2023 Vol. 29, No. 5
Article Contents

HU Zailong, ZHAO Xiaoming, WANG Yong, WEI Changxin, LYU Zhaoying, LYU Changyan. 2023. Petrogenesis and geological significance of migmatitic gneiss in Mulantou area, Hainan Island. Journal of Geomechanics, 29(5): 720-735. doi: 10.12090/j.issn.1006-6616.2023067
Citation: HU Zailong, ZHAO Xiaoming, WANG Yong, WEI Changxin, LYU Zhaoying, LYU Changyan. 2023. Petrogenesis and geological significance of migmatitic gneiss in Mulantou area, Hainan Island. Journal of Geomechanics, 29(5): 720-735. doi: 10.12090/j.issn.1006-6616.2023067

Petrogenesis and geological significance of migmatitic gneiss in Mulantou area, Hainan Island

    Fund Project: This research is financially supported by the Geological Survey Project of the China Geological Survey (Grant No.12120113065900) and the Fund of the Hainan Provincial Natural Science Foundation of China (Grant No.420RC744)
More Information
  • In the coastal area of Pujian to Mulantou on Hainan Island, a set of medium to deep metamorphic rocks (Mulantou complex) has been discovered, composed of migmatite, dolomite, shale, and amphibolite, with migmatite being the predominant lithology. This study selected well-developed and typical migmatitic gneisses as the research focus and conducted systematic zircon U-Pb isotope dating and petrological and geochemical studies. The results indicate that the protolith of the Mulantou migmatitic gneisses was intermediate basic volcanic rock formed around 276 Ma. These rocks exhibit geochemical characteristics of island-arc calc-alkaline basalt, suggesting a tectonic setting related to the subduction of the Paleo-Tethys Ocean. Early anatectic metamorphism occurred around 261 Ma, indicating a tectonic environment related to the collision between the South China Block and the Indochina Block. Later metamorphism took place around 248 Ma, signifying a tectonic environment associated with extension following the collision between the South China Block and the Indochina Block. Therefore, the Mulantou migmatitic gneisses preserve a comprehensive record of the tectonic evolution in Hainan Island from the Early Permian to the Early Triassic. They represent the geological consequences of events such as the closure of the Paleo-Tethys Ocean, the collision between the South China Block and the Indochina Block, and the subsequent extension. The discovery of these rocks provides new insights into the eastern extension of the Song Ma suture zone.

  • 加载中
  • CAI J X, ZHANG K J, 2009. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic[J]. Tectonophysics, 467(1-4): 35-43. doi: 10.1016/j.tecto.2008.12.003

    CrossRef Google Scholar

    CHEN X Y, WANG Y J, FAN W M, et al., 2011. Zircon LA-ICP-MS U-Pb dating of granitic gneisses from Wuzhishan area, Hainan, and geological significances[J]. Geochimica, 40(5): 454-463. (in Chinese with English abstract)

    Google Scholar

    FAURE M, LIN W, CHU Y, et al., 2016. Triassic tectonics of the southern margin of the South China Block[J]. Comptes Rendus Geoscience, 348(1): 5-14. doi: 10.1016/j.crte.2015.06.012

    CrossRef Google Scholar

    Hainan Geological Survey Institute, 2017. Regional geology of China·Hainan chronicle[M]. Beijing: Geology Press. (in Chinese)

    Google Scholar

    HE H Y, WANG Y J, ZHANG Y H, et al., 2018. Fingerprints of the Paleotethyan back-arc basin in Central Hainan, South China: geochronological and geochemical constraints on the Carboniferous metabasites[J]. International Journal of Earth Sciences, 107(2): 553-570. doi: 10.1007/s00531-017-1508-3

    CrossRef Google Scholar

    HE H Y, WANG Y J, CAWOOD P A, et al., 2020. Permo-Triassic granitoids, Hainan Island, link to Paleotethyan not Paleopacific tectonics[J]. GSA Bulletin, 132(9-10): 2067-2083. doi: 10.1130/B35370.1

    CrossRef Google Scholar

    HU Z L, WANG Y, ZHAO X M, et al., 2019. The identification of Jurassic stratigraphy in southern Hainan Island: Evidence from detrital zircon U-Pb ages and Hf isotopic compositions[J]. Geological Bulletin of China, 38(10): 1740-1757 (in Chinese with English abstract).

    Google Scholar

    IRVINE T N, BARAGAR W R A, 1971. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 8(5): 523-548. doi: 10.1139/e71-055

    CrossRef Google Scholar

    LE BAS M J, LE MAITRE R W, STRECKEISEN A, et al., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 27(3): 745-750. doi: 10.1093/petrology/27.3.745

    CrossRef Google Scholar

    LI S G, 1993. Ba-Nb-Th-La diagrams used to identify tectonic environments of ophiolite[J]. Acta Petrologica Sinica, 9(2): 146-157. (in Chinese with English abstract)

    Google Scholar

    LI S X, FAN Y, MO W M, et al., 2006. Characteristics of arc structure zones in the Paleozoic Era of Hainan Island, and its geological implications[J]. Mineral Resources and Geology, 20(3): 232-236. (in Chinese with English abstract)

    Google Scholar

    LI S X, GAO L Z, CHEN M L, et al., 2013. Zircon SHRIMP age constraints of the Mesoproterozoic migmatization age in Hainan Island[J]. Journal of Stratigraphy, 37(4): 635-636. (in Chinese)

    Google Scholar

    LI W P, LU F X, 1999. New progress of the study of geologic setting for calc alkline volcanic rocks[J]. Geological Science and Technology Information, 18(2): 15-18. (in Chinese with English abstract)

    Google Scholar

    LI X H, ZHOU H W, DING S J, et al., 2000. Sm-Nd isotopic constraints on the age of the Bangxi-Chenxing ophiolite in Hainan Island: implications for the tectonic evolution of eastern Paleo-Tethys[J]. Acta Petrologica Sinica, 16(3): 425-432. (in Chinese with English abstract)

    Google Scholar

    LIU J L, TRAN M D, TANG Y, et al., 2012. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam: Geochronology, geochemistry and tectonic implications[J]. Gondwana Research, 22(2): 628-644. doi: 10.1016/j.gr.2011.10.011

    CrossRef Google Scholar

    LIU X C, CHEN Y, WANG W, et al., 2021. Carboniferous eclogite and garnet-omphacite granulite from northeastern Hainan Island, South China: Implications for the evolution of the eastern Palaeo-Tethys[J]. Journal of Metamorphic Geology, 39(1): 101-132. doi: 10.1111/jmg.12563

    CrossRef Google Scholar

    LIU X C, HU J, CHEN L Y, et al., 2021. Oceanic-type high-temperature eclogites from Hainan Island, South China: General characteristics and unsolved problems[J]. Acta Petrologica Sinica, 37(1): 143-161. (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.01.10

    CrossRef Google Scholar

    LIU X C, HU J, CHEN L Y, et al., 2022. The Mulantou metamorphic complex from northeastern Hainan Island, South China: compositions, ages and tectonic implications[J]. Acta Geologica Sinica, 96(9): 3051-3083. (in Chinese with English abstract)

    Google Scholar

    LIU Y S, GAO S, HU Z C, et al., 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    LIU Y S, HU Z C, GAO S, et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    LONG W G, ZHOU D, KE X Z, et al., 2022. Early Paleozoic tectonics of Hainan Island: Constraints from the detrital zircons U-Pb geochronology on Early Silurian sandstones[J]. South China Geology, 38(1): 79-93. (in Chinese with English abstract)

    Google Scholar

    MALUSKI H, LEPVRIER C, LEYRELOUP A, et al., 2005. 40Ar-39Ar geochronology of the charnockites and granulites of the Kan Nack complex, Kon Tum Massif, Vietnam[J]. Journal of Asian Earth Sciences, 25(4): 653-677. doi: 10.1016/j.jseaes.2004.07.004

    CrossRef Google Scholar

    MEHNERT K R, 1968. Migmatites and the origin of granitic rocks[M]. Amsterdam: Elsevier Publishing Company.

    Google Scholar

    METCALFE I, SHERGOLD J H, LI Z X, 1993. IGCP 321 Gondwana dispersion and Asian accretion: fieldwork on Hainan Island[J]. Episodes, 16(4): 443-447.

    Google Scholar

    METCALFE I, 1996. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys[J]. Australian Journal of Earth Sciences, 43(6): 605-623. doi: 10.1080/08120099608728282

    CrossRef Google Scholar

    PAN G T, XIAO Q H, 2015. Tectonic Map of China(1 ∶ 2500000)[M]. Beijing: Geology Press. (in Chinese)

    Google Scholar

    REN L D, GENG Y S, DU L L, et al., 2011. Anatexis and migmatization of the Fuping Complex, North China Craton[J]. Acta Petrologica Sinica, 27(4): 1056-1066 (in Chinese with English abstract).

    Google Scholar

    REN L D, WANG Y B, YANG C H, et al., 2010. Metamorphism, migmatization and granites of the Mashan Complex in Heilongjiang Province, Northeast China[J]. Acta Petrologica Sinica, 26(7): 2005-2014. (in Chinese with English abstract)

    Google Scholar

    REN L D, 2021. Anatexis and enrichment mechanism of the Fe-Ti oxide minerals in the quartzofeldspathic gneisses from the Larsemann Hills, East Antarctica. Journal of Geomechanics, 27 (5): 736-746. (in Chinese with English abstract)

    Google Scholar

    SAWYER E W, 1999. Criteria for the recognition of partial melting[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(3): 269-279. doi: 10.1016/S1464-1895(99)00029-0

    CrossRef Google Scholar

    SIMONEN A, 1953. Stratigraphy and sedimentation of the Svecofennidic, early Archean supracrustal rocks in southwestern Finland[J]. Bulletin of the Geological Society of Finland, 160: 1-64.

    Google Scholar

    SUN S S, MCDOUGALL W F, 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition of the earth and mantle evolution[J]. Earth and Planetary Science Letters, 35: 429-448.

    Google Scholar

    WANG R M, HE G P, CHEN Z Z, et al., 1987. Graphical discriminance of the protolith of metamorphic rocks[M]. Beijing: Geology Press. (in Chinese)

    Google Scholar

    WANG X S, JIANG T, GAO J, et al., 2019. Contrasting migmatites in the southern Chinese Central Tianshan: Petrogenesis and geological implications[J]. Acta Petrologica Sinica, 35(10): 3233-3261. (in Chinese with English abstract) doi: 10.18654/1000-0569/2019.10.16

    CrossRef Google Scholar

    WANG Y J, QIAN X, CAWOOD P A, et al., 2018. Closure of the East Paleotethyan Ocean and amalgamation of the Eastern Cimmerian and Southeast Asia continental fragments[J]. Earth-Science Reviews, 186: 195-230. doi: 10.1016/j.earscirev.2017.09.013

    CrossRef Google Scholar

    WEN S N, LIANG X Q, FAN W M, et al., 2013. Zircon U-Pb ages, Hf isotopic composition of Zhizhong granitic intrusion in Ledong area of Hainan Island and their tectonic implications[J]. Geotectonica et Metallogenia, 37(2): 294-307. (in Chinese with English abstract)

    Google Scholar

    WINCHESTER J A, FLOYD P A, 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2

    CrossRef Google Scholar

    WU F Y, WAN B, ZHAO L, et al., 2020. Tethyan geodynamics[J]. Acta Petrologica Sinica, 36(6): 1627-1674. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.06.01

    CrossRef Google Scholar

    XIA B D, REN Z P, 1979. Stratigraphy and sedimentary formation in Shilu and surrounded area in Hainan Island[J]. Journal of Nanjing University(1): 43-55. (in Chinese with English abstract)

    Google Scholar

    XIA M M, HU J, HU D G, et al., 2019. The discovery of eclogite-high-pressure granulite association from Hainan Island, South China[J]. Geological Bulletin of China, 38(10): 1591-1594. (in Chinese with English abstract)

    Google Scholar

    XIA M M, LIU X C, CHEN Y, et al., 2022. New U-Pb zircon and geochemical constraints on Late Devonian Back-arc basin origin of eclogite protoliths from northeastern Hainan Island, South China[J]. Lithos, 418-419: 106677. doi: 10.1016/j.lithos.2022.106677

    CrossRef Google Scholar

    XIAO L L, JIANG Z S, 2010. Geochemistry and tectonic environment of Amphibolites of the Zanhuang metamorphic complex[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 29(4): 339-347. (in Chinese with English abstract)

    Google Scholar

    XU D R, XIA B, LI P C, et al., 2007. Protolith natures and U-Pb sensitive high mass-resolution ion microprobe (SHRIMP) zircon ages of the metabasites in Hainan Island, South China: Implications for geodynamic evolution since the late Precambrian[J]. Island Arc, 16(4): 575-597. doi: 10.1111/j.1440-1738.2007.00584.x

    CrossRef Google Scholar

    XU Y J, CAWOOD P A, ZHANG H C, et al., 2020. The Mesoproterozoic Baoban Complex, South China: A missing fragment of western Laurentian lithosphere[J]. GSA Bulletin, 132(7-8): 1404-1418. doi: 10.1130/B35380.1

    CrossRef Google Scholar

    YANG S F, YU Z Y, GUO L Z, et al., 1989. The division and palaeomagnetism of the Hainan Island and platetectonic significance[J]. Journal of Nanjing University (Earth Sciences Edition), 1(1-2): 38-46. (in Chinese)

    Google Scholar

    YAO W H, LI Z X, LI W X, et al., 2017. Proterozoic tectonics of Hainan Island in supercontinent cycles: New insights from geochronological and isotopic results[J]. Precambrian Research, 290: 86-100. doi: 10.1016/j.precamres.2017.01.001

    CrossRef Google Scholar

    ZHANG L M, WANG Y J, QIAN X, et al., 2018. Petrogenesis of Mesoproterozoic mafic rocks in Hainan (South China) and its implication on the southwest Hainan-Laurentia-Australia connection[J]. Precambrian Research, 313: 119-133. doi: 10.1016/j.precamres.2018.05.002

    CrossRef Google Scholar

    ZHANG R Y, LO C H, LI X H, et al., 2014. U-Pb dating and tectonic implication of ophiolite and metabasite from the Song Ma suture zone, northern Vietnam[J]. American Journal of Science, 314(2): 649-678. doi: 10.2475/02.2014.07

    CrossRef Google Scholar

    ZHANG Y Z, YANG X, WANG Y J, et al., 2021. Rifting and subduction records of the Paleo-Tethys in North Laos: Constraints from Late Paleozoic mafic and plagiogranitic magmatism along the Song Ma tectonic zone[J]. GSA Bulletin, 133(1-2): 212-232. doi: 10.1130/B35537.1

    CrossRef Google Scholar

    陈新跃, 王岳军, 范蔚茗, 等, 2011. 海南五指山地区花岗片麻岩锆石LA-ICP-MS U-Pb年代学特征及其地质意义[J]. 地球化学, 40(5): 454-463.

    Google Scholar

    海南省地质调查院, 2017. 中国区域地质志·海南志[M]. 北京: 地质出版社.

    Google Scholar

    胡在龙, 王勇, 赵小明, 等, 2019. 海南岛南部侏罗系的发现: 来自碎屑锆石U-Pb年龄及Hf同位素的证据[J]. 地质通报, 38(10): 1740-1757.

    Google Scholar

    李曙光, 1993. 蛇绿岩生成构造环境的Ba-Th-Nb-La判别图[J]. 岩石学报, 9(2): 146-157.

    Google Scholar

    李孙雄, 范渊, 莫位明, 等, 2006. 海南岛古生代弧状构造带的特征及其地质意义[J]. 矿产与地质, 20(3): 232-236.

    Google Scholar

    李孙雄, 高林志, 陈沐龙, 等, 2013. 海南岛中元古代混合岩化作用时代的锆石SHRIMP年龄制约[J]. 地层学杂志, 37(4): 635-636.

    Google Scholar

    李伍平, 路凤香, 1999. 钙碱性火山岩构造背景的研究进展[J]. 地质科技情报, 18(2): 16-19.

    Google Scholar

    李献华, 周汉文, 丁式江, 等, 2000. 海南岛邦溪-晨星蛇绿岩片的时代及其构造意义: Sm-Nd同位素制约[J]. 岩石学报, 16(3): 425-432.

    Google Scholar

    刘晓春, 胡娟, 陈龙耀, 等, 2021. 海南洋壳型高温榴辉岩: 基本特征及待解问题[J]. 岩石学报, 37(1): 143-161.

    Google Scholar

    刘晓春, 胡娟, 陈龙耀, 等, 2022. 海南岛东北部木栏头变质杂岩的组成、时代及其区域大地构造意义[J]. 地质学报, 96(9): 3051-3083.

    Google Scholar

    龙文国, 周岱, 柯贤忠, 等, 2022. 海南岛早古生代大地构造格局: 来自志留纪早期碎屑锆石年代学的约束[J]. 华南地质, 38(1): 79-93.

    Google Scholar

    潘桂堂, 肖庆辉, 2015. 中国大地构造图(1 ∶ 2500000)[M]. 北京: 地质出版社.

    Google Scholar

    任留东, 耿元生, 杜利林, 等, 2011. 华北克拉通阜平杂岩的深熔和混合岩化作用[J]. 岩石学报, 27(4): 1056-1066.

    Google Scholar

    任留东, 王彦斌, 杨崇辉, 等, 2010. 麻山杂岩的变质-混合岩化作用和花岗质岩浆活动[J]. 岩石学报, 26(7): 2005-2014.

    Google Scholar

    任留东, 2021. 东南极拉斯曼丘陵长英质片麻岩的深熔作用与铁钛氧化物的聚集机制. 地质力学学报, 27(5): 736-746.

    Google Scholar

    王仁民, 贺高品, 陈珍珍, 等, 1987. 变质岩原岩图解判别法[M]. 北京: 地质出版社.

    Google Scholar

    王信水, 江拓, 高俊, 等, 2019. 中天山地块南缘两类混合岩的成因及其地质意义[J]. 岩石学报, 35(10): 3233-3261.

    Google Scholar

    温淑女, 梁新权, 范蔚茗, 等, 2013. 海南岛乐东地区志仲岩体锆石U-Pb年代学、Hf同位素研究及其构造意义[J]. 大地构造与成矿学, 37(2): 294-307.

    Google Scholar

    吴福元, 万博, 赵亮, 等, 2020. 特提斯地球动力学[J]. 岩石学报, 36(6): 1627-1674.

    Google Scholar

    夏邦栋, 任震鹏, 1979. 海南岛石碌及其外围地区的地层和沉积建造[J]. 南京大学学报(地质专刊)(1): 43-55.

    Google Scholar

    夏蒙蒙, 胡娟, 胡道功, 等, 2019. 海南岛发现榴辉岩-高压麻粒岩组合[J]. 地质通报, 38(10): 1591-1594.

    Google Scholar

    肖玲玲, 蒋宗胜, 2010. 赞皇斜长角闪片麻岩地球化学特征及其构造环境探讨[J]. 矿物岩石地球化学通报, 29(4): 339-347.

    Google Scholar

    杨树锋, 虞子冶, 郭令智, 等, 1989. 海南岛的地体划分、古地磁研究及其板块构造意义[J]. 南京大学学报(地球科学版), 1(1-2): 38-36.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(1128) PDF downloads(49) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint