2023 Vol. 29, No. 6
Article Contents

YAN Yuan. 2023. The tunnel damage effects and implications of the coseismic rupture of the Menyuan MS 6.9 Earthquake in Qinghai, China. Journal of Geomechanics, 29(6): 869-878. doi: 10.12090/j.issn.1006-6616.2023027
Citation: YAN Yuan. 2023. The tunnel damage effects and implications of the coseismic rupture of the Menyuan MS 6.9 Earthquake in Qinghai, China. Journal of Geomechanics, 29(6): 869-878. doi: 10.12090/j.issn.1006-6616.2023027

The tunnel damage effects and implications of the coseismic rupture of the Menyuan MS 6.9 Earthquake in Qinghai, China

    Fund Project: This research is finacially supported by the Major Project of China Railway First Survey and Design Institute Group Co., LTD. (Grant No. 2022KY56(ZDZX)-02) and the Key Research and Development Program of Shaanxi Province (Grant No. 2023-YBSF-238).
  • On January 8, 2022, a magnitude 6.9 earthquake occurred in Menyuan County, Qinghai Province, causing severe deformation and damage to the Da Liang Tunnel of the Lanzhou–Xinjiang high-speed railway, which is the first railway tunnel project broken by strike-slip earthquake in China. Through comprehensive analysis of field investigation data, InSAR surface deformation data, and monitoring results from the track control network (CPⅢ), this study delves into the characteristics of deformation and damage caused by the coseismic rupture zone of the Menyuan MS 6.9 earthquake on the Daliang Tunnel. The results indicate that the Haiyuan Fault Zone's Lenglongling–Tuolaishan fault segment is the seismogenic fault for this earthquake, forming a coseismic surface rupture zone approximately 21.5 km long. The dominant deformation nature is left-lateral strike-slip, with a maximum left-lateral displacement of about 3.1 m. As the coseismic rupture zone intersects the Daliang Tunnel, it severely damages the tunnel structure, with the most intense deformation and damage concentrated within 60 m on either side of the central rupture zone. Comparing the observed tunnel deformation with the characteristics of coseismic surface rupture deformation, it is evident that the maximum vertical displacement across the fault zone in the tunnel area is approximately 91.6 cm, with a maximum left-lateral offset of about 2.88 m. The angle between the Lenglongling fault and the Daliang Tunnel is approximately 60°, and the calculated maximum left-lateral offset of the seismogenic fault is about 3.08 m. This indicates a close alignment between the maximum slip offset from coseismic surface rupture and the fault's maximum offset across the tunnel, suggesting that the tunnel structure struggles to resist significant coseismic deformations. The findings of this study can serve as a scientific reference for the planning, construction, and seismic damage prevention of railway projects crossing active fault zones.

  • 加载中
  • [1] CHEN P, GENG P, CHEN J, et al. , 2023. The seismic damage mechanism of Daliang tunnel by fault dislocation during the 2022 Menyuan Ms6.9 earthquake based on unidirectional velocity pulse input[J]. Engineering Failure Analysis, 145: 107047-. doi: 10.1016/j.engfailanal.2023.107047

    CrossRef Google Scholar

    [2] CHEN X Z, LI Y N, CHEN L J, 2022. Investigation on variations of apparent stress in the region in and around the rupture volume preceding the occurrence of the 2021 Alaska MW8.2 earthquake[J]. Earthquake Science, 35(3): 147-160. doi: 10.1016/j.eqs.2022.06.002

    CrossRef Google Scholar

    [3] M N, et al. , 2018. Highway tunnel damage caused by earthquake and its mechanism crossing fault zone in Wenchuan Earthquake Area[J]. China Journal of Geological Hazard and Control, 29(2): 108-114. (in Chinese with English abstract)

    Google Scholar

    [4] CUI Z, SHENG Q, LENG X L, et al. , 2013. Effects of near-fault ground motion on seismic response of underground cacerns[J]. Rock and Soil Mechanics, 34(11): 3213-3220, 3228. (in Chinese with English abstract)

    Google Scholar

    [5] FANG L, GUO R, ZHENG B, et al. , 2019. Research on the seismic dynamic response characteristics of metro tunnels across faults[J]. Journal of Railway Engineering Society, 36(3): 72-77. (in Chinese with English abstract)

    Google Scholar

    [6] GAI H L, LI Z M, YAO S H, et al. , 2022. Preliminary investigation and research on surface rupture characteristics of the 2022 Qinghai Menyuan MS6.9 earthquake[J]. Seismology and Geology, 44(1): 238-255. (in Chinese with English abstract)

    Google Scholar

    [7] GAO F, SUN C X, TAN X K, et al. , 2015. Shaking table tests for seismic response of tunnels with different depths[J]. Rock and Soil Mechanics, 36(9): 2517-2522, 2531. (in Chinese with English abstract)

    Google Scholar

    [8] GAUDEMER Y, TAPPONNIER P, MEYER B, et al. , 1995. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on the western Haiyuan Fault, Gansu (China)[J]. Geophysical Journal International, 120(3): 599-645. doi: 10.1111/j.1365-246X.1995.tb01842.x

    CrossRef Google Scholar

    [9] GUO N, WU Y , ZHANG Q, 2022. Coseismic and Pre-seismic Deformation Characteristics of the 2022 MS 6.9 Menyuan Earthquake, China[J]. Pure and Applied Geophysics. DOI: 10.1007/s00024-022-03128-3.

    Google Scholar

    [10] GUO P, HAN Z J, AN Y F, et al. , 2017. Activity of the Lenglongling fault system and seismotectonics of the 2016 MS6.4 Menyuan earthquake[J]. Science China Earth Sciences, 60(5): 929-942. (in Chinese with English abstract) doi: 10.1007/s11430-016-9007-2

    CrossRef Google Scholar

    [11] HAN S, WU Z H, GAO Y, et al. , 2022. Surface rupture investigation of the 2022 Menyuan MS 6.9 earthquake, Qinghai, China: Implications for the fault behavior of the Lenglongling fault and regional intense earthquake risk[J]. Journal of Geomechanics, 28(2): 155-168,doi: 10.12090/j.issn.1006-6616.2022013. (in Chinese with English abstract)

    CrossRef Google Scholar

    [12] HE W G, YUAN D Y, GE W P, et al. , 2010. Determination of the slip rate of the lenglongling fault in the middle and eastern segments of the Qilian mountain active fault zone[J]. Earthquake, 30(1): 131-137. (in Chinese with English abstract)

    Google Scholar

    [13] JIANG W L, , LI Y S, TIAN Y F, et al. , 2017. Research of Seismogenic structure of the Menyuan MS6.4 earthquake on January 21, 2016 in Lenglongling area of ne Tibetan Plateau[J]. Seismology and Geology, 39(3): 536-549. (in Chinese with English abstract)

    Google Scholar

    [14] JIAO Q S, JIANG W L, LI Q, et al. , 2022. Rapid emergency analysis of the surface rupture related to the Qinghai Menyuan MS6.9 earthquake on January 8, 2022, using GF-7 satellite images[J]. National Remote Sensing Bulletin, 26(9): 1895-1908. (in Chinese with English abstract) doi: 10.11834/jrs.20222043

    CrossRef Google Scholar

    [15] LEI D N, LIU J, LIU S M, et al. , 2018. Seismological tectonic model of the M6.4 earthquake in Menyuan, Qinghai Province on January 21, 2016[J]. Seismology and Geology, 40(1): 107-120. (in Chinese with English abstract)

    Google Scholar

    [16] LI P, YUAN J L, 1983. Some problems on active fault and engineering construction[C]//Selected papers of the first national engineering geology academic conference. Suzhou: Science Press. (in Chinese)

    Google Scholar

    [17] MA Y H,JIA H F,LI C Z,et al.,2021.Nearly-Horizontal Borehole Coring and Drilling Techniques in the Survey of A Railway[J].Geology and Exploration, 57(1):190-198.( in Chinese with English abstract)

    Google Scholar

    [18] MENG Q, GAO K, CHEN Q Z, et al. , 2021. Seismogenic, coseismic and postseismic deformation and stress evolution of the 2008 Wenchuan earthquake: Numerical simulation analysis[J]. Journal of Geomechanics, 27(4): 614-627. (in Chinese with English abstract)

    Google Scholar

    [19] MOLNAR P H, TAPPONNIER P, 1975. Cenozoic tectonics of Asia: effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 189(4201): 419-426. doi: 10.1126/science.189.4201.419

    CrossRef Google Scholar

    [20] PAN G T, LI X Z, WANG L Q, et al. , 2002. Preliminary division of tectonic units of the Qinghai-Tibet Plateau and its adjacent regions[J]. Geological Bulletin of China, 2002, 21(11): 701-707. (in Chinese with English abstract)

    Google Scholar

    [21] PAN J W, LI H B, CHEVALIER M L, et al. , 2022. Coseismic surface rupture and seismogenic structure of the 2022 MS6.9 Menyuan earthquake, Qinghai Province, China[J]. Acta Geologica Sinica, 96(1): 215-231. (in Chinese with English abstract)

    Google Scholar

    [22] SUNIL S, WILLIAN R J, LEI Q R, 1992. Earthquake damage to underground cavern[J]. Underground Space, 4(1992): 335-344.

    Google Scholar

    [23] WANG D Y, SUN Q Q, WANG K, et al. , 2019. Effect of local defect of surrounding , rock on lining stress of tunnel in Meizoseismal AREA[J]. Journal of Railway Engineering Society, 36(8): 73-78. (in Chinese with English abstract)

    Google Scholar

    [24] TAPPONNIER P, XU Z Q, ROGER F, et al. , 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978

    CrossRef Google Scholar

    [25] WANG G X, LAI H B, 2012. Establishment and precision control of track control CPIII network of high speed railway[J]. High Speed Railway Technology, 3(1): 18-19, 23. (in Chinese with English abstract)

    Google Scholar

    [26] WANG X, JIANG W L, ZHANG J F, et al. , 2020. Deep structure of the gravity field and dynamic characteristics of the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 63(3): 988-1001. (in Chinese with English abstract)

    Google Scholar

    [27] WU Z H, 2019. The definition and classification of active faults: history, current status and progress[J]. Acta Geoscientica Sinica, 40(5): 661-697. (in Chinese with English abstract)

    Google Scholar

    [28] WU Z H, 2022. Active faults and engineering applications I: definition and classification[J]. Journal of Earth Sciences and Environment, 44(6): 922-947. (in Chinese with English abstract)

    Google Scholar

    [29] XU H C, 2019. Kinematics study of main active fault zones in the Northeastern Qinghai-Tibet Plateau[D]. Beijing: Institute of Earthquake Prediction, China Earthquake Administration. (in Chinese with English abstract)

    Google Scholar

    [30] XUE S Y, XIE H, YUAN D Y, et al. , 2022. Seismic disaster characteristics of the surface rupture of Menyuan MS6.9 earthquake in 2022[J]. China Earthquake Engineering Journal, 44(2): 458-467. (in Chinese with English abstract)

    Google Scholar

    [31] YUAN D Y, ZHANG P Z, LIU B C, et al. , 2004. Geometrical imagery and tectonic transformation of late quaternary active tectonics in northeastern margin of Qinghai-Xizang Plateau[J]. Acta Geologica Sinica, 78(2): 270-278. (in Chinese with English abstract)

    Google Scholar

    [32] ZHANG L C,ZHOU C,TANG J T,et al.,2022.Application of the Two-Component Wide-Field Electromagnetic Method to Engineering Survey of A Deep Tunnel [J].Geology and Exploration,58(4):857-865. (in Chinese with English abstract)

    Google Scholar

    [33] ZHANG P Z, DENG Q D, ZHANG Z Q, et al. , 2013. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China Series D: Earth Sciences, 46(2): 13-24. (in Chinese with English abstract)

    Google Scholar

    [34] ZHANG P Z, SHEN Z K, WANG M, et al. , 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812. doi: 10.1130/G20554.1

    CrossRef Google Scholar

    [35] ZHANG Y M, WANG Y J, ZHU Z Q, 2013. Damage evolution and distribution of underground cavern group under earthquake action[J]. World Earthquake Engineering, 29(4): 108-113. (in Chinese with English abstract)

    Google Scholar

    [36] ZHOU M D, LU T Y, ZHANG Y S, et al. , 2000. The geological structure background and the crustal structure in the northeastern margin of the Qinghai-Tibetan Plateau[J]. Acta Seismologica Sinica, 22(6): 645-653. (in Chinese with English abstract)

    Google Scholar

    [37] 崔光耀, 伍修刚, 王明年, 等, 2018. 汶川地震区跨断层带公路隧道震害形成机理分析[J]. 中国地质灾害与防治学报, 29(2): 108-114.

    Google Scholar

    [38] 崔臻, 盛谦, 冷先伦, 等, 2013. 近断层地震动对大型地下洞室群地震响应的影响研究[J]. 岩土力学, 34(11): 3213-3220, 3228. doi: 10.16285/j.rsm.2013.11.037

    CrossRef Google Scholar

    [39] 方林, 郭瑞, 郑波, 等, 2019. 跨断裂地铁隧道地震动力响应特征研究[J]. 铁道工程学报, 36(3): 72-77. doi: 10.3969/j.issn.1006-2106.2019.03.013

    CrossRef Google Scholar

    [40] 盖海龙, 李智敏, 姚生海, 等, 2022. 2022年青海门源MS6.9地震地表破裂特征的初步调查研究[J]. 地震地质, 44(1): 238-255. doi: 10.3969/j.issn.0253-4967.2022.01.015

    CrossRef Google Scholar

    [41] 高峰, 孙常新, 谭绪凯, 等, 2015. 不同埋深隧道的地震响应振动台试验研究[J]. 岩土力学, 36(9): 2517-2522, 2531. doi: 10.16285/j.rsm.2015.09.011

    CrossRef Google Scholar

    [42] 郭鹏, 韩竹军, 安艳芬, 等, 2017. 冷龙岭断裂系活动性与2016年门源6.4级地震构造研究[J]. 中国科学: 地球科学, 47(5): 617-630.

    Google Scholar

    [43] 韩帅, 吴中海, 高扬, 等, 2022. 2022年1月8日青海门源MS 6.9地震地表破裂考察的初步结果及对冷龙岭断裂活动行为和区域强震危险性的启示[J]. 地质力学学报, 28(2): 155-168,doi:10.12090/j.issn.1006-6616.2022013.

    CrossRef Google Scholar

    [44] 何文贵, 袁道阳, 葛伟鹏, 等, 2010. 祁连山活动断裂带中东段冷龙岭断裂滑动速率的精确厘定[J]. 地震, 30(1): 131-137. doi: 10.3969/j.issn.1000-3274.2010.01.015

    CrossRef Google Scholar

    [45] 姜文亮, 李永生, 田云锋, 等, 2017. 冷龙岭地区2016年青海门源6.4级地震发震构造特征[J]. 地震地质, 39(3): 536-549. doi: 10.3969/j.issn.0253-4967.2017.03.007

    CrossRef Google Scholar

    [46] 焦其松, 姜文亮, 李强, 等, 2022. GF-7卫星图像快速解析青海门源Ms6.9级地震的地表破裂带[J]. 遥感学报, 26 (9) : 14.

    Google Scholar

    [47] 雷东宁, 刘杰, 刘姝妹, 等, 2018. 2016年1月21日青海门源M6.4地震发震构造模式[J]. 地震地质, 2018, 40 (1) : 107-120. doi: 10.3969/j.issn.0253-4967.2018.01.009

    CrossRef Google Scholar

    [48] 李玶, 苑京立, 1983. 有关活断层与工程建设的几个问题[C]//全国首届工程地质学术会议论文选集. 苏州: 科学出版社.

    Google Scholar

    [49] 马映辉, 贾宏福, 李成志, 等, 2021.某铁路勘察近水平孔取心钻探施工技术[J].地质与勘探,57(1):190-198.

    Google Scholar

    [50] 孟秋, 高宽, 陈启志, 等, 2021. 2008年汶川大地震孕震、同震及震后变形和应力演化全过程的数值模拟[J]. 地质力学学报, 27(4): 614-627. doi: 10.12090/j.issn.1006-6616.2021.27.04.051

    CrossRef Google Scholar

    [51] 潘桂棠, 李兴振, 王立全, 等, 2002. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 2002, 21(11): 701-707. doi: 10.3969/j.issn.1671-2552.2002.11.002

    CrossRef Google Scholar

    [52] 潘家伟, 李海兵, Marie-Luce CHEVALIER, 等, 2002. 2022年青海门源M_s6.9地震地表破裂带及发震构造研究[J]. 地质学报, 96(1): 215-231. doi: 10.19762/j.cnki.dizhixuebao.2022125

    CrossRef Google Scholar

    [53] 王道远, 孙其清, 王凯, 等, 2019. 强震区围岩局部缺陷对隧道衬砌受力影响分析[J]. 铁道工程学报, 36(8): 73-78. doi: 10.3969/j.issn.1006-2106.2019.08.015

    CrossRef Google Scholar

    [54] 王国祥, 赖鸿斌, 2012. 高速铁路轨道控制网CPⅢ建网与精度控制[J]. 高速铁路技术, 3(1): 18-19, 23. doi: 10.3969/j.issn.1674-8247.2012.01.005

    CrossRef Google Scholar

    [55] 王鑫, 姜文亮, 张景发, 等, 2020. 青藏高原东北缘重力场深部结构及其动力学特征[J]. 地球物理学报, 63(3): 988-1001. doi: 10.6038/cjg2020N0219

    CrossRef Google Scholar

    [56] 吴中海, 2019. 活断层的定义与分类——历史, 现状和进展[J]. 地球学报, 40 (5) : 661-697. doi: 10.3975/cagsb.2019.051001

    CrossRef Google Scholar

    [57] 吴中海, 2022. 活断层与工程应用Ⅰ: 定义与分类[J]. 地球科学与环境学报, 44(6): 922-947.

    Google Scholar

    [58] 徐化超, 2019. 青藏高原东北缘地区主要活动断裂带的运动学研究[D]. 北京: 中国地震局地震预测研究所.

    Google Scholar

    [59] 薛善余, 谢虹, 袁道阳, 等, 2022. 2022门源MS6.9地震地表破裂带震害特征调查[J]. 地震工程学报, 44(2): 458-467.

    Google Scholar

    [60] 袁道阳, 张培震, 刘百篪, 等, 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报, 78(2): 270-278. doi: 10.3321/j.issn:0001-5717.2004.02.017

    CrossRef Google Scholar

    [61] 张林成, 周聪, 汤井田, 等, 2022.双分量广域电磁法在深埋隧洞工程勘察中的应用 [J].地质与勘探,58(4):857-865.

    Google Scholar

    [62] 张培震, 邓起东, 张竹琪, 等, 2013. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学: 地球科学, 43(10): 1607-1620.

    Google Scholar

    [63] 张玉敏, 王玉杰, 朱泽奇, 2013. 地震作用下地下洞室群损伤演化规律和分布特征[J]. 世界地震工程, 29(4): 108-113. doi: 10.3969/j.issn.1007-6069.2013.04.017

    CrossRef Google Scholar

    [64] 周民都, 吕太乙, 张元生, 等, 2000. 青藏高原东北缘地质构造背景及地壳结构研究[J]. 地震学报, 22(6): 645-653. doi: 10.3321/j.issn:0253-3782.2000.06.011

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(559) PDF downloads(14) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint