2022 Vol. 28, No. 6
Article Contents

ZHANG Xianzheng, TIE Yongbo, LI Guanghui, YANG Chang, LU Jiayan, LU Tuo. 2022. Characteristics and risk assessment of debris flows in the Wandong catchment after the MS 6.8 Luding earthquake. Journal of Geomechanics, 28(6): 1035-1045. doi: 10.12090/j.issn.1006-6616.20222827
Citation: ZHANG Xianzheng, TIE Yongbo, LI Guanghui, YANG Chang, LU Jiayan, LU Tuo. 2022. Characteristics and risk assessment of debris flows in the Wandong catchment after the MS 6.8 Luding earthquake. Journal of Geomechanics, 28(6): 1035-1045. doi: 10.12090/j.issn.1006-6616.20222827

Characteristics and risk assessment of debris flows in the Wandong catchment after the MS 6.8 Luding earthquake

    Fund Project: The research is financially supported by the National Natural Science Foundation of China (Grant U20A20110-01) and the Geological Survery Project of the China Geological Survey (Grant DD20221746)
More Information
  • On Sep. 5, 2022, an MS 6.8 earthquake struck Luding County. The earthquake triggered large amounts of co-seismic landslides, which blocked the Wandong River for nearly 24 hours. Field surveys, image interpretation, spatial statistics, and hydro-logical calculations were used to investigate the characteristics of co-seismic landslides and the risk of debris flow following the earthquake. According to the findings, co-seismic landslides are primarily found in areas of earthquake intensity IX, and their sizes are typically small and medium. They are distributed along both sides of the channel, particularly on both sides of the thin ridge facing the air. The distance from the fault and slope controls the distribution of co-seismic landslides. The volume of debris flow runout in the Wandong catchment may be twice that of the debris flow prior to the earthquake. On this basis, the following disaster prevention and mitigation suggestions were put forward. The risk of runout debris flow in the catchment should be strengthened; The value of triggering rainfall of debris flow should be obtained as soon as possible through comprehensive monitoring and early warning; The scale amplification factor of debris flow should be fully considered in the design of debris flow prevention and control projects. This research can be used as a scientific reference for disaster prevention and mitigation of post-earthquake debris flows.

  • 加载中
  • BARTH S, GEERTSEMA M, BEVINGTON A R, et al., 2020. Landslide response to the 27 October 2012 earthquake (MW 7.8), southern Haida Gwaii, British Columbia, Canada[J]. Landslides, 17(3): 517-526. doi: 10.1007/s10346-019-01292-7

    CrossRef Google Scholar

    CHANG M, TANG C, VAN ASCH T W J, et al., 2017. Hazard assessment of debris flows in the Wenchuan earthquake-stricken area, South West China[J]. Landslides, 14(5): 1783-1792. doi: 10.1007/s10346-017-0824-9

    CrossRef Google Scholar

    CHEN M, TANG C, XIONG J, et al., 2020. The long-term evolution of landslide activity near the epicentral area of the 2008 Wenchuan earthquake in China[J]. Geomorphology, 367: 107317. doi: 10.1016/j.geomorph.2020.107317

    CrossRef Google Scholar

    CHEN M, TANG C, LI M W, et al., 2022. Changes of surface recovery at coseismic landslides and their driving factors in the Wenchuan earthquake-affected area[J]. CATENA, 210: 105871. doi: 10.1016/j.catena.2021.105871

    CrossRef Google Scholar

    CHEN S J, ZHENG X, WANG J B, et al., 2020. Risk analysis of cascade landslide dam based on an approach of quick breach flood calculation[J]. Water Resources and Hydropower Engineering, 51(3): 82-90. (in Chinese with English abstract)

    Google Scholar

    China Association of Geological Hazard Prevention, 2018. Specification of geological investigation for debris flow stabilization[S]. Beijing, 4: 47-50. (in Chinese)

    Google Scholar

    FAN X M, SCARINGI G, KORUP O, et al., 2019. Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts[J]. Reviews of Geophysics, 57(2): 421-503. doi: 10.1029/2018RG000626

    CrossRef Google Scholar

    FANG Q S, TANG C, 2016. Study on run-out amount of break and general debris flows in Wenchuan Earthquake area[J]. Journal of Catastrophology, 31(1): 66-71. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2016.01.014

    CrossRef Google Scholar

    GAO D D, WU Y, CHEN M, et al., 2015. Baseflow separation and rainfall infiltration calculation of small watershed in Gongga mountain forest system[J]. Resources and Environment in the Yangtze Basin, 24(6): 949-955. (in Chinese with English abstract)

    Google Scholar

    GE Y G, CUI P, ZHANG J Q, et al., 2015. Catastrophic debris flows on July 10th 2013 along the Min River in areas seriously-hit by the Wenchuan earthquake[J]. Journal of Mountain Science, 12(1): 186-206. doi: 10.1007/s11629-014-3100-7

    CrossRef Google Scholar

    HUANG R Q, LI W L, 2008. Research on development and distribution rules of Geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 27(12): 2585-2592. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2008.12.028

    CrossRef Google Scholar

    HUANG X, TANG C, 2017. Quantitative analysis of dynamic features for entrainment-outburst-induced catastrophic debris flows in Wenchuan earthquake area[J]. Journal of Engineering Geology, 25(6): 1491-1500. (in Chinese with English abstract)

    Google Scholar

    LIN C W, SHIEH C L, YUAN B D, et al., 2004. Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan[J]. Engineering Geology, 71(1-2): 49-61. doi: 10.1016/S0013-7952(03)00125-X

    CrossRef Google Scholar

    LIU Z, LI B, HE K, et al., 2020. Research of dynamic response patterns of high steep rock slope under earthquake effects[J]. Journal of Geomechanics, 26(1): 115-124. (in Chinese with English abstract)

    Google Scholar

    NI H Y, 2016. Influence of rainfall patterns on debris flow initiation and critical rainfall condition[D]. Chengdu: Chengdu University of Technology: 21-22. (in Chinese with English abstract)

    Google Scholar

    POURGHASEMI H R, JIRANDEH A G, PRADHAN B, et al., 2013. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran[J]. Journal of Earth System Science, 122(2): 349-369. doi: 10.1007/s12040-013-0282-2

    CrossRef Google Scholar

    SHE T, XIE H, WANG S G, et al., 2008. Characteristics and hazard assessment of Wandong river debris flow on east slope of Gongga mountain[J]. Research of Soil and Water Conservation, 15(3): 242-245. (in Chinese with English abstract)

    Google Scholar

    Sichuan Provincial Water Resources Department, 1984. Specification of rainstorm and flood calculation in medium and small catchments of Sichuan Province[M]. Chengdu: Sichuan Provincial Water Resources Department, 6: 8-17. (in Chinese)

    Google Scholar

    SONG Z, BA R J, LIU Y J, 2010. Analysis on blocking of the Dadu river by a giant debris flow of Moxi River: quantitative calculation of scale of a debris flow and flows of different frequencies by rain-flood method[J]. Journal of Catastrophology, 25(2): 73-75. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2010.02.015

    CrossRef Google Scholar

    TANG C, ZHU J, DING J, et al., 2011. Catastrophic debris flows triggered by a 14 August 2010 rainfall at the epicenter of the Wenchuan earthquake[J]. Landslides, 8(4): 485-497. doi: 10.1007/s10346-011-0269-5

    CrossRef Google Scholar

    TANG C, VAN WESTEN C, 2018. Atlas of Wenchuan-earthquake geohazards[M]. Beijing: Science Press: 17-18.

    Google Scholar

    TANG C X, VAN WESTEN C J, TANYAS H, et al., 2016. Analysing post-earthquake landslide activity using multi-temporal landslide inventories near the epicentral area of the 2008 Wenchuan earthquake[J]. Natural Hazards and Earth System Sciences, 16(12): 2641-2655. doi: 10.5194/nhess-16-2641-2016

    CrossRef Google Scholar

    TIE Y B, LI Z L, 2011. Characteristics of debris flow development and its environmental response in Moxi River basin[J]. Yangtze River, 42(13): 40-43, 71. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4179.2011.13.010

    CrossRef Google Scholar

    TIE Y B, ZHANG X Z, LU J Y, et al., 2022. Characteristics of geological hazards and it's mitigations of the Ms6.8 earthquake in Luding County, Sichuan Province[J/OL]. Hydrogeology & Engineering Geology, 49: 1-12[2022-09-27]. https://www.swdzgcdz.com/cn/article/doi/10.16030/j.cnki.issn.1000-3665.202209023. (in Chinese with English abstract)

    Google Scholar

    WANG D H, TIAN K, 2014. Spatial distribution analysis of seismic landslides along Luhuo segment of Xianshuihe fault zone[J]. Journal of Engineering Geology, 22(2): 292-299. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2014.02.020

    CrossRef Google Scholar

    XIAO X, LU C Y, WU X F, 2008. Debris flow disaster and prevention countermeasures in Wandong River, Luding County[C]. Chengdu: Sichuan Society of Civil Engineering and Architecture: 181-182. (in Chinese)

    Google Scholar

    XIN P, WU S R, ZHANG Z L, et al., 2017. Distribution characteristics and formation mechanism of landslides triggered by activities of Baoji-Wushan segment at the northern margin of western Qinling fault zone[J]. Journal of Geomechanics, 23(5): 723-733. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2017.05.009

    CrossRef Google Scholar

    XIONG J, TANG C, TANG H, et al., 2022. Long-term hillslope erosion and landslide-channel coupling in the area of the catastrophic Wenchuan earthquake[J]. Engineering Geology, 305: 106727. doi: 10.1016/j.enggeo.2022.106727

    CrossRef Google Scholar

    XU C, XU X W, 2014. The spatial distribution pattern of landslides triggered by the 20 April 2013 Lushan earthquake of China and its implication to identification of the seismogenic fault[J]. Chinese Science Bulletin, 59(13): 1416-1424. doi: 10.1007/s11434-014-0202-0

    CrossRef Google Scholar

    XU C, XU X W, SHYU J B H, 2015. Database and spatial distribution of landslides triggered by the Lushan, China Mw 6.6 earthquake of 20 April 2013[J]. Geomorphology, 248: 77-92. doi: 10.1016/j.geomorph.2015.07.002

    CrossRef Google Scholar

    XU Q, LI W L, 2010. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 18(6): 818-826. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.06.002

    CrossRef Google Scholar

    YUNUS A P, FAN X M, TANG X L, et al., 2020. Decadal vegetation succession from MODIS reveals the spatio-temporal evolution of post-seismic landsliding after the 2008 Wenchuan earthquake[J]. Remote Sensing of Environment, 236: 111476. doi: 10.1016/j.rse.2019.111476

    CrossRef Google Scholar

    ZHANG H W, LIU F Z, WANG J C, et al., 2022. Hazard assessment of debris flows in Kongpo Gyamda, Tibet based on FLO-2D numerical simulation[J]. Journal of Geomechanics, 28(2): 306-318. (in Chinese with English abstract)

    Google Scholar

    ZHANG X Z, TANG C X, LI N, et al., 2022. Investigation of the 2019 Wenchuan County debris flow disaster suggests nonuniform spatial and temporal post-seismic debris flow evolution patterns[J]. Landslides, 19(8): 1935-1956. doi: 10.1007/s10346-022-01896-6

    CrossRef Google Scholar

    ZHOU W, TANG C, 2014. Rainfall thresholds for debris flow initiation in the Wenchuan earthquake-stricken area, southwestern China[J]. Landslides, 11(5): 877-887. doi: 10.1007/s10346-013-0421-5

    CrossRef Google Scholar

    陈淑婧, 郑轩, 王江波, 等, 2020. 基于快速连溃洪水计算的梯级堰塞湖风险分析[J]. 水利水电技术, 51(3): 82-90.

    Google Scholar

    方群生, 唐川, 2016. 汶川8.0级地震震区溃决型和一般型泥石流冲出量研究[J]. 灾害学, 31(1): 66-71.

    Google Scholar

    高东东, 吴勇, 陈盟, 等, 2015. 贡嘎山森林系统小流域基流分割与降雨入渗补给计算[J]. 长江流域资源与环境, 24(6): 949-955.

    Google Scholar

    黄润秋, 李为乐, 2008. "5·12"汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 27(12): 2585-2592. doi: 10.3321/j.issn:1000-6915.2008.12.028

    CrossRef Google Scholar

    黄勋, 唐川, 2017. 强震区侵蚀-溃决型泥石流的动力特性定量分析[J]. 工程地质学报, 25(6): 1491-1500.

    Google Scholar

    刘铮, 李滨, 贺凯, 等, 2020. 地震作用下高陡岩质斜坡动力响应规律研究[J]. 地质力学学报, 26(1): 115-124.

    Google Scholar

    倪化勇, 2016. 泥石流发生雨型响应及其临界降雨条件[D]. 成都: 成都理工大学: 21-22.

    Google Scholar

    佘涛, 谢洪, 王士革, 等, 2008. 贡嘎山东坡湾东河泥石流的特征及危险度评价[J]. 水土保持研究, 15(3): 242-245.

    Google Scholar

    四川省水利电力厅. 1984. 四川省中小流域暴雨洪水计算手册[S]. 成都, 6: 8-17.

    Google Scholar

    宋志, 巴仁基, 刘宇杰, 2010. 磨西河特大型泥石流堵塞大渡河分析: 以一次泥石流规模、不同频率雨洪法流量定量计算[J]. 灾害学, 25(2): 73-75.

    Google Scholar

    铁永波, 李宗亮, 2011. 磨西河流域泥石流发育特征及其环境响应分析[J]. 人民长江, 42(13): 40-43, 71.

    Google Scholar

    铁永波, 张宪政, 卢佳燕, 等, 2022. 四川省泸定县Ms6.8级地震地质灾害发育规律与减灾对策[J/OL]. 水文地质工程地质, 49(0): 1-12[2022-09-27]. https://www.swdzgcdz.com/cn/article/doi/10.16030/j.cnki.issn.1000-3665.202209023.

    Google Scholar

    王东辉, 田凯, 2014. 鲜水河断裂带炉霍段地震滑坡空间分布规律分析[J]. 工程地质学报, 22(2): 292-299.

    Google Scholar

    肖翔, 卢铖昀, 武肖福, 2008. 沪定县湾东河泥石流灾害及防治对策[C]//四川省土木建筑学会第33届学术年会论文集. 成都: 四川省土木建筑学会: 181-182.

    Google Scholar

    辛鹏, 吴树仁, 张泽林, 等, 2017. 西秦岭北缘断裂宝鸡-武山段活动触发滑坡分布规律与成因机制[J]. 地质力学学报, 23(5): 723-733.

    Google Scholar

    许强, 李为乐, 2010. 汶川地震诱发大型滑坡分布规律研究[J]. 工程地质学报, 18(6): 818-826.

    Google Scholar

    张浩韦, 刘福臻, 王军朝, 等, 2022. 基于FLO-2D数值模拟的工布江达县城泥石流灾害危险性评价[J]. 地质力学学报, 28(2): 306-318.

    Google Scholar

    中国地质灾害防治工程行业协会. 2018. 泥石流灾害防治工程勘查规范(试行)[S]. 北京, 4: 47-50.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(1821) PDF downloads(69) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint