2022 Vol. 28, No. 6
Article Contents

ZHAO Chaoying, LIU Xiaojie, GAO Yang, FENG Xiaosong. 2022. Early identification of high-elevation geohazards in the lower Yarlung Zangbo River based on the SAR/InSAR technology. Journal of Geomechanics, 28(6): 981-994. doi: 10.12090/j.issn.1006-6616.20222825
Citation: ZHAO Chaoying, LIU Xiaojie, GAO Yang, FENG Xiaosong. 2022. Early identification of high-elevation geohazards in the lower Yarlung Zangbo River based on the SAR/InSAR technology. Journal of Geomechanics, 28(6): 981-994. doi: 10.12090/j.issn.1006-6616.20222825

Early identification of high-elevation geohazards in the lower Yarlung Zangbo River based on the SAR/InSAR technology

    Fund Project: This research is financially supported by the National Key R&D Program of China (Grant 2022YFC3004302) and the Natural Science Foundation of China (Grants No.41929001, 41874005)
More Information
  • The lower stream of the Yarlung Zangbo River is in the front zone of the collision between the Indian and Eurasian plates with active neotectonics movements and many high mountains in this region. It is a typical mountain-valley area. Due to the unique geological structure and the influence of climate change, geohazards such as collapses, landslides, and mudslides frequently happen in this area. We used Sentinel-1 and ALOS/PALSAR-2 images to identify the high-elevation geohazards in the region from 2014 to 2020 by combining multiple time-series InSAR techniques and SAR offset-tracking techniques. The identification results show that there are 260 geohazard-induced deformed areas in the study area, and most of them are located in gullies and peaks at higher elevations. The rock avalanche deformations in the Zebalongba glacier gully have formed several large tension cracks, and once the avalanche falls, they are most likely to form a dam. The back edge of the Dabo landslide, which was reactivated by the Milin earthquake, has completely been detached, and the cracks fully penetrate the left and right sides. Once the landslide destabilizes, it will completely block the Yarlung Zangbo River. This study provides a general method for identifying high-elevation geohazards in high mountain-valley areas and a reference for similar geohazards identification.

  • 加载中
  • BIAN Z X, 2021. Provenance analyses on the Paleogene clastic rocks in Gonjo Basin: implications for Tectonic Evolution[D]. Kunming: Yunnan University. (in Chinese with English abstract)

    Google Scholar

    DAI K R, DENG J, XU Q, et al., 2022. Interpretation and sensitivity analysis of the InSAR line of sight displacements in landslide measurements[J]. GIScience & Remote Sensing, 59(1): 1226-1242.

    Google Scholar

    DUN J W, FENG W K, YI X Y, et al., 2021. Detection and mapping of active landslides before impoundment in the Baihetan Reservoir Area (China) based on the time-series InSAR method[J]. Remote Sensing, 13(16): 3213. doi: 10.3390/rs13163213

    CrossRef Google Scholar

    GAO P, 2010. Risk assessment and forecast of geological disaster in Southeast Tibet[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)

    Google Scholar

    GU Z R, MA C H, ZHANG X Q, et al., 2022. The use of SAR offset tracking for detecting mountain glacier movement[C]//2022 3rd international conference on geology, mapping and remote sensing (ICGMRS). Zhoushan: IEEE: 5-10.

    Google Scholar

    JIANG P, ZHANG Q F, LI S Y, 2022. Hydrochemical evolution in the Yarlung Zangbo River basin[J]. Environmental Science, 1-13 (2022-09-19). https://doi.org/10.13227/j.hjkx.202206297. (in Chinese with English abstract)

    Google Scholar

    KANG Y, 2020. Research on key issues of landslide deformation monitoring and landslide mechanism analysis with InSAR technique[D]. Xi'an: Chang'an University. (in Chinese with English abstract)

    Google Scholar

    KANG Y, LU Z, ZHAO C Y, et al., 2021. InSAR monitoring of creeping landslides in mountainous regions: A case study in Eldorado National Forest, California[J]. Remote Sensing of Environment, 258: 112400. doi: 10.1016/j.rse.2021.112400

    CrossRef Google Scholar

    LI B, GAO Y, WAN J W, et al., 2020. The chain of the major geological disasters and related strategies in the Yalu-Zangbu River canyon region[J]. Hydropower and Pumped Storage, 6(2): 11-14, 35. (in Chinese with English abstract)

    Google Scholar

    LI J C, 2007. Research on route selection scheme of Lhasa-Rikaze railway in Brahmaputra's Canyon area[J]. Railway Investigation and Surveying, 33(5): 1-6. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-7479.2007.05.001

    CrossRef Google Scholar

    LI L J, YAO X, ZHOU Z K, et al., 2022. The applicability assessment of Sentinel-1 data in InSAR monitoring of the deformed slopes of reservoir in the mountains of southwest China: A case study in the Xiluodu Reservoir[J]. Journal of Geomechanics, 28(2): 281-293. (in Chinese with English abstract)

    Google Scholar

    LI S W, XU W B, LI Z W, 2022. Review of the SBAS InSAR Time-series algorithms, applications, and challenges[J]. Geodesy and Geodynamics, 13(2): 114-126. doi: 10.1016/j.geog.2021.09.007

    CrossRef Google Scholar

    LI W H, ZHANG H C, ZHANG H, 2020. InSAR DEM reconstruction method based on StereoSAR[J]. Modern Radar, 42(1): 55-63. (in Chinese with English abstract)

    Google Scholar

    LI X, 2019. Study on the relationship between the development of large landslides and the evolution of neotectonic geomorphology in the Motuhe section of the Yarlung Zangbo River[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)

    Google Scholar

    LIU C Z, LV J T, TONG L Q, et al., 2019. Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Tibet[J]. Geology in China, 46(2): 219-234. (in Chinese with English abstract)

    Google Scholar

    LIU G X, ZHANG B, ZHANG R, et al., 2019. Monitoring dynamics of Hailuogou glacier and the secondary landslide disasters based on combination of satellite SAR and ground-based SAR[J]. Geomatics and Information Science of Wuhan University, 44(7): 980-995. (in Chinese with English abstract)

    Google Scholar

    LIU L H, WANG A Y, CHEN N S, et al., 2022. The spatial distribution and main controlling factors of collapse-landslides along the downstream of Yalung Zangbo River[J]. Scientific and Technological Innovation, 26(17): 131-134. (in Chinese with English abstract)

    Google Scholar

    LIU X J, ZHAO C Y, ZHANG Q, et al., 2021. Integration of Sentinel-1 and ALOS/PALSAR-2 SAR datasets for mapping active landslides along the Jinsha River corridor, China[J]. Engineering Geology, 284: 106033. doi: 10.1016/j.enggeo.2021.106033

    CrossRef Google Scholar

    LIU Z, LI B, HE K, et al., 2020. An analysis of dynamic response characteristics of the Yigong Landslide in Tibet under strong earthquake[J]. Journal of Geomechanics, 26(4): 471-480. (in Chinese with English abstract)

    Google Scholar

    MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al., 2013. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 1(1): 6-43. doi: 10.1109/MGRS.2013.2248301

    CrossRef Google Scholar

    OSMANOǦLU B, SUNAR F, WDOWINSKI S, et al., 2016. Time series analysis of InSAR data: Methods and trends[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 115: 90-102. doi: 10.1016/j.isprsjprs.2015.10.003

    CrossRef Google Scholar

    SHI X G, LIAO M S, LI M H, et al., 2016. Wide-area landslide deformation mapping with multi-path ALOS PALSAR data stacks: a case study of three Gorges Area, China[J]. Remote Sensing, 8(2): 136. doi: 10.3390/rs8020136

    CrossRef Google Scholar

    SIVALINGAM S, MURUGESAN G P, DHULIPALA K, et al., 2022. Temporal fluctuations of Siachen glacier velocity: a repeat pass SAR interferometry based approach[J]. Geocarto International, 37(17): 4888-4910. doi: 10.1080/10106049.2021.1899306

    CrossRef Google Scholar

    STROZZI T, WEGMULLER U, WERNER C, et al., 2007. Potential of a C-band SAR mission with 12-day repeat cycle to derive ice surface velocity with interferometry and offset tracking[C]//2007 IEEE international geoscience and remote sensing symposium. Barcelona: IEEE: 4229-4232.

    Google Scholar

    TIZZANI P, BERARDINO P, CASU F, et al., 2007. Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach[J]. Remote Sensing of Environment, 108(3): 277-289. doi: 10.1016/j.rse.2006.11.015

    CrossRef Google Scholar

    WANG J, LIU T C, YI G, 2000. Characteristics of isotope distribution in precipitation in the middle-lower reaches of Yarlung Zangbo River[J]. Earth and Environment, 28(1): 63-67. (in Chinese with English abstract)

    Google Scholar

    WANG X Y, ZHAO C Y, LIU Y Y, et al., 2018. InSAR unwrapping error detection method study based on closed loops[J]. Journal of Geodesy and Geodynamics, 38(3): 321-325. (in Chinese with English abstract)

    Google Scholar

    WANG Y A, DONG J, ZHANG L, et al., 2022. Refined InSAR tropospheric delay correction for wide-area landslide identification and monitoring[J]. Remote Sensing of Environment, 275: 113013. doi: 10.1016/j.rse.2022.113013

    CrossRef Google Scholar

    XIN C C, 2019. Geomorphology and geological environment effect analysis of the Eastern Structural junction valley of Yarlung Zangbo River based on DEM[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)

    Google Scholar

    YIN Y P, 2000. Rapid huge landslide and hazard reduction of Yigong River in the Bomi, Tibet[J]. Hydrogeology & Engineering Geology, 44(4): 8-11. (in Chinese with English abstract)

    Google Scholar

    YUAN Z, LI Y, YANG Z Y, et al., 2014. Spatio-temporal variation characteristics of extreme precipitation events in Tibet in last 50 Years[J]. Water Resources and Hydropower Engineering, 45(10): 19-23, 27. (in Chinese with English abstract)

    Google Scholar

    ZHAI Y F, 2022. The distribution and scale and outbreak frequency characteristics of glacial debris flow in southeast Tibet[D]. Lhasa: Tibet University. (in Chinese with English abstract)

    Google Scholar

    ZHANG P Q, LIU X H, 2008. Debris flow distribution and preventions at the great turning in the gorge of Yarlung Zangbo River, southeastern Tibet[J]. The Chinese Journal of Geological Hazard and Control, 19(1): 12-17. (in Chinese with English abstract)

    Google Scholar

    ZHAO D Z, QU C Y, CHEN H, et al., 2021. Tectonic and geometric control on fault kinematics of the 2021 MW7.3 Maduo (China) earthquake inferred from interseismic, coseismic, and postseismic InSAR observations[J]. Geophysical Research Letters, 48(18): e2021GL09541712.

    Google Scholar

    ZHU S, 2012. River landform and geology environment evolution in the Yarlung Zangbo River valley[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)

    Google Scholar

    ZHU Y F, YAO X, YAO L H, et al., 2022. Identification and risk assessment of coal mining-induced landslides in Guizhou Province by InSAR and optical remote sensing[J]. Journal of Geomechanics, 28(2): 268-280. (in Chinese with English abstract)

    Google Scholar

    边紫璇, 2021. 藏东南贡觉盆地古近系碎屑岩物源示踪及其构造意义[D]. 昆明: 云南大学.

    Google Scholar

    高鹏, 2010. 藏东南地质灾害危险性评估及预测[D]. 北京: 中国地质大学(北京).

    Google Scholar

    江平, 张全发, 李思悦, 2022. 雅鲁藏布江水化学演变规律[J]. 环境科学, 1-13 (2022-09-19). 鲁藏布江水化学演变规.

    Google Scholar

    康亚, 2020. 滑坡形变InSAR监测关键技术研究与机理分析[D]. 西安: 长安大学.

    Google Scholar

    李滨, 高杨, 万佳威, 等, 2020. 雅鲁藏布江大峡谷地区特大地质灾害链发育现状及对策[J]. 水电与抽水蓄能, 6(2): 11-14, 35.

    Google Scholar

    李金城, 2007. 拉日铁路雅鲁藏布江峡谷区线路方案比选研究[J]. 铁道勘察, 33(5): 1-6.

    Google Scholar

    李凌婧, 姚鑫, 周振凯, 等, 2022. Sentinel-1数据在西南山区水库变形斜坡InSAR监测中的适用性评价: 以溪洛渡水库为例[J]. 地质力学学报, 28(2): 281-293.

    Google Scholar

    李伟华, 张华春, 张衡, 2020. 基于StereoSAR辅助的InSAR DEM重建方法研究[J]. 现代雷达, 42(1): 55-63.

    Google Scholar

    李翔, 2019. 雅鲁藏布江墨脱河段大型滑坡发育与新构造地貌演化关联性研究[D]. 成都: 成都理工大学.

    Google Scholar

    刘传正, 吕杰堂, 童立强, 等, 2019. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究[J]. 中国地质, 46(2): 219-234.

    Google Scholar

    刘国祥, 张波, 张瑞, 等, 2019. 联合卫星SAR和地基SAR的海螺沟冰川动态变化及次生滑坡灾害监测[J]. 武汉大学学报·信息科学版, 44(7): 980-995.

    Google Scholar

    刘丽红, 王翱宇, 陈宁生, 等, 2022. 雅鲁藏布江下游沿河段滑坡崩塌空间分布特征及其主控因素[J]. 科学技术创新, 26(17): 131-134.

    Google Scholar

    刘铮, 李滨, 贺凯, 等, 2020. 地震作用下西藏易贡滑坡动力响应特征分析[J]. 地质力学学报, 26(4): 471-480.

    Google Scholar

    王军, 刘天仇, 尹观, 2000. 西藏雅鲁藏布江中、下游地区大气降水同位素分布特征[J]. 地质地球化学, 28(1): 63-67.

    Google Scholar

    王霞迎, 赵超英, 刘媛媛, 等, 2018. 基于闭合环的InSAR解缠误差探测方法研究[J]. 大地测量与地球动力学, 38(3): 321-325.

    Google Scholar

    辛聪聪, 2019. 基于DEM雅鲁藏布江东构造结河谷地貌及其地质环境效应研究[D]. 成都: 成都理工大学.

    Google Scholar

    殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质, 27(4): 8-11.

    Google Scholar

    袁喆, 李艳, 杨志勇, 等, 2014. 近50年来西藏极端降水时空变化特征[J]. 水利水电技术, 45(10): 19-23, 27.

    Google Scholar

    翟毅飞, 2022. 藏东南地区冰川泥石流分布规律与规模频率特征研究[D]. 拉萨: 西藏大学.

    Google Scholar

    张沛全, 刘小汉, 2008. 雅鲁藏布江大拐弯入口段泥石流特征及应对措施[J]. 中国地质灾害与防治学报, 19(1): 12-17.

    Google Scholar

    祝嵩, 2012. 雅鲁藏布江河谷地貌与地质环境演化[D]. 北京: 中国地质科学院.

    Google Scholar

    朱怡飞, 姚鑫, 姚磊华, 等, 2022. 基于InSAR和光学遥感的贵州鬃岭采煤滑坡识别与危险性评价[J]. 地质力学学报, 28(2): 268-280.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(2)

Article Metrics

Article views(1896) PDF downloads(63) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint