2024 Vol. 30, No. 4
Article Contents

LIN Xu, WU Zhonghai, DONG Yanyu, XIE Yuanyun, LIU Haijin, LI Zhaoning. 2024. The evolutionary process of Cenozoic Asian monsoon. Journal of Geomechanics, 30(4): 673-690. doi: 10.12090/j.issn.1006-6616.2023093
Citation: LIN Xu, WU Zhonghai, DONG Yanyu, XIE Yuanyun, LIU Haijin, LI Zhaoning. 2024. The evolutionary process of Cenozoic Asian monsoon. Journal of Geomechanics, 30(4): 673-690. doi: 10.12090/j.issn.1006-6616.2023093

The evolutionary process of Cenozoic Asian monsoon

    Fund Project: This research is financially supported by the National Natural Science Foundation of China (Grant No. 41972212) and the Chutian scholars talent program of Hubei Province (Grant No. 8210403).
More Information
  • Objective

    The formation of monsoon climates is attributed to the seasonal reversal of wind direction and precipitation caused by the difference in thermal capacity between land and ocean. Asia is recognized as the most prominent region globally, with monsoon climates, that affect the largest population. The heavy rainfall accompanying monsoons can result in various secondary disasters, substatially jeopardizing human safety and productivity in the region. Consequently, comprehending the formation process of the Asian monsoon holds paramount importance.

    Methods

    This study aim to employ geological concepts to establish a connection between the past and present, providing an overview of the components of Asian monsoons, identifying the primary factors influencing their formation and evolution, and summarizing research progress on the South Asian and East Asian monsoons based on sediment records from key Asian locations.

    Results

    The findings indicate that during the Cenozoic, the collision between the Indian Plate and the southern margin of the Asian continent altered the distribution of land and sea in Asia. Consequently, the Tibetan Plateau experienced initial uplift, contributing to the emergence of monsoon climates in South Asia and East Asia. However, at this stage, the East Asian region was still primarily influenced by the planetary wind system, and the East Asian monsoon was in its early stages, predominantly restricted to the southern margin of the South China Plate in a localized manner. In contrast, the South Asian Monsoon covered a relatively extensive area. This discrepancy may be attributed to the delayed opening of marginal seas in the East Asian region compared to the relatively earlier occurrence of land and sea distribution in South Asia. However, as the Tibetan Plateau continued to uplift and approach its current altitude during the middle to late Cenozoic, the Asian monsoon entered a strengthening phase, notably impacting regional geological evolution processes. Since the middle to late Cenozoic, the development of the North and South Polar ice caps and the upliftment of the Tibetan Plateau have controlled the Asian monsoon, leading it to undergo multiple stable periods of development.

    Conclusion

    The development and evolution of the East Asian and South Asian monsoons are mainly driven by the distribution of sea and land in the Asia, the upliftment of the Tibetan Plateau and the global climate change during the Cenozoic.

    Significance

    These findings provide valuable insights into the scientific and rational utilization of the Asian monsoon for conducting systematic Earth science research in Asia.

  • 加载中
  • [1] ALEKSEEV M N, DROUCHITS V A, 2004. Quaternary fluvial sediments in the Russian arctic and subarctic: late Cenozoic development of the Lena River system, northeastern Siberia[J]. Proceedings of the Geologists' Association, 115(4): 339-346. doi: 10.1016/S0016-7878(04)80013-0

    CrossRef Google Scholar

    [2] AN Z S, KUTZBACH J E, PRELL W L, et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan Plateau since Late Miocene times[J]. Nature, 411(6833): 62-66. doi: 10.1038/35075035

    CrossRef Google Scholar

    [3] AN Z S, 2014. Late Cenozoic climate change in Asia: loess, monsoon and monsoon-arid environment evolution[M]. Dordrecht: Springer.

    Google Scholar

    [4] AN Z S, WU G X, LI J P, et al., 2015. Global monsoon dynamics and climate change[J]. Journal of Earth Environment, 6(6): 341-381. (in Chinese with English abstract

    Google Scholar

    [5] AO H, ROBERTS A P, DEKKERS M J, et al., 2016. Late Miocene–Pliocene Asian monsoon intensification linked to Antarctic ice-sheet growth[J]. Earth and Planetary Science Letters, 444: 75-87. doi: 10.1016/j.jpgl.2016.03.028

    CrossRef Google Scholar

    [6] BAHR A, KABOTH-BAHR S, KARAS C, 2023. The opening and closure of oceanic seaways during the Cenozoic: pacemaker of global climate change?[J]. Geological Society, London, Special Publications, 523(1): SP523-2021-54.

    Google Scholar

    [7] BARBOLINI N, WOUTERSEN A, DUPONT-NIVET G, et al., 2020. Cenozoic evolution of the steppe-desert biome in Central Asia[J]. Science Advances, 6(41): eabb8227. doi: 10.1126/sciadv.abb8227

    CrossRef Google Scholar

    [8] BEASLEY C, KENDER S, GIOSAN L, et al., 2021. Evidence of a South Asian proto-monsoon during the Oligocene-Miocene transition[J]. Paleoceanography and Paleoclimatology, 36(9): e2021PA004278. doi: 10.1029/2021PA004278

    CrossRef Google Scholar

    [9] BETZLER C, EBERLI G P, KROON D, et al., 2016. The abrupt onset of the modern South Asian Monsoon winds[J]. Scientific Reports, 6(1): 29838. doi: 10.1038/srep29838

    CrossRef Google Scholar

    [10] BHATIA H, KHAN M A, SRIVASTAVA G, et al., 2021. Late Cretaceous–Paleogene Indian monsoon climate vis-à-vis movement of the Indian plate, and the birth of the South Asian Monsoon[J]. Gondwana Research, 93: 89-100. doi: 10.1016/j.gr.2021.01.010

    CrossRef Google Scholar

    [11] BRETSCHNEIDER L, HATHORNE E C, HUANG H, et al., 2021. Provenance and weathering of clays delivered to the Bay of Bengal during the middle Miocene: Linkages to tectonics and monsoonal climate[J]. Paleoceanography and Paleoclimatology, 36(2): e2020PA003917. doi: 10.1029/2020PA003917

    CrossRef Google Scholar

    [12] CAI M J, XU Z K, CLIFT P D, et al., 2020. Long-term history of sediment inputs to the eastern Arabian Sea and its implications for the evolution of the Indian summer monsoon since 3.7 Ma[J]. Geological Magazine, 157(6): 908-919. doi: 10.1017/S0016756818000857

    CrossRef Google Scholar

    [13] CANE M A, MOLNAR P, 2001. Closing of the Indonesian seaway as a precursor to east African aridification around 3-4 million years ago[J]. Nature, 411(6834): 157-162. doi: 10.1038/35075500

    CrossRef Google Scholar

    [14] CHEN J L, HUANG R H, 2006. The comparison of climatological characteristics among Asian and Australian monsoon subsystems. Part I. The wind structure of summer monsoon[J]. Chinese Journal of Atmospheric Sciences, 30(6): 1091-1102. (in Chinese with English abstract

    Google Scholar

    [15] CHEN M H, WANG R J, YANG L H, et al., 2003. Development of East Asian summer monsoon environments in the late Miocene: radiolarian evidence from site 1143 of ODP Leg 184[J]. Marine Geology, 201(1-3): 169-177. doi: 10.1016/S0025-3227(03)00215-9

    CrossRef Google Scholar

    [16] CHUNG S L, LO C H, LEE T Y, et al., 1998. Diachronous uplift of the Tibetan plateau starting 40 Myr ago[J]. Nature, 394(6695): 769-773. doi: 10.1038/29511

    CrossRef Google Scholar

    [17] CLIFT P, GAEDICKE C, EDWARDS R, et al., 2002. The stratigraphic evolution of the Indus Fan and the history of sedimentation in the Arabian Sea[J]. Marine Geophysical Researches, 23(3): 223-245. doi: 10.1023/A:1023627123093

    CrossRef Google Scholar

    [18] CLIFT P D, LAYNE G D, BLUSZTAJN J, 2004. Marine sedimentary evidence for monsoon strengthening, Tibetan uplift and drainage evolution in East Asia[M]//CLIFT P, KUHNT W, WANG P, et al. Continent-ocean interactions within East Asian marginal seas. Washington DC, USA. American Geophysical Union: 255-282.

    Google Scholar

    [19] CLIFT P D, PLUMB R A, 2008. The Asian monsoon: causes, history and effects[M]. Cambridge: Cambridge University Press.

    Google Scholar

    [20] CLIFT P D, HODGES K V, HESLOP D, et al., 2008. Correlation of Himalayan exhumation rates and Asian monsoon intensity[J]. Nature Geoscience, 1(12): 875-880. doi: 10.1038/ngeo351

    CrossRef Google Scholar

    [21] CLOTTEN C, STEIN R, FAHL K, et al., 2019. On the causes of Arctic sea ice in the warm Early Pliocene[J]. Scientific Reports, 9(1): 989. doi: 10.1038/s41598-018-37047-y

    CrossRef Google Scholar

    [22] DENG T, WANG X M, WU F X, et al., 2019. Review: implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau[J]. Global and Planetary Change, 174: 58-69. doi: 10.1016/j.gloplacha.2019.01.005

    CrossRef Google Scholar

    [23] DING L, SPICER R A, YANG J, et al., 2017. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology, 45(3): 215-218. doi: 10.1130/G38583.1

    CrossRef Google Scholar

    [24] DING L, KAPP P, CAI F L, et al., 2022. Timing and mechanisms of Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 3(10): 652-667.

    Google Scholar

    [25] DING W J, HOU D J, GAN J, et al., 2021. Palaeovegetation variation in response to the late Oligocene-early Miocene East Asian summer monsoon in the Ying-Qiong Basin, South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 567: 110205. doi: 10.1016/j.palaeo.2020.110205

    CrossRef Google Scholar

    [26] DING Y H, CHAN J C L, 2005. The East Asian summer monsoon: an overview[J]. Meteorology and Atmospheric Physics, 89(1-4): 117-142. doi: 10.1007/s00703-005-0125-z

    CrossRef Google Scholar

    [27] DING Y H, SUN Y, LIU Y Y, et al., 2013. Interdecadal and interannual variabilities of the Asian summer monsoon and its projection of future change[J]. Chinese Journal of Atmospheric Sciences, 37(2): 253-280. (in Chinese with English abstract

    Google Scholar

    [28] DUK-RODKIN A, BARENDREGT R W, FROESE D G, et al., 2004. Timing and extent of Plio-Pleistocene glaciations in north-western Canada and east-central Alaska[J]. Developments in Quaternary Sciences, 2: 313-345.

    Google Scholar

    [29] DUPONT-NIVET G, KRIJGSMAN W, LANGEREIS C G, et al., 2007. Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition[J]. Nature, 445(7128): 635-638. doi: 10.1038/nature05516

    CrossRef Google Scholar

    [30] EHRMANN W U, MACKENSEN A, 1992. Sedimentological evidence for the formation of an East Antarctic ice sheet in Eocene/Oligocene time[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 93(1-2): 85-112. doi: 10.1016/0031-0182(92)90185-8

    CrossRef Google Scholar

    [31] FANG X M, YAN M D, ZHANG W L, et al., 2021. Paleogeography control of Indian monsoon intensification and expansion at 41 Ma[J]. Science Bulletin, 66(22): 2320-2328. doi: 10.1016/j.scib.2021.07.023

    CrossRef Google Scholar

    [32] FANG X M, GUO Z T, JIANG D B, et al., 2022. No monsoon-dominated climate in northern subtropical Asia before 35 Ma[J]. Global and Planetary Change, 218: 103970. doi: 10.1016/j.gloplacha.2022.103970

    CrossRef Google Scholar

    [33] FLUTEAU F, RAMSTEIN G, BESSE J, 1999. Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model[J]. Journal of Geophysical Research: Atmospheres, 104(D10): 11995-12018. doi: 10.1029/1999JD900048

    CrossRef Google Scholar

    [34] GAI C C, LIU Q S, ROBERTS A P, et al., 2020. East Asian monsoon evolution since the late Miocene from the South China Sea[J]. Earth and Planetary Science Letters, 530: 115960. doi: 10.1016/j.jpgl.2019.115960

    CrossRef Google Scholar

    [35] GALLAGHER S J, WALLACE M W, LI C L, et al., 2009. Neogene history of the West Pacific warm pool, Kuroshio and Leeuwin currents[J]. Paleoceanography, 24(1): PA1206.

    Google Scholar

    [36] GLADENKOV A Y, OLEINIK A E, MARINCOVICH JR L, et al., 2002. A refined age for the earliest opening of Bering Strait[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 183(3-4): 321-328. doi: 10.1016/S0031-0182(02)00249-3

    CrossRef Google Scholar

    [37] GUO Z T, RUDDIMAN W F, HAO Q Z, et al., 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 416(6877): 159-163. doi: 10.1038/416159a

    CrossRef Google Scholar

    [38] GUO Z T, SUN B, ZHANG Z S, et al., 2008. A major reorganization of Asian climate by the early Miocene[J]. Climate of the Past, 4(3): 153-174. doi: 10.5194/cp-4-153-2008

    CrossRef Google Scholar

    [39] GUPTA A K, SINGH R K, JOSEPH S, et al., 2004. Indian Ocean high-productivity event (10-8 Ma): Linked to global cooling or to the initiation of the Indian monsoons?[J]. Geology, 32(9): 753-756. doi: 10.1130/G20662.1

    CrossRef Google Scholar

    [40] GUPTA A K, YUVARAJA A, PRAKASAM M, et al., 2015. Evolution of the South Asian monsoon wind system since the late Middle Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 438: 160-167. doi: 10.1016/j.palaeo.2015.08.006

    CrossRef Google Scholar

    [41] HALL R, 2009. Southeast Asia's changing palaeogeography[J]. Blumea-Biodiversity, Evolution and Biogeography of Plants, 54(1-3): 148-161.

    Google Scholar

    [42] HAO Q Z, ZHANG R H, WANG P X, et al., 2016. Monsoons across multi-scales: summary of fourth conference on Earth system science[J]. Advances in Earth Science, 31(7): 689-699. (in Chinese with English abstract

    Google Scholar

    [43] HELLWIG A, VOIGT S, MULCH A, et al., 2018. Late Oligocene to early Miocene humidity change recorded in terrestrial sequences in the Ili Basin (south-eastern Kazakhstan, Central Asia)[J]. Sedimentology, 65(2): 517-539. doi: 10.1111/sed.12390

    CrossRef Google Scholar

    [44] HOLBOURN A, KUHNT W, CLEMENS S C, et al., 2021. A~12 Myr Miocene record of east Asian monsoon variability from the South China Sea[J]. Paleoceanography and Paleoclimatology, 36(7): e2021PA004267. doi: 10.1029/2021PA004267

    CrossRef Google Scholar

    [45] HSÜ K J, RYAN W B F, CITA M B, 1973. Late Miocene desiccation of the Mediterranean[J]. Nature, 242(5395): 240-244. doi: 10.1038/242240a0

    CrossRef Google Scholar

    [46] HUANG C J, HINNOV L, 2019. Astronomically forced climate evolution in a saline lake record of the middle Eocene to Oligocene, Jianghan Basin, China[J]. Earth and Planetary Science Letters, 528: 115846. doi: 10.1016/j.jpgl.2019.115846

    CrossRef Google Scholar

    [47] HUANG H S, MORLEY R J, LICHT A, et al., 2023. A proto-monsoonal climate in the late Eocene of Southeast Asia: evidence from a sedimentary record in central Myanmar[J]. Geoscience Frontiers, 14(1): 101457. doi: 10.1016/j.gsf.2022.101457

    CrossRef Google Scholar

    [48] HUBER M, GOLDNER A, 2012. Eocene monsoons[J]. Journal of Asian Earth Sciences, 44: 3-23. doi: 10.1016/j.jseaes.2011.09.014

    CrossRef Google Scholar

    [49] JACQUES F M B, GUO S X, SU T, et al., 2011. Quantitative reconstruction of the Late Miocene monsoon climates of southwest China: a case study of the Lincang flora from Yunnan Province[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 304(3-4): 318-327. doi: 10.1016/j.palaeo.2010.04.014

    CrossRef Google Scholar

    [50] JIA G D, PENG P, ZHAO Q H, et al., 2003. Changes in terrestrial ecosystem since 30 Ma in East Asia: stable isotope evidence from black carbon in the South China Sea[J]. Geology, 31(12): 1093-1096. doi: 10.1130/G19992.1

    CrossRef Google Scholar

    [51] KARAS C, NÜRNBERG D, BAHR A, et al., 2017. Pliocene oceanic seaways and global climate[J]. Scientific Reports, 7(1): 39842. doi: 10.1038/srep39842

    CrossRef Google Scholar

    [52] KEIGWIN L D JR, 1978. Pliocene closing of the Isthmus of Panama, based on biostratigraphic evidence from nearby Pacific Ocean and Caribbean Sea cores[J]. Geology, 6(10): 630-634. doi: 10.1130/0091-7613(1978)6<630:PCOTIO>2.0.CO;2

    CrossRef Google Scholar

    [53] KHAN M A, BERA M, SPICER R A, et al., 2019. Palaeoclimatic estimates for a latest Miocene-Pliocene flora from the Siwalik Group of Bhutan: Evidence for the development of the South Asian Monsoon in the eastern Himalaya[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 514: 326-335. doi: 10.1016/j.palaeo.2018.10.019

    CrossRef Google Scholar

    [54] KNIES J, CABEDO-SANZ P, BELT S T, et al., 2014. The emergence of modern sea ice cover in the Arctic Ocean[J]. Nature Communications, 5(1): 5608. doi: 10.1038/ncomms6608

    CrossRef Google Scholar

    [55] LAWVER L A, GAHAGAN L M, 2003. Evolution of Cenozoic seaways in the circum-Antarctic region[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 198(1-2): 11-37. doi: 10.1016/S0031-0182(03)00392-4

    CrossRef Google Scholar

    [56] LI J J, FANG X M, SONG C H, et al., 2014. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes[J]. Quaternary Research, 81(3): 400-423. doi: 10.1016/j.yqres.2014.01.002

    CrossRef Google Scholar

    [57] LI J P, WU Z W, JIANG Z H, et al., 2010. Can global warming strengthen the East Asian summer monsoon?[J]. Journal of Climate, 23(24): 6696-6705. doi: 10.1175/2010JCLI3434.1

    CrossRef Google Scholar

    [58] LI J X, YUE L P, ROBERTS A P, et al., 2018a. Global cooling and enhanced Eocene Asian mid-latitude interior aridity[J]. Nature Communications, 9(1): 3026. doi: 10.1038/s41467-018-05415-x

    CrossRef Google Scholar

    [59] LI P, ZHANG C X, GUO Z T, et al., 2019. Clay mineral assemblages in the Zhaotong Basin of southwestern China: Implications for the late Miocene and Pliocene evolution of the South Asian monsoon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 516: 90-100. doi: 10.1016/j.palaeo.2018.11.039

    CrossRef Google Scholar

    [60] LI X F, ZHANG R, ZHANG Z S, et al., 2018b. Do climate simulations support the existence of East Asian monsoon climate in the Late Eocene?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 509: 47-57. doi: 10.1016/j.palaeo.2017.12.037

    CrossRef Google Scholar

    [61] LICHT A, VAN CAPPELLE M, ABELS H A, et al., 2014. Asian monsoons in a late Eocene greenhouse world[J]. Nature, 513(7519): 501-506. doi: 10.1038/nature13704

    CrossRef Google Scholar

    [62] LIN X, QIAN W H, 2012. Review of the global monsoon and monsoon marginal zones[J]. Advances in Earth Science, 27(1): 26-34. (in Chinese with English abstract

    Google Scholar

    [63] LIN X, LIU J, PENG B F, et al., 2017. A review of low-temperature thermochronology on bedrock and detritus from rivers around the Tibetan Plateau[J]. Seismology and Geology, 39(6): 1091-1110. (in Chinese with English abstract

    Google Scholar

    [64] LIN X, CHENG Y R, FENG Y F, et al., 2019. A review on regressive time in southwest Tarim Basin and its forming mechanism[J]. Marine Geology & Quaternary Geology, 39(3): 84-93. (in Chinese with English abstract

    Google Scholar

    [65] LIN X, TIAN Y T, DONELICK R A, et al., 2019. Mesozoic and Cenozoic tectonics of the northeastern edge of the Tibetan plateau: evidence from modern river detrital apatite fission-track age constraints[J]. Journal of Asian Earth Sciences, 170: 84-95. doi: 10.1016/j.jseaes.2018.10.028

    CrossRef Google Scholar

    [66] LIN X, JOLIVET M, LIU-ZENG J, et al., 2021. Mesozoic-Cenozoic cooling history of the Eastern Qinghai Nan Shan (NW China): Apatite low-temperature thermochronology constraints[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 572: 110416. doi: 10.1016/j.palaeo.2021.110416

    CrossRef Google Scholar

    [67] LIN X, LIU J, LIU W M, et al. , 2023. Development and evolution of the Yellow River and Yangtze River[M]. Beijing: Geology Press. (in Chinese)

    Google Scholar

    [68] LIN X, HU C W, WU R T, et al., 2024a. How was the late Neogene red clay formed in the Ordos Plateau (Northwest China)?[J]. Minerals, 14(6): 537. doi: 10.3390/min14060537

    CrossRef Google Scholar

    [69] LIN X, LIU-ZENG J, JOLIVET M, et al., 2024b. Sedimentary provenance constraints on the Cretaceous to Cenozoic palaeogeography of the western margin of the Jianghan Basin, South China[J]. Gondwana Research, 125: 343-358. doi: 10.1016/j.gr.2023.09.001

    CrossRef Google Scholar

    [70] LIN X B, WYRWOLL K H, CHEN H L, et al., 2015. An active east Asian monsoon at the Oligocene-Miocene boundary: evidence from the Sikouzi Section, Northern China[J]. The Journal of Geology, 123(4): 355-367. doi: 10.1086/682278

    CrossRef Google Scholar

    [71] LIU T, ZHENG M P, GUO Z T, 1998. Initiation and evolution of the Asian Monsoon system timely coupled with the ice-sheet growth and the tectonic movements in Asia[J]. Quaternary Sciences, 18(3): 194-204. (in Chinese with English abstract

    Google Scholar

    [72] LIU X D, DONG B W, YIN Z Y, et al., 2017. Continental drift and plateau uplift control origination and evolution of Asian and Australian monsoons[J]. Scientific Report, 7: 40344. doi: 10.1038/srep40344

    CrossRef Google Scholar

    [73] LIU X D, DONG B W, YIN Z Y, et al., 2019. Continental drift, plateau uplift, and the evolutions of monsoon and arid regions in Asia, Africa, and Australia during the Cenozoic[J]. Science China Earth Sciences, 62(7): 1053-1075. doi: 10.1007/s11430-018-9337-8

    CrossRef Google Scholar

    [74] LIU-ZENG J, TAPPONNIER P, GAUDEMER Y, et al., 2008. Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution[J]. Journal of Geophysical Research: Earth Surface, 113(F4): F04018.

    Google Scholar

    [75] LIU-ZENG J, ZHANG J Y, MCPHILLIPS D, et al., 2018. Multiple episodes of fast exhumation since cretaceous in southeast Tibet, revealed by low-temperature thermochronology[J]. Earth and Planetary Science Letters, 490: 62-76. doi: 10.1016/j.jpgl.2018.03.011

    CrossRef Google Scholar

    [76] LIVERMORE R, HILLENBRAND C D, MEREDITH M, et al., 2007. Drake passage and Cenozoic climate: an open and shut case?[J]. Geochemistry, Geophysics, Geosystems, 8(1): Q01005.

    Google Scholar

    [77] LU H J, TIAN X B, YUN K, et al., 2018. Convective removal of the Tibetan Plateau mantle lithosphere by ~ 26 Ma[J]. Tectonophysics, 731-732: 17-34. doi: 10.1016/j.tecto.2018.03.006

    CrossRef Google Scholar

    [78] LU H Y, GUO Z T, 2014. Evolution of the monsoon and dry climate in East Asia during late Cenozoic: a review[J]. Science China Earth Sciences, 57(1): 70-79. doi: 10.1007/s11430-013-4790-3

    CrossRef Google Scholar

    [79] LU H Y, LIU R X, CHENG L H, et al., 2020. Phased evolution and variation of the South Asian monsoon, and resulting weathering and surface erosion in the Himalaya-Karakoram Mountains, since late Pliocene time using data from Arabian Sea core[J]. Geological Magazine, 157(6): 864-878. doi: 10.1017/S0016756820000291

    CrossRef Google Scholar

    [80] LU H Y, FENG H, LYU H Z, et al., 2023a. Formation and evolution of the Asian landscape during the Cenozoic[J]. The Innovation Geoscience, 1(2): 100020. doi: 10.59717/j.xinn-geo.2023.100020

    CrossRef Google Scholar

    [81] LU H Y, ZHANG H Z, FENG H, et al., 2023b. Landform evolution in Asia during the Cenozoic revealed by formation of drainages of Wei River and Indus River[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 619: 111516. doi: 10.1016/j.palaeo.2023.111516

    CrossRef Google Scholar

    [82] LYU H, LU H Y, WANG Y C, et al., 2021. East Asian paleoclimate change in the Weihe Basin (central China) since the middle Eocene revealed by clay mineral analysis[J]. Science China Earth Sciences, 64(8): 1285-1304. doi: 10.1007/s11430-020-9799-6

    CrossRef Google Scholar

    [83] MA Y, ZHENG D W, ZHANG H P, et al., 2021. Plio-Pleistocene establishment of Irtysh river in Junggar, northwest China: implications for Siberian-Arctic River system evolution and resulting climate impact[J]. Geophysical Research Letters, 48(12): e2021GL093217. doi: 10.1029/2021GL093217

    CrossRef Google Scholar

    [84] MCQUARRIE N, STOCK J M, VERDEL C, et al., 2003. Cenozoic evolution of Neotethys and implications for the causes of plate motions[J]. Geophysical Research Letters, 30(20): 2036.

    Google Scholar

    [85] MENG Q T, BRUCH A A, SUN G, et al., 2018a. Quantitative reconstruction of Middle and Late Eocene paleoclimate based on palynological records from the Huadian Basin, northeastern China: evidence for monsoonal influence on oil shale formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 510: 63-77. doi: 10.1016/j.palaeo.2017.11.036

    CrossRef Google Scholar

    [86] MENG X Q, LIU L W, WANG X T, et al., 2018b. Mineralogical evidence of reduced East Asian summer monsoon rainfall on the Chinese loess plateau during the early Pleistocene interglacials[J]. Earth and Planetary Science Letters, 486: 61-69. doi: 10.1016/j.jpgl.2017.12.048

    CrossRef Google Scholar

    [87] MÉTIVIER F, GAUDEMER Y, TAPPONNIER P, et al., 1999. Mass accumulation rates in Asia during the Cenozoic[J]. Geophysical Journal International, 137(2): 280-318.

    Google Scholar

    [88] MIAO Y F, FANG X M, HERRMANN M, et al., 2011. Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 299(1-2): 30-38. doi: 10.1016/j.palaeo.2010.10.026

    CrossRef Google Scholar

    [89] MIAO Y F, WU F L, HERRMANN M, et al., 2013. Late early Oligocene East Asian summer monsoon in the NE Tibetan Plateau: evidence from a palynological record from the Lanzhou Basin, China[J]. Journal of Asian Earth Sciences, 75: 46-57. doi: 10.1016/j.jseaes.2013.07.003

    CrossRef Google Scholar

    [90] MIAO Y F, FANG X M, SUN J M, et al., 2022. A new biologic paleoaltimetry indicating Late Miocene rapid uplift of northern Tibet Plateau[J]. Science, 378(6624): 1074-1079. doi: 10.1126/science.abo2475

    CrossRef Google Scholar

    [91] NAAFS B D A, STEIN R, HEFTER J, et al., 2010. Late Pliocene changes in the North Atlantic current[J]. Earth and Planetary Science Letters, 298(3-4): 434-442. doi: 10.1016/j.jpgl.2010.08.023

    CrossRef Google Scholar

    [92] NAJMAN Y, ZHUANG G S, CARTER A, et al. , 2023. When did the Indus River of South-Central Asia take on its “modern” drainage configuration?[J]. GSA Bulletin, 136(7-8): 2815-2830. NIE J S, RUETENIK G, GALLAGHER K, et al. , 2018. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation[J]. Nature Geoscience, 11(12): 944-948.

    Google Scholar

    [93] O’DEA A, LESSIOS H A, COATES A G, et al., 2016. Formation of the isthmus of panama[J]. Science Advances, 2(8): e1600883. doi: 10.1126/sciadv.1600883

    CrossRef Google Scholar

    [94] PEI J L, ZHAO Y, ZHOU Z Z, et al., 2021. Impact of Cenozoic Antarctic continent-ocean configuration patterns on global climate change[J]. Journal of Geomechanics, 27(5): 867-879. (in Chinese with English abstract

    Google Scholar

    [95] PRELL W L, KUTZBACH J E, 1992. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution[J]. Nature, 360(6405): 647-652. doi: 10.1038/360647a0

    CrossRef Google Scholar

    [96] QIANG X K, AN Z S, SONG Y G, et al., 2011. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago[J]. Science China Earth Sciences, 54(1): 136-144. doi: 10.1007/s11430-010-4126-5

    CrossRef Google Scholar

    [97] QUADE J, CERLING T E, BOWMAN J R, 1989. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan[J]. Nature, 342(6246): 163-166. doi: 10.1038/342163a0

    CrossRef Google Scholar

    [98] QUAN C, LIU Y S, UTESCHER T, 2011. Paleogene evolution of precipitation in northeastern China supporting the middle Eocene intensification of the East Asian monsoon[J]. Palaios, 26(11): 743-753. doi: 10.2110/palo.2011.p11-019r

    CrossRef Google Scholar

    [99] RAYMO M E, RUDDIMAN W F, 1992. Tectonic forcing of late Cenozoic climate[J]. Nature, 359(6391): 117-122. doi: 10.1038/359117a0

    CrossRef Google Scholar

    [100] REN J B, SCHUBERT B A, LUKENS W E, et al., 2021. Low oxygen isotope values of fossil cellulose indicate an intense monsoon in East Asia during the late Oligocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 577: 110556. doi: 10.1016/j.palaeo.2021.110556

    CrossRef Google Scholar

    [101] RETALLACK G J, BAJPAI S, LIU X M, et al., 2018. Advent of strong South Asian monsoon by 20 million years ago[J]. The Journal of Geology, 126(1): 1-24. doi: 10.1086/694766

    CrossRef Google Scholar

    [102] ROWLEY D B, CURRIE B S, 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet[J]. Nature, 439(7077): 677-681. doi: 10.1038/nature04506

    CrossRef Google Scholar

    [103] SANYAL P, SINHA R, 2010. Evolution of the Indian summer monsoon: synthesis of continental records[J]. Geological Society, London, Special Publications, 342(1): 153-183. doi: 10.1144/SP342.11

    CrossRef Google Scholar

    [104] SARR A C, DONNADIEU Y, BOLTON C T, et al., 2022. Neogene South Asian monsoon rainfall and wind histories diverged due to topographic effects[J]. Nature Geoscience, 15(4): 314-319. doi: 10.1038/s41561-022-00919-0

    CrossRef Google Scholar

    [105] SHUKLA A, MEHROTRA R C, SPICER R A, et al., 2014. Cool equatorial terrestrial temperatures and the South Asian monsoon in the Early Eocene: evidence from the Gurha Mine, Rajasthan, India[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 412: 187-198. doi: 10.1016/j.palaeo.2014.08.004

    CrossRef Google Scholar

    [106] SONG Y G, FANG X M, KING J W, et al., 2014. Magnetic parameter variations in the Chaona loess/paleosol sequences in the central Chinese Loess Plateau, and their significance for the middle Pleistocene climate transition[J]. Quaternary Research, 81(3): 433-444. doi: 10.1016/j.yqres.2013.10.002

    CrossRef Google Scholar

    [107] SONG Z H, WAN S M, COLIN C, et al., 2023. Enhanced weathering input from South Asia to the Indian Ocean since the late Eocene[J]. Science Bulletin, 68(3): 305-313. doi: 10.1016/j.scib.2023.01.015

    CrossRef Google Scholar

    [108] SORREL P, EYMARD I, LELOUP P H, et al., 2017. Wet tropical climate in SE Tibet during the Late Eocene[J]. Scientific Reports, 7(1): 7809. doi: 10.1038/s41598-017-07766-9

    CrossRef Google Scholar

    [109] SPICER R A, YANG J, HERMAN A B, et al., 2016. Asian Eocene monsoons as revealed by leaf architectural signatures[J]. Earth and Planetary Science Letters, 449: 61-68. doi: 10.1016/j.jpgl.2016.05.036

    CrossRef Google Scholar

    [110] SPICER R A, SU T, VALDES P J, et al., 2020. Why ‘the uplift of the Tibetan Plateau’ is a myth[J]. National Science Review, 8(1): nwaa091.

    Google Scholar

    [111] SPICER R A, FARNSWORTH A, SU T, et al., 2024. The progressive co-evolutionary development of the Pan-Tibetan highlands, the Asian Monsoon system and Asian Biodiversity[J]. Geological Society, London, Special Publications, 549(1): 180.

    Google Scholar

    [112] SRINIVASAN M S, SINHA D K, 1998. Early Pliocene closing of the Indonesian Seaway: evidence from north-east Indian Ocean and Tropical Pacific deep sea cores[J]. Journal of Asian Earth Sciences, 16(1): 29-44. doi: 10.1016/S0743-9547(97)00041-X

    CrossRef Google Scholar

    [113] SRIVASTAVA G, SPICER R A, SPICER T E V, et al., 2012. Megaflora and palaeoclimate of a Late Oligocene tropical delta, Makum Coalfield, Assam: evidence for the early development of the South Asia Monsoon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 342-343: 130-142. doi: 10.1016/j.palaeo.2012.05.002

    CrossRef Google Scholar

    [114] STRAUME E O, GAINA C, MEDVEDEV S, et al., 2020. Global Cenozoic paleobathymetry with a focus on the Northern Hemisphere oceanic gateways[J]. Gondwana Research, 86: 126-143. doi: 10.1016/j.gr.2020.05.011

    CrossRef Google Scholar

    [115] SU L F, ZHANG Q Q, SUN Y K, et al., 2022. New evidence of the emergence of the East Asian monsoon in the early Palaeogene[J]. Scientific Reports, 12(1): 20471. doi: 10.1038/s41598-022-24298-z

    CrossRef Google Scholar

    [116] SU T, FARNSWORTH A, SPICER R A, et al., 2019. No high Tibetan plateau until the Neogene[J]. Science Advances, 5(3): eaav2189. doi: 10.1126/sciadv.aav2189

    CrossRef Google Scholar

    [117] SU T, SPICER R A, WU F X, et al., 2020. A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet[J]. Proceedings of the National Academy of Sciences of the United States of America, 117(52): 32989-32995.

    Google Scholar

    [118] SUN G Y, HU X M, GARZANTI E, et al., 2023a. Pre-Eocene Arabia-Eurasia collision: New constraints from the Zagros Mountains (Amiran Basin, Iran)[J]. Geology, 51(10): 941-946. doi: 10.1130/G51321.1

    CrossRef Google Scholar

    [119] SUN J M, YE J, WU W Y, et al., 2010. Late Oligocene–Miocene mid-latitude aridification and wind patterns in the Asian interior[J]. Geology, 38(6): 515-518. doi: 10.1130/G30776.1

    CrossRef Google Scholar

    [120] SUN J M, XU Q H, LIU W M, et al., 2014. Palynological evidence for the latest Oligocene-early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 399: 21-30. doi: 10.1016/j.palaeo.2014.02.004

    CrossRef Google Scholar

    [121] SUN J M, WINDLEY B F, 2015. Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia[J]. Geology, 43(11): 1015-1018. doi: 10.1130/G37165.1

    CrossRef Google Scholar

    [122] SUN J M, SHEYKH M, AHMADI N, et al., 2021. Permanent closure of the Tethyan Seaway in the northwestern Iranian Plateau driven by cyclic sea-level fluctuations in the late Middle Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 564: 110172. doi: 10.1016/j.palaeo.2020.110172

    CrossRef Google Scholar

    [123] SUN J M, SHA J G, WINDLEY B F, et al., 2023b. Late Eocene stepwise seawater retreat from the Pamir-Tian Shan convergence zone (Alay Valley) in the western Tarim Basin, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 622: 111603. doi: 10.1016/j.palaeo.2023.111603

    CrossRef Google Scholar

    [124] SUN X J, WANG P X, 2005. How old is the Asian monsoon system?—Palaeobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 222(3-4): 181-222. doi: 10.1016/j.palaeo.2005.03.005

    CrossRef Google Scholar

    [125] TADA R, ZHENG H B, CLIFT P D, 2016. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau[J]. Progress in Earth and Planetary Science, 3(1): 4. doi: 10.1186/s40645-016-0080-y

    CrossRef Google Scholar

    [126] TRIPATHI S, TIWARI M, LEE J, KHIM B K. 2017. First evidence of denitrification vis-à-vis monsoon in the Arabian Sea since Late Miocene[J]. Scientific reports, 7(1): 1-7.

    Google Scholar

    [127] TARDIF D, SARR A C, FLUTEAU F, et al., 2023. The role of paleogeography in Asian monsoon evolution: a review and new insights from climate modelling[J]. Earth-Science Reviews, 243: 104464. doi: 10.1016/j.earscirev.2023.104464

    CrossRef Google Scholar

    [128] TIAN Y T, KOHN B P, HU S B, et al., 2015. Synchronous fluvial response to surface uplift in the eastern Tibetan Plateau: implications for crustal dynamics[J]. Geophysical Research Letters, 42(1): 29-35. doi: 10.1002/2014GL062383

    CrossRef Google Scholar

    [129] TURNER A G, ANNAMALAI H, 2012. Climate change and the South Asian summer monsoon[J]. Nature Climate Change, 2(8): 587-595. doi: 10.1038/nclimate1495

    CrossRef Google Scholar

    [130] VORNLOCHER J R, LUKENS W E, SCHUBERT B A, et al., 2021. Late Oligocene precipitation seasonality in East Asia based on δ13C profiles in fossil wood[J]. Paleoceanography and Paleoclimatology, 36(4): e2021PA004229. doi: 10.1029/2021PA004229

    CrossRef Google Scholar

    [131] WAN S M, LI A C, CLIFT P D, et al., 2007. Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Sea since 20 Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(3-4): 561-582. doi: 10.1016/j.palaeo.2007.07.009

    CrossRef Google Scholar

    [132] WANG B, WU R G, LI T M, 2003a. Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation[J]. Journal of Climate, 16(8): 1195-1211. doi: 10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2

    CrossRef Google Scholar

    [133] WANG C S, DAI J G, ZHAO X X, et al., 2014. Outward-growth of the Tibetan Plateau during the Cenozoic: A review[J]. Tectonophysics, 621: 1-43. doi: 10.1016/j.tecto.2014.01.036

    CrossRef Google Scholar

    [134] WANG P X, JIAN Z M, ZHAO Q H, et al., 2003b. Evolution of the South China Sea and monsoon history revealed in deep-sea records[J]. Chinese Science Bulletin, 48(23): 2549-2561. doi: 10.1360/03wd0156

    CrossRef Google Scholar

    [135] WANG P X, 2004. Cenozoic deformation and the history of sea-land interactions in Asia[M]//CLIFT P, KUHNT W, WANG P, et al. Continent-ocean interactions within East Asian marginal seas. Washington DC, USA. American Geophysical Union: 1-22.

    Google Scholar

    [136] WANG P X, LI Q Y, 2009. History of the South China Sea–a synthesis[M]//WANG P X, LI Q Y. The South China Sea: Paleoceanography and sedimentology. Dordrecht: Springer: 487-496.

    Google Scholar

    [137] WANG W T, ZHENG W J, ZHANG P Z, et al., 2017. Expansion of the Tibetan Plateau during the Neogene[J]. Nature Communications, 8: 15887. doi: 10.1038/ncomms15887

    CrossRef Google Scholar

    [138] WANG X, CARRAPA B, SUN Y C, et al., 2020. The role of the westerlies and orography in Asian hydroclimate since the late Oligocene[J]. Geology, 48(7): 728-732. doi: 10.1130/G47400.1

    CrossRef Google Scholar

    [139] WILSON D S, POLLARD D, DECONTO R M, et al., 2013. Initiation of the West Antarctic Ice Sheet and estimates of total Antarctic ice volume in the earliest Oligocene[J]. Geophysical Research Letters, 40(16): 4305-4309. doi: 10.1002/grl.50797

    CrossRef Google Scholar

    [140] WU F L, FANG X M, MENG Q Q, et al., 2017. Magneto- and litho-stratigraphic records of the Oligocene-Early Miocene climatic changes from deep drilling in the Linxia Basin, Northeast Tibetan Plateau[J]. Global and Planetary Change, 158: 36-46. doi: 10.1016/j.gloplacha.2017.09.008

    CrossRef Google Scholar

    [141] WU F L, FANG X M, YANG Y B, et al., 2022. Reorganization of Asian climate in relation to Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 3(10): 684-700.

    Google Scholar

    [142] XIE Y L, WU F L, FANG X M, et al., 2020a. Early Eocene southern China dominated by desert: evidence from a palynological record of the Hengyang Basin, Hunan Province[J]. Global and Planetary Change, 195: 103320. doi: 10.1016/j.gloplacha.2020.103320

    CrossRef Google Scholar

    [143] XIE Y L, WU F L, FANG X M, 2020b. A major environmental shift by the middle Eocene in southern China: evidence from palynological records[J]. Review of Palaeobotany and Palynology, 278: 104226. doi: 10.1016/j.revpalbo.2020.104226

    CrossRef Google Scholar

    [144] XIONG Z Y, LIU X H, DING L, et al., 2022. The rise and demise of the Paleogene Central Tibetan valley[J]. Science Advances, 8(6): eabj0944. doi: 10.1126/sciadv.abj0944

    CrossRef Google Scholar

    [145] YAN D F, ZHANG L, HAN L, et al., 2018. Podocarpium from the Oligocene of NW Qaidam Basin, China and its implications[J]. Review of Palaeobotany and Palynology, 259: 1-9. doi: 10.1016/j.revpalbo.2018.09.009

    CrossRef Google Scholar

    [146] YAN M D, VANDERVOO R, FANG X M, et al., 2006. Paleomagnetic evidence for a mid-Miocene clockwise rotation of about 25° of the Guide Basin area in NE Tibet[J]. Earth and Planetary Science Letters, 241(1-2): 234-247. doi: 10.1016/j.jpgl.2005.10.013

    CrossRef Google Scholar

    [147] YANCHEVA G, NOWACZYK N R, MINGRAM J, et al., 2007. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 445(7123): 74-77. doi: 10.1038/nature05431

    CrossRef Google Scholar

    [148] YUAN T T, XU H, LIU G Z, et al., 2024. Eocene dry eolian system in the Jianchuan Basin, southeastern Tibetan Plateau: implications for regional wind regime and paleoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 635: 111949. doi: 10.1016/j.palaeo.2023.111949

    CrossRef Google Scholar

    [149] ZACHOS J, PAGANI M, SLOAN L, et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 292(5517): 686-693. doi: 10.1126/science.1059412

    CrossRef Google Scholar

    [150] ZHENG D W, ZHANG P Z, WAN J L, et al., 2006. Rapid exhumation at ~ 8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 248(1-2): 198-208. doi: 10.1016/j.jpgl.2006.05.023

    CrossRef Google Scholar

    [151] ZHENG H B, POWELL C M, REA D K, et al., 2004. Late Miocene and mid-Pliocene enhancement of the East Asian monsoon as viewed from the land and sea[J]. Global and Planetary Change, 41(3-4): 147-155. doi: 10.1016/j.gloplacha.2004.01.003

    CrossRef Google Scholar

    [152] ZHENG H B, CLIFT P D, WANG P, et al., 2013. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(19): 7556-7561.

    Google Scholar

    [153] ZHENG H B, YANG Q, CAO S, et al., 2022. From desert to monsoon: irreversible climatic transition at~ 36 Ma in southeastern Tibetan Plateau[J]. Progress in Earth and Planetary Science, 9(1): 12. doi: 10.1186/s40645-022-00470-x

    CrossRef Google Scholar

    [154] 安芷生,吴国雄,李建平,等,2015. 全球季风动力学与气候变化[J]. 地球环境学报,6(6):341-381. doi: 10.7515/JEE201506001

    CrossRef Google Scholar

    [155] 陈际龙,黄荣辉,2006. 亚澳季风各子系统气候学特征的异同研究I. 夏季风流场结构[J]. 大气科学,30(6):1091-1102. doi: 10.3878/j.issn.1006-9895.2006.06.04

    CrossRef Google Scholar

    [156] 丁一汇,孙颖,刘芸芸,等,2013. 亚洲夏季风的年际和年代际变化及其未来预测[J]. 大气科学,37(2):253-280. doi: 10.3878/j.issn.1006-9895.2012.12302

    CrossRef Google Scholar

    [157] 郝青振,张人禾,汪品先,等,2016. 全球季风的多尺度演化[J]. 地球科学进展,31(7):689-699. doi: 10.11867/j.issn.1001-8166.2016.07.0689.

    CrossRef Google Scholar

    [158] 林祥,钱维宏,2012. 全球季风和季风边缘研究[J]. 地球科学进展,27(1):26-34.

    Google Scholar

    [159] 林旭,刘静,彭保发,等,2017. 青藏高原周围河流基岩和碎屑矿物低温热年代学研究进展[J]. 地震地质,39(6):1091-1110. doi: 10.3969/j.issn.0253-4967.2017.06.001

    CrossRef Google Scholar

    [160] 林旭,程钰瑞,冯一帆,等,2019. 塔西南盆地海退时间及其形成机制研究[J]. 海洋地质与第四纪地质,39(3):84-93.

    Google Scholar

    [161] 林旭,刘静,刘维明,等,2023. 黄河和长江发育与演化[M]. 北京:地质出版社.

    Google Scholar

    [162] 刘东生,郑绵平,郭正堂,1998. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J]. 第四纪研究,18(3):194-204. doi: 10.3321/j.issn:1001-7410.1998.03.002

    CrossRef Google Scholar

    [163] 裴军令,赵越,周在征,等,2021. 南极新生代海陆格局变迁对全球气候变化的影响[J]. 地质力学学报,27(5):867-879. doi: 10.12090/j.issn.1006-6616.2021.27.05.070

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(528) PDF downloads(50) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint