have an average ∑LREE/∑HREE ratio of 2.15, indicating relatively heavy REE enrichment, especially in Tm, Yb, Lu, and Y. Heavy REE content correlates linearly with MnO content. The overall REE distribution pattern of carbonatites is a steep-left and gentle-right, relatively flat-right-trending model, showing continuous variations in REE distribution patterns throughout different stages. Ore-related element content characteristics of various carbonatite types reveal significant U and Nb enrichment in aegirine syenite, aegirine carbonatite, and potassium feldspar carbonatite. Mo-mineralization is closely associated with potassium feldspar carbonatite and quartz carbonatite, while Pb and Ba-Sr mineralization is evident in all carbonatite stages. [Conclusions] (1) Xiaoqinling carbonatites are categorized into aegirine syenites, aegirine carbonatites, potassium feldspar carbonatites, quartz carbonatites, and zeolite-bearing carbonatites in chronological order. (2) Xiaoqinling carbonatites exhibit notably high SiO2 and total alkali content, low MgO content, and exceptionally high potassium-sodium ratio. There is a gradual decrease in CaO, TiO2, Al2O3, ferromagnesian, and total alkali content from early to late stages, while MnO content shows an opposite trend. Carbonatites evolve from early ferrocarbonatite to late calciocarbonatite. (3) Different types of carbonatites show distinct ore-related characteristics, with early stages (aegirine syenite, aegirine carbonatite, and potassium feldspar carbonatite) mainly enriched in U (Nb), and Potassic Feldspar Carbonate additionally enriched in Mo. Late-stage quartz carbonatites are characterized by Mo and HREE enrichment. [Significance] The findings of this study provide valuable information for the exploration and research of carbonatite-type uranium, rare earth, and polymetallic deposits in the Xiaoqinling area, holding significant practical importance.

  • 加载中
  • [1] ANENBURG M, et al., 2020, Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica.[J]. Science advances, 2020, 6 (41): eabb6570.

    Google Scholar

    [2] CANGELOSI D, SMITH M, BANKS D, et al. , 2020. The role of sulfate-rich fluids in heavy rare earth enrichment at the Dashigou carbonatite deposit, Huanglongpu, China[J]. Mineralogical Magazine, 84(1): 65-80. doi: 10.1180/mgm.2019.78

    CrossRef Google Scholar

    [3] CAO J, 2018. Mineralization of the Huangshui'an carbonatite Mo deposit in East Qinling[D]. Beijing: China University of Geosciences (Beijing ) (in Chinese with English abstract)

    Google Scholar

    [4] CHAO H X, SU S R, YANG X K, et al. , 2016. Research on the geological characteristics of the Miaoya REE deposit, Hubei province[J]. . Earth Science Frontiers, 23(4): 102-108. (in Chinese with English abstract)

    Google Scholar

    [5] CHEN H Y, SUN W D, XU D R, et al. , 2018. Metallogenic regularity and prospecting prediction of Huayangchuan U-Nb-Pb polymetallic deposit in Huayin City, Shaanxi Province[R]. Xi’an: Sino-Shaanxi Nuclear Industry Group and Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (in Chinese)

    Google Scholar

    [6] DAI J Z, QIAN Z Z, GAO J S, et al. , 2018. Geological and Geochmical characteristics of the Xigou Mo deposit in Huaxian county, Shaanxi Province: constraint for its metallogenesis[J]. Bulletin of mineralogy, petrogy and geochemistry, 37 (04): 705-713. (in Chinese with English abstract)

    Google Scholar

    [7] DU L T,1983.Geochemistry of alkali metasomatism[J].Mineral Deposits,(02): 33-41.(in Chinese with English abstract)

    Google Scholar

    [8] DU L T, 1986. Geochemical principle of alkali metasomatism[J]. Scientia Sinica(Series B), (01): 81-90. (in Chinese with English abstract)

    Google Scholar

    [9] DU Z W , YE H S , MAO J W, et al. , 2020. Molybdenite Re-Os gochronology and isotope geochemical characteristics of Xigou molybdenum deposit in Shaanxi Province and its geological significance[J]. Mineral Deposits, 39 (04): 728-744. (in Chinese with English abstract)

    Google Scholar

    [10] ELLIOTT H A L, WALL F, CHAKHMOURADIAN A R, et al. , 2018. Fenites associated with carbonatite complexes: a review[J]. Ore Geology Reviews, 93: 38-59. doi: 10.1016/j.oregeorev.2017.12.003

    CrossRef Google Scholar

    [11] FAN H R, XIE Y H, WANG K Y, et al. , 2001. Carbonatitic fluids and REE mineralization[J]. Earth Science Frontiers, 8(4): 289-295. (in Chinese with English abstract)

    Google Scholar

    [12] GAO L G, CHEN Y W, BI X W, et al. , 2019. Chronology and mineral chemistry of the uranium minerals in Huayangchuan uranium-niobium deposit, Shaanxi Province and its implications for uranium mineralization[J]. Acta Geologica Sinica, 93(9): 2273-2291. (in Chinese with English abstract)

    Google Scholar

    [13] General Administration of Quality Supervision, Inspection and Quarantine of China, Standardization Administration of China.Methods for chemical analysis of silicate rocks—Part 30: Determination of 44 element: GB/T14506.30-2010[S]. Beijing: 2010a. (in Chinese)

    Google Scholar

    [14] General Administration of Quality Supervision, Inspection and Quarantine of China, Standardization Administration of China.Methods for chemical analysis of silicate rocks—Part 30: Determination of 44 element: GB/T14506.30-2010[S]. Beijing: 2010a. (in Chinese)

    Google Scholar

    [15] HOU Z Q, TIAN S H, XIE Y L, et al. , 2008. Mianning-Dechang Himalayan REE belt associated with carbonatite-alkalic complex in eastern Indo-Asian collision zone, southwest China: Geological characteristics of REE deposits and a possible metallogenic model[J]. Mineral Deposits, 27(02): 145-176. (in Chinese with English abstract)

    Google Scholar

    [16] HUANG D H, HOU Z Q, YANG Z M, et al. , 2009. Geological and geochemical characteristics‚ metallogenetic mechanism and tectonic setting of carbonatite vein-type Mo (Pb) deposits in the east Qinling molybdenum ore belt[J]. Acta Geologica Sinica, 83(12): 1968-1984. (in Chinese with English abstract)

    Google Scholar

    [17] HUANG D H, NIE F J, WANG Y C, et al. , 1984a. Lead isotope compositions of molybdenum deposits in East Qinling as applied to the problem of ore sources[J]. Mineral Deposits, 3(4): 20-28. (in Chinese with English abstract)

    Google Scholar

    [18] HUANG D H, WANG Y C, NIE F J, et al. , 1984b. Isotopic composition of sulfur, carbon and oxygen and source material of the Huanglongpu carbonatite vein-type of molybdenum (lead) deposits[J]. Acta Geologica Sinica, 58(3): 252-264. (in Chinese with English abstract)

    Google Scholar

    [19] HUANG D H, WANG Y C, NIE F J, et al. , 1985. A new type of molybdenum deposit: geological characteristics and metal-logenic mechanism of the Huanglongpu carbonatite vein-type of Molybdenum (lead) deposit, Shaanxi[J]. Acta Geologica Sinica, 59(3): 241-257. (in Chinese with English abstract)

    Google Scholar

    [20] HUANG D H, WU C Y, DU A D, et al. , 1994. Re-Os isotope ages of molybdenum deposits in East Qinling and their significance[J]. Mineral Deposits, 13(3): 221-230. (in Chinese with English abstract)

    Google Scholar

    [21] HUANG G W, 2022. Study of the carbonatite type U-REE mineralization in the Huayangchuan-Dashigou ore-concentrated area, East Qinling orogen, China[D]. Nanchang: East China University of Technology. (in Chinese with English abstract)

    Google Scholar

    [22] HUANG H, PAN J Y, HONG B Y, et al. , 2020. EPMA chemical U-Th-Pb dating of uraninite in Huayangchuan U-polymetallic deposit of Shaanxi Province and its geological significance[J]. Mineral Deposits, 39(2): 351-368. (in Chinese with English abstract)

    Google Scholar

    [23] HUI X Z, 2014. Geochemical study of uranium polymetallic mineralization in Huayangchuan, Shaanxi Province[D]. Beijing: Beijing Research Institute of Uranium Geology. (in Chinese)

    Google Scholar

    [24] HYNDMAN D W, 1972. Petrology of igneous and metamorphic rocks[M] New York and London:McGraw-Hill.

    Google Scholar

    [25] JIA H T, 1972. Survey and evaluation report of Jialu rare earth element mining area in Luonan [R]. Shangluo: The 13th Geological Team of Shaanxi Provincial Geological Bureau. (in Chinese with English abstract)

    Google Scholar

    [26] JIANG H J, GAO C, KANG Q Q, et al. , 2020. Mineralization paragenesis of Huayangchuan U-Nb-Pb deposit in the lesser Qinling[J]. Geotectonica et Metallogenia, 44(3): 404-421. (in Chinese with English abstract)

    Google Scholar

    [27] KANG Q Q, JIANG H J, LI P, et al. , 2018. Ore mineralogical characteristics of the Huayangchuan U-Nb-Pb deposit[J]. Journal of East China Institute of Technology (Natural Science Edition), 41(2): 111-123. (in Chinese with English abstract)

    Google Scholar

    [28] KANG Q Q, ZHANG X M, MENG H, 2020. Analysis on the characteristics and prospecting of rare earth ore in the western section of Xiaoqinling[J]. Northwestern Geology, 53(1): 107-121. (in Chinese with English abstract)

    Google Scholar

    [29] KANG Q Q, LI P, ZHANG X M, et al. , 2021. Detailed geological report of 3-40 exploration line section(above 856m elevation) of Huayangchuan U-Nb-Pb deposit, Huayin City, Shaanxi Province[R]. Xi’an: Team 224 of Sino Shaanxi Nuclear Industry Group. (in Chinese)

    Google Scholar

    [30] LE BAS M J, 2008. Fenites associated with carbonatites[J]. The Canadian Mineralogist, 46(4): 915-932. doi: 10.3749/canmin.46.4.915

    CrossRef Google Scholar

    [31] LI S,1980.Geochemical features and petrogenesis of Miaoya carbonatites,Hupeh[J]. Geochimica, (04): 345-355. (in Chinese with English abstract)

    Google Scholar

    [32] LIU S, FAN H R, YANG K F, et al. , 2018. Fenitization in the giant Bayan Obo REE-Nb-Fe deposit: implication for REE mineralization[J]. Ore Geology Reviews, 94: 290-309. doi: 10.1016/j.oregeorev.2018.02.006

    CrossRef Google Scholar

    [33] LIU Y, SHU X C, 2021. An overview of fenitization in carbonatite-related rare earth element deposits[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 40(5): 1025-1033. (in Chinese with English abstract)

    Google Scholar

    [34] LYU Z C, CHEN H, MI K F, et al. , 2022. The theory and method of ore prospecting prediction for exploration area: case studies of the Lala copper deposit in Sichuan, Muhu–Maerkantu manganese ore deposit in Xinjiang and Aonaodaba tin-polymetallic deposit in Inner Mongolia[J]. Journal of Geomechanics, 28(5): 842-865. (in Chinese with English abstract)

    Google Scholar

    [35] MOROGAN V, 1989. Mass transfer and REE mobility during fenitization at Alnö, Sweden[J]. Contributions to Mineralogy and Petrology, 103(1): 25-34. doi: 10.1007/BF00371362

    CrossRef Google Scholar

    [36] QIU J X, LI C N, YU X H, et al. , 1993, Qinba alkaline rock[M]. Beijing: Geological Publishing House. (in Chinese with English abstract)

    Google Scholar

    [37] Samoilov V S, 1991. The main geochemical features of carbonatites[J]. Journal of Geochemical Exploration, 40(1-3): 251-262. doi: 10.1016/0375-6742(91)90041-R

    CrossRef Google Scholar

    [38] SONG W L, XU C, QI L, et al. , 2015. Genesis of Si-rich carbonatites in Huanglongpu Mo deposit, Lesser Qinling orogen, China and significance for Mo mineralization[J]. Ore Geology Reviews, 64: 756-765. doi: 10.1016/j.oregeorev.2014.04.003

    CrossRef Google Scholar

    [39] STEIN H J, MARKEY R J, MORGAN J W, et al. , 1997. Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt, Shaanxi Province, China[J]. Economic Geology, 92(7-8): 827-835. doi: 10.2113/gsecongeo.92.7-8.827

    CrossRef Google Scholar

    [40] SUN S S, MCDONOUGH W F, 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J]. Geological Society of London Special Publications, 42, 313-345.

    Google Scholar

    [41] WAN J J, 2022. Metallogenesis of the Huayangchuan U-Nb-REE polymetallic deposit in Shaanxi Province, China[D]. Nanchang: East China University of Technology. (in Chinese with English abstract)

    Google Scholar

    [42] WANG B Y, CHEN L G, XUE Y Z, et al. , 1996.1: 50, 000 Regional Geological survey report of Huayang Chuan, Huashan and Taiyukou [R]. Xi 'an: Comprehensive Research Team of Geology and Mineral Bureau of Shaanxi Province. (in Chinese with English abstract)

    Google Scholar

    [43] WANG J Y, LI Z D, ZHANG Q, et al. , 2020. Metallogenic epoch of the carbonatite-type Mo-U polymetallic deposit in east Qinling: evidence from the monazite LA-ICP-MS U-Pb and molybdenite Re-Os isotopic dating[J]. Acta Geologica Sinica, 94(10): 2946-2964. (in Chinese with English abstract)

    Google Scholar

    [44] WANG L J, XU C, WU M, et al. , 2011. A study of fluid inclusion from huayangchuan carbonatite[J]. Acta Mineralogica Sinica, 31(3): 372-379. (in Chinese with English abstract)

    Google Scholar

    [45] WANG X B, HAO Z G, LI Z, et al. , 2002. A typical alkaline rock-carbonatite complex in Bayan Obo, Inner Mongolia[J]. Acta Geologica Sinica, 76(04): 501-524+581-582. (in Chinese with English abstract)

    Google Scholar

    [46] WANG X X, 1986. The wall rock alteration of the carbonate vein-type molybdenum-lead deposit in Dashigou in Luonan county, Shaanxi[J]. Geology of Shaanxi, 4(2): 72-83. (in Chinese with English abstract)

    Google Scholar

    [47] WOOLLEY A R, 1982. A discussion of carbonatite evolution and nomenclature, and the generation of sodic and potassic fenites[J]. Mineralogical Magazine, 46(338): 13-17. doi: 10.1180/minmag.1982.046.338.03

    CrossRef Google Scholar

    [48] WOOLLEY A R, CHURCH A A, 2005. Extrusive carbonatites: a brief review[J]. Lithos, 85(1-4): 1-14. doi: 10.1016/j.lithos.2005.03.018

    CrossRef Google Scholar

    [49] WOOLLEY A R, KEMPE D R C, 1989. Carbonatites: Nomenclature, average chemical compositions, and element distribution[A]. Bell K, ed. Carbonatites-Genesis and Evolution[M]. London: Unwin Hyman, 1-14.

    Google Scholar

    [50] XU C, HUANG Z H, LIU C Q, et al., 2002. Geochemistry of carbonatites in Maoniuping REE deposit, Sichuan province, China[J]. Science in China Series D: Earth Sciences,(08): 635-643.

    Google Scholar

    [51] XU C, SONG W L, QI L, et al. , 2009. Geochemical characteristics and tectonic setting of ore-bearing carbonatites in Hunglongpu Mo ore field[J]. Acta Petrologica Sinica, 25(2): 422-430. (in Chinese with English abstract)

    Google Scholar

    [52] XUE S, LING M X, LIU Y L, , et al. . 2020. The formation of the giant Huayangchuan U-Nb deposit associated with carbonatite in the Qingling Orogenic Belt[J]. Ore Geology Revies, 122, 1-16.

    Google Scholar

    [53] YANG X M, YANG X Y, M.J.LeBas, 1998.Geological and geochemical characteristics of carbonatites and their implication for tectonic settings[J]. Advance In Sciences, 1998, (05): 44-53. (in Chinese with English abstract)

    Google Scholar

    [54] YANG X M, YANG X Y, FAN H R, et al. , 2000. Petrological characteristics of fenites and their geological significance[J]. Geological Review, 46(5): 481-490. (in Chinese with English abstract)

    Google Scholar

    [55] YU X H, 1992. Geological, petrol-mineralogical characteristics and origin of the carbonatites from Huayangchuan, shaanxi province[J]. Earth Science—Journal of China University of Geosciences, 17(2): 151-158. (in Chinese with English abstract)

    Google Scholar

    [56] YUAN H C, WANG R T, JIAO J G, et al. , 2014. Re-Os isotopic ages of molybdenites from Xigou Mo deposit in Huanxian of East Qinling and their geological significance[J]. Journal of earth sciences and environment, 36 (01): 120-127. (in Chinese with English abstract)

    Google Scholar

    [57] ZHANG L M, ZHANG Z B, CUI W L, 2014. Discovery of two carbonatite intrusive complexes in Yanyuan Area of Western Sichuan and its geological significance[J]. Geotectonica et Metallogenia, 38 (01): 131-139. (in Chinese with English abstract)

    Google Scholar

    [58] ZHENG F B, WANG G G, NI P, 2021. Research progress on the fluid metallogenic mechanism of granitic pegmatite-type rare metal deposits[J]. Journal of Geomechanics, 27(4): 596-613. (in Chinese with English abstract)

    Google Scholar

    [59] ZHENG H , CHEN H Y , LI D F, et al. 2020, Timing of carbonatite-hosted U-polymetallic mineralization in the supergiant Huayangchuan deposit, Qinling Orogen: Constraints from titanite U–Pb and molybdenite Re–Os dating [J]. Geoscience Frontiers, 11 (5): 1581-1592.

    Google Scholar

    [60] 曹晶, 2018. 东秦岭黄水庵碳酸岩型钼矿床成矿作用研究[D]. 北京: 中国地质大学(北京).

    Google Scholar

    [61] 晁会霞, 苏生瑞, 杨兴科, 等, 2016. 湖北庙垭稀土矿床地质特征研究[J]. 地学前缘, 23(04): 102-108

    Google Scholar

    [62] 陈华勇, 孙卫东, 许德如, 等, 2018. 陕西省华阴市华阳川铀铌铅多金属矿成矿规律与找矿预测[R]. 西安: 中陕核工业集团公司, 中科院广州地化所

    Google Scholar

    [63] 代军治, 钱壮志, 高菊生, 等, 2018. 陕西华县西沟钼矿地质、地球化学特征及其对矿床成因的制约[J]. 矿物岩石地球化学通报, 37 (04): 705-713.

    Google Scholar

    [64] 杜乐天, 1983. 碱交代成矿作用的地球化学共性和归类[J].矿床地质,1983, (02): 33-41.

    Google Scholar

    [65] 杜乐天, 1986. 碱交代作用地球化学原理[J]. 中国科学(B辑), (01): 81-90.

    Google Scholar

    [66] 杜芷葳, 叶会寿, 毛景文, 等, 2020. 陕西西沟钼矿床辉钼矿Re-Os年代学和同位素地球化学特征及其地质意义 [J]. 矿床地质, 39 (04): 728-744.

    Google Scholar

    [67] 范宏瑞, 谢奕汉, 王凯怡, 等, 2001. 碳酸岩流体及其稀土成矿作用[J]. 地学前缘, 8(4): 289-295. doi: 10.3321/j.issn:1005-2321.2001.04.008

    CrossRef Google Scholar

    [68] 高龙刚, 陈佑纬, 毕献武, 等, 2019. 陕西华阳川铀铌矿床中铀矿物的年代学与矿物化学研究及其对铀成矿的启示[J]. 地质学报, 93(9): 2273-2291. doi: 10.3969/j.issn.0001-5717.2019.09.012

    CrossRef Google Scholar

    [69] 侯增谦, 田世洪, 谢玉玲, 等, 2008. 川西冕宁-德昌喜马拉雅期稀土元素成矿带: 矿床地质特征与区域成矿模型 [J]. 矿床地质, 27(02): 145-176. doi: 10.3969/j.issn.0258-7106.2008.02.002

    CrossRef Google Scholar

    [70] 黄典豪, 侯增谦, 杨志明, 等, 2009. 东秦岭钼矿带内碳酸岩脉型钼(铅)矿床地质-地球化学特征、成矿机制及成矿构造背景[J]. 地质学报, 83(12): 1968-1984. doi: 10.3321/j.issn:0001-5717.2009.12.012

    CrossRef Google Scholar

    [71] 黄典豪, 聂凤军, 王义昌, 等, 1984a. 东秦岭地区钼矿床铅同位素组成特征及成矿物质来源初探[J]. 矿床地质, 3(4): 20-28.

    Google Scholar

    [72] 黄典豪, 王义昌, 聂凤军, 等, 1984b. 黄龙铺碳酸岩脉型钼(铅)矿床的硫、碳、氧同位素组成及成矿物质来源[J]. 地质学报, 58(3): 252-264.

    Google Scholar

    [73] 黄典豪, 王义昌, 聂凤军, 等, 1985. 一种新的钼矿床类型: 陕西黄龙铺碳酸岩脉型钼(铅)矿床地质特征及成矿机制[J]. 地质学报, 59(3): 241-257.

    Google Scholar

    [74] 黄典豪, 吴澄宇, 杜安道, 等, 1994. 东秦岭地区钼矿床的铼-锇同位素年龄及其意义[J]. 矿床地质, 13(3): 221-230.

    Google Scholar

    [75] 黄广文, 2022. 东秦岭华阳川-大石沟矿集区碳酸岩型U-REE成矿作用研究[D]. 南昌: 东华理工大学.

    Google Scholar

    [76] 黄卉, 潘家永, 洪斌跃, 等, 2020. 陕西华阳川铀-多金属矿床晶质铀矿电子探针U-Th-Pb化学定年及其地质意义[J]. 矿床地质, 39(2): 351-368.

    Google Scholar

    [77] 惠小朝, 2014. 陕西省华阳川铀多金属成矿作用地球化学研究[D]. 北京: 核工业北京地质研究院.

    Google Scholar

    [78] 贾鸿涛, 1972. 洛南驾鹿稀土元素矿区普查评价报告[R]. 商洛: 陕西省地质局第13地质队.

    Google Scholar

    [79] 江宏君, 高成, 康清清, 等, 2020. 小秦岭华阳川铀铌铅矿床蚀变矿化期次研究[J]. 大地构造与成矿学, 44(3): 404-421.

    Google Scholar

    [80] 康清清, 江宏君, 李鹏, 等, 2018. 陕西华阳川铀铌铅矿床矿石矿物学特征[J]. 东华理工大学学报(自然科学版), 41(2): 111-123.

    Google Scholar

    [81] 康清清, 李鹏, 张熊猫, 等, 2021. 陕西省华阴市华阳川铀铌铅矿床3-40线详查地质报告[R]. 西安: 中陕核工业集团二二四大队有限公司.

    Google Scholar

    [82] 康清清, 张熊猫, 孟华, 2020. 小秦岭西段稀土矿特征及找矿远景浅析[J]. 西北地质, 53(1): 107-121.

    Google Scholar

    [83] 李石, 1980 . 湖北庙垭碳酸岩地球化学特征及岩石成因探讨[J]. 地球化学, (04): 345-355.

    Google Scholar

    [84] 刘琰, 舒小超, 2021. 碳酸岩型稀土矿床中的霓长岩化作用概述[J]. 矿物岩石地球化学通报, 40(5): 1025-1033.

    Google Scholar

    [85] 吕志成, 陈辉, 宓奎峰, 等, 2022. 勘查区找矿预测理论与方法及其应用案例[J]. 地质力学学报, 28(5): 842-865. doi: 10.12090/j.issn.1006-6616.20222816

    CrossRef Google Scholar

    [86] 邱家骧, 李昌年, 喻学惠, 等, 1993. 秦巴碱性岩[M]. 北京: 地质出版社.

    Google Scholar

    [87] 万建军, 2022. 陕西华阳川U-Nb-REE多金属矿床成岩成矿作用研究[D]. 南昌: 东华理工大学.

    Google Scholar

    [88] 王北颖, 陈陇刚, 薛煜洲, 等, 1996, 1: 50000华阳川幅、华山幅、太峪口幅区域地质调查报告[R]. 西安: 陕西省地矿局综合研究队.

    Google Scholar

    [89] 王佳营, 李志丹, 张祺, 等, 2020. 东秦岭地区碳酸岩型钼-铀多金属矿床成矿时代: 来自LA-ICP-MS独居石U-Pb和辉钼矿Re-Os年龄的证据[J]. 地质学报, 94(10): 2946-2964. doi: 10.3969/j.issn.0001-5717.2020.10.011

    CrossRef Google Scholar

    [90] 王林均, 许成, 吴敏, 等, 2011. 华阳川碳酸岩流体包裹体研究[J]. 矿物学报, 31(3): 372-379.

    Google Scholar

    [91] 王希斌, 郝梓国, 李震, 等, 2002. 白云鄂博——一个典型的碱性-碳酸岩杂岩的厘定 [J]. 地质学报, 76(04): 501-524+581-582 doi: 10.3321/j.issn:0001-5717.2002.04.009

    CrossRef Google Scholar

    [92] 王绪现, 1986. 陕西大石沟碳酸岩脉型钼(铅)矿床围岩蚀变探讨[J]. 陕西地质, 4(2): 72-83.

    Google Scholar

    [93] 许成, 黄智龙, 刘丛强, 等, 2002. 四川牦牛坪稀土矿床碳酸岩地球化学[J]. 中国科学(D辑), 32(8): 635-643. doi: 10.3321/j.issn:1006-9267.2002.08.003

    CrossRef Google Scholar

    [94] 许成, 宋文磊, 漆亮, 等, 2009. 黄龙铺钼矿田含矿碳酸岩地球化学特征及其形成构造背景[J]. 岩石学报, 25(2): 422-430.

    Google Scholar

    [95] 杨学明, 杨晓勇, M.J.LeBas, 1998.碳酸岩的地质地球化学特征及其大地构造意义 [J]. 地球科学进展, 1998, (05): 44-53.

    Google Scholar

    [96] 杨学明, 杨晓勇, 范宏瑞, 等, 2000. 霓长岩岩石学特征及其地质意义评述[J]. 地质论评, 46(5): 481-490. doi: 10.3321/j.issn:0371-5736.2000.05.006

    CrossRef Google Scholar

    [97] 喻学惠, 1992. 陕西华阳川碳酸岩地质学和岩石学特征及其成因初探[J]. 地球科学: 中国地质大学学报, 17(2): 151-158.

    Google Scholar

    [98] 袁海潮, 王瑞廷, 焦建刚, 等, 2014. 东秦岭华县西沟钼矿床Re-Os同位素年龄及其地质意义[J]. 地球科学与环境学报, 36 (01): 120-127.

    Google Scholar

    [99] 张丽敏, 张志斌, 崔文玲, 2014. 川西盐源两个碳酸岩杂岩体的厘定及其地质意义 [J]. 大地构造与成矿学, 38 (01): 131-139.

    Google Scholar

    [100] 郑范博, 王国光, 倪培, 2021. 花岗伟晶岩型稀有金属矿床流体成矿机制研究进展[J]. 地质力学学报, 27(4): 596-613. doi: 10.12090/j.issn.1006-6616.2021.27.04.050

    CrossRef Google Scholar

    [101] 中国国家质量监督检查检疫总局, 中国国家标准化管理委员会, 2010a. 硅酸盐岩石化学分析方法: 第28部分 16个主次成分量测定: GB/T 14506.28—2010[S]. 北京: 中国标准出版社.

    Google Scholar

    [102] 中国国家质量监督检查检疫总局, 中国国家标准化管理委员会, 2010b. 硅酸盐岩石化学分析方法: 第30部分 44个元素量测定: GB/T14506.30-2010[S]. 北京: 中国标准出版社.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(5)

Article Metrics

Article views(998) PDF downloads(80) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint