2022 Vol. 28, No. 5
Article Contents

LYU Zhicheng, CHEN hui, MI Kuifeng, ZHANG Banglu, XIE Yueqiao, PANG Zhenshan, CHENG Zhizhong, XUE Jianling, GONG Fanying, DUAN Bin, LYU Xin. 2022. The theory and method of ore prospecting prediction for exploration area: Case studies of the Lala copper deposit in Sichuan, Muhu–Maerkantu manganese ore deposit in Xinjiang and Aonaodaba tin-polymetallic deposit in Inner Mongolia. Journal of Geomechanics, 28(5): 842-865. doi: 10.12090/j.issn.1006-6616.20222816
Citation: LYU Zhicheng, CHEN hui, MI Kuifeng, ZHANG Banglu, XIE Yueqiao, PANG Zhenshan, CHENG Zhizhong, XUE Jianling, GONG Fanying, DUAN Bin, LYU Xin. 2022. The theory and method of ore prospecting prediction for exploration area: Case studies of the Lala copper deposit in Sichuan, Muhu–Maerkantu manganese ore deposit in Xinjiang and Aonaodaba tin-polymetallic deposit in Inner Mongolia. Journal of Geomechanics, 28(5): 842-865. doi: 10.12090/j.issn.1006-6616.20222816

The theory and method of ore prospecting prediction for exploration area: Case studies of the Lala copper deposit in Sichuan, Muhu–Maerkantu manganese ore deposit in Xinjiang and Aonaodaba tin-polymetallic deposit in Inner Mongolia

    Fund Project: This research is financially supported by the Geological Project of the China Geological Survey(Grants DD20220166, DD20190166)
  • Reducing exploration risks and realizing scientific prospecting always have been frontier fields and research hotspots in the world of mineral exploration, the theory and method of ore prospecting prediction for exploration area is the valid channel to deal with this problem. Using this method, a geological model of ore prospecting can be established by combining the internal (geochemical behavior of elements) and external (types of geological processes) control factors for mineralization. The main components of the prospecting prediction model include geological bodies related to mineralization, metallogenetic structure planes and mineralization characteristics. Together with the results of special geological mapping, geophysical and geochemical exploration on large scale, orebodies have been located by synthetic information and explored by drilling. Case studies of the Lala copper deposit in Sichuan, Muhu–Maerkantu manganese ore deposit in Xinjiang and Aonaodaba tin-polymetallic deposit in Inner Mongolia, illustrate the effective application of this method in ore prospecting prediction.

  • 加载中
  • CHEN D H, SUI Q L, ZHAO X J, et al. , 2019. Geology, geochemical characteristics, and sedimentary environment of Mn-bearing carbonate from theLate Carboniferous Muhu manganese deposit in West Kunlun[J]. Acta SedimentologicaSinica, 37(3): 477-490. (in Chinese with English abstract)

    Google Scholar

    CHEN D H, SUI Q L, GUO Z P, et al. , 2022. Sedimentary environment of Mn-bearing carbonate from the Muhu manganese deposit in Malkansu, West Kunlun: Evidences from Fusulinids and C-O-Sr isotopes[J]. Northwestern Geology, 55(2): 1-13. (in Chinese with English abstract)

    Google Scholar

    CHEN G W, 1991. The characteristic and paragneiss of the spilite-keratophyre formation from Hekou group in Huili, Sichuan Province[J]. Acta Geologica Sichuan, 11(4): 255-261. (in Chinese)

    Google Scholar

    CHEN G W, CHENG D R, YU X W, 1992. The typomorphic feature of pyrite in the copper deposit of LARLAR, Sichuan Province[J]. Mineralogy and Petrology, 12(3): 85-91. (in Chinese with English abstract)

    Google Scholar

    CHEN G W, XIA B, 2001. Study on the genesis of Lala copper deposit, Sichuan Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 20(1): 42-44. (in Chinese with English abstract)

    Google Scholar

    CHEN H, LIN L J, PANG Z S, et al. , 2021. Construction and demonstration of an ore prospecting model for the Lala copper deposit in Huili, Sichuan[J]. Earth Science Frontiers, 28(3): 309-327. (in Chinese with English abstract)

    Google Scholar

    CHEN J P, LÜ P, WU W, et al. , 2007. A 3D method for predicting blind orebodies, based on a 3D visualization model and its application[J]. Earth Science Frontiers, 14(5): 54-62. (in Chinese with English abstract) doi: 10.1016/S1872-5791(07)60035-9

    CrossRef Google Scholar

    CHEN J P, LI J, CUI N, et al. , 2015. The construction and application of geological cloud under the big data background[J]. Geological Bulletin of China, 34(7): 1260-1265. (in Chinese with English abstract)

    Google Scholar

    CHEN W, ZHAO X F, LI X C, et al. , 2019. An overview on the characteristics and origin of iron-oxide copper gold (IOCG) deposits in China[J]. Acta Petrologica Sinica, 35(1): 99-118. (in Chinese with English abstract) doi: 10.18654/1000-0569/2019.01.07

    CrossRef Google Scholar

    CHEN W T, ZHOU M F, 2012. Paragenesis, stable isotopes, and molybdenite Re-Os isotope age of the Lala iron-copper deposit, Southwest China[J]. Economic Geology, 107(3): 459-480. doi: 10.2113/econgeo.107.3.459

    CrossRef Google Scholar

    CHEN W T, ZHOU M F, ZHAO X F, 2013. Late Paleoproterozoic sedimentary and mafic rocks in the Hekou area, SW China: implication for the reconstruction of the Yangtze Block in Columbia[J]. Precambrian Research, 231: 61-77. doi: 10.1016/j.precamres.2013.03.011

    CrossRef Google Scholar

    CHEN W T, ZHOU M F, LI X C, et al. , 2019. In situ Pb-Pb isotopic dating of sulfides from hydrothermal deposits: a case study of the Lala Fe-Cu deposit, SW China[J]. Mineralium Deposita, 54(5): 671-682. doi: 10.1007/s00126-018-0833-1

    CrossRef Google Scholar

    CHEN Y C, PEI R F, WANG D H, 2006. On Minerogenetic(Metallogenetic)series: Third discussion[J]. Acta Geologica Sinica, 80(10): 1501-1508. (in Chinese with English abstract)

    Google Scholar

    CHEN Y Q, CHEN Y C, ZHAO Y M, et al. , 1983. Further discussion on the problems of minerogenetic series of mineral deposits[J]. Bulletin Chinese Acad. Geol. Sci. (6): 1-64. (in Chinese with English abstract)

    Google Scholar

    CRERAR D A, NAMSON J, CHYI M S, et al. , 1982. Manganiferous cherts of the Franciscan assemblage: I. General geology, ancient and modern analogues, and implications for hydrothermal convection at oceanic spreading centers[J]. Economic Geology, 77(3): 519-540. doi: 10.2113/gsecongeo.77.3.519

    CrossRef Google Scholar

    DONG X Z, YANG H, FAN J H, et al. , 2019. Research on sulfur isotopes and metallogenic physicochemical conditions of Weilasituo Zn-Cu-Ag deposit, Inner Mongolia[J]. Global Geology, 38 (4): 953-961. (in Chinese with English abstract)

    Google Scholar

    DONG Z G, ZHANG L C, DONG F Y, et al. , 2020a. Geological characteristics, ore-controlling factors and metallogenic model of Muhu manganese deposit in West Kunlun, China[J]. Journal of Jilin University (Earth Science Edition), 50(5): 1358-1372. (in Chinese with English abstract)

    Google Scholar

    DONG Z G, ZHANG L C, WANG C L, et al. , 2020b. Progress and problems in understanding sedimentary manganese carbonate metallogenesis[J]. Mineral Deposits, 39(2): 237-255. (in Chinese with English abstract)

    Google Scholar

    FAN Y X, YANG Z X, 2003. Metallogenetic regularities and prediction[M]. Xuzhou: China University of Mining and Technology Press. (in Chinese)

    Google Scholar

    FANG W X, 2012. Types of geochemical lithofacies and their applications in basin[J]. Geoscience, 26(5): 996-1007. (in Chinese with English abstract)

    Google Scholar

    FANG W X, 2014. Geotectonic evolution and the Proterozoic iron oxide copper-gold deposits on the western margin of the Yangtze massif[J]. Geotectonica et Metallogenia, 38(4): 733-757. (in Chinese with English abstract)

    Google Scholar

    GAO X, ZHOU Z H, BREITER K, et al. , 2019. Ore-formation mechanism of the Weilasituo tin-polymetallic deposit, NE China: Constraints from bulk-rock and mica chemistry, He-Ar isotopes, and Re-Os dating[J]. Ore Geology Reviews, 109: 163-183. doi: 10.1016/j.oregeorev.2019.04.007

    CrossRef Google Scholar

    GAO Y B, TENG J X, CHEN D H, et al. , 2016. Geology, geochemistry and genesis of the Orto Karnash manganese ore deposit[J]. Mineral Deposits, 35(S1): 5-6. (in Chinese)

    Google Scholar

    GAO Y B, TENG J X, LI W Y, et al. , 2018. Geology, geochemistry and ore genesis of the Aoertuokanashi manganese deposit, western Kunlun, Xinjiang, Northwest China[J]. Acta PetrologicaSinica, 34(8): 2341-2358. (in Chinese with English abstract)

    Google Scholar

    GENG Y S, KUANG H W, DU L L, et al. , 2019. On the Paleo-Mesoproterozoic boundary from the breakup event of the Columbia supercontinent[J]. Acta Petrologica Sinica, 35(8): 2299-2324. (in Chinese with English abstract) doi: 10.18654/1000-0569/2019.08.02

    CrossRef Google Scholar

    GREENTREE M R, 2007. Tectonostratigraphic analysis of the Proterozoic Kangdian Iron Oxide-Copper province, South-west China[D]. Perth: The University of Western Australia.

    Google Scholar

    GREENTREE M R, LI Z X, 2008. The oldest known rocks in south-western China: SHRIMP U-Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group[J]. Journal of Asian Earth Sciences, 33(5-6): 289-302. doi: 10.1016/j.jseaes.2008.01.001

    CrossRef Google Scholar

    HAN R S, 2003. Preliminary discussion on research contents and methods of tectono-metallogenic dynamics and concealed ore orientation prognosis[J]. Geology and Prospecting, 39(1): 5-9. (in Chinese with English abstract)

    Google Scholar

    HAN R S, 2005. Orefield/deposit tectono-geochemical method for the localization and prognosis of concealed orebodies[J]. Geological Bulletin of China, 24(10-11): 978-984. (in Chinese with English abstract)

    Google Scholar

    HU H M, ZHAO P D, LI Z J, 1995. Large scale mineral prediction method[M]. Beijing: Geological Press. (in Chinese)

    Google Scholar

    HUANG C K, BAI Y, ZHU Y S, et al., 2001. The copper deposits in China[M]. Beijing: Geological Press. (in Chinese)

    Google Scholar

    JIANG S H, ZHNG L L, LIU Y F, et al. , 2018. Metallogeny of Xing-Meng Orogenic Belt and some related problems[J]. Mineral Deposits, 37(4): 671-711. (in Chinese with English abstract)

    Google Scholar

    JIN C, XIE Y Q, LI Y F, et al. , 2021. Palaeogeographic reconstruction for the Mn-bearing Formation in the Malkansu manganese deposit belt[J]. Xinjiang Nonferrous Metal, 44(1): 26-27. (in Chinese)

    Google Scholar

    JIN M X, SHEN S, 1998. Fluid features and metallogenic conditions in LALA copper deposit, Huili, Sichuan, China[J]. Geological Science and Technology Information, 17(S1): 45-48. (in Chinese with English abstract)

    Google Scholar

    LI W J, PENG Z D, DONG Z G, et al. , 2022. Direct Re-Os dating of manganese carbonate ores and implications for the formation of the Ortokarnash manganese deposit, Northwest China[J]. Economic Geology, 117(1): 237-252. doi: 10.5382/econgeo.4865

    CrossRef Google Scholar

    LI Z Q, WANG J Z, LIU J J, et al. , 2003. Re-Os dating of molybdenite from LALA Fe-Oxide-Cu-Au-Mo-REE deposit, southwest China: Implications for ore genesis[J]. Contributions to Geology and Mineral Resources Research, 18(1): 39-42. (in Chinese with English abstract)

    Google Scholar

    LIU R L, WU G, LI T G, et al. , 2018. LA-ICP-MS cassiterite and zircon U-Pb ages of the Weilasituo tin-polymetallic deposit in the southern Great Xing’an Range and their geological significance[J]. Earth Science Frontiers, 25(5): 183-201. (in Chinese with English abstract)

    Google Scholar

    LIU Y F, JIANG S H, BAGAS L, 2016. The genesis of metal zonation in the Weilasituo and Bairendaba Ag-Zn-Pb-Cu-(Sn-W) deposits in the shallow part of a porphyry Sn-W-Rb system, Inner Mongolia, China[J]. Ore Geology Reviews, 75: 150-173. doi: 10.1016/j.oregeorev.2015.12.006

    CrossRef Google Scholar

    MAO J W, ZHANG Z H, PEI R F, 2012. An introduction of mineral deposits models in China[M]. Beijing: Geological Press. (in Chinese)

    Google Scholar

    MAYNARD J B, 2010. The chemistry of manganese ores through time: a signal of increasing diversity of earth-surface environments[J]. Economic Geology, 105(3): 535-552. doi: 10.2113/gsecongeo.105.3.535

    CrossRef Google Scholar

    MEI W, LÜ X B, TANG R K, et al. , 2015. Ore-forming fluid and its evolution of Bairendaba-Weilasituo deposits in west slope of southern Great Xing’an Range[J]. Earth Science-Journal of China University of Geosciences, 40(1): 145-162. (in Chinese with English abstract) doi: 10.3799/dqkx.2015.010

    CrossRef Google Scholar

    MI K F, LÜ Z C, YAN T J, et al. , 2020. Zircon geochronological and geochemical study of the Baogaigou Tin deposits, southern Great Xing'an Range, Northeast China: Implications for the timing of mineralization and ore genesis[J]. Geological Journal, 55(7): 5062-5081. doi: 10.1002/gj.3729

    CrossRef Google Scholar

    MU S L, 2016. Volcanic rocks tectonic environments and metallogenesis of typical mineral deposits in Kungai Mountains, West Kunlun[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 1-186. (in Chinese with English abstract)

    Google Scholar

    OUYANG H G, MAO J W, SANTOSH M, et al. , 2014. The Early Cretaceous Weilasituo Zn-Cu-Ag vein deposit in the southern Great Xing'an Range, northeast China: Fluid inclusions, H, O, S, Pb isotope geochemistry and genetic implications[J]. Ore Geology Reviews, 56: 503-515. doi: 10.1016/j.oregeorev.2013.06.015

    CrossRef Google Scholar

    OUYANG H G, MAO J W, ZHOU Z H, et al. , 2015. Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing'an Range, northeastern China[J]. Gondwana Research, 27(3): 1153-1172. doi: 10.1016/j.gr.2014.08.010

    CrossRef Google Scholar

    QIN Y, WEN G G, LI D P, 2014. Geological and geochemical characteristics of high-grade manganese ore deposit in Aketao County, west Kunlun, Xinjiang Province, and its prospecting significance[J]. Western Prospecting Project, 26(8): 112-115. (in Chinese)

    Google Scholar

    QIU L, ZHOU J, LIU X W, et al. , 2016. Application of integrated geophysical methods to M163-1 aeromagnetic anomaly inspection of Lala, Huili, Sichuan province[J]. Computing Techniques for Geophysical and Geochemical Exploration, 38(5): 603-609. (in Chinese with English abstract)

    Google Scholar

    QUAN H Y, CAI W Y, ZHANG X B, et al. , 2017. Characteristics of fluid inclusions and genesis of Weilasituo Pb-Zn deposit, Inner Mongolia[J]. Global Geology, 36(1): 105-117. (in Chinese with English abstract)

    Google Scholar

    ROMER R L, KRONER U, 2016. Phanerozoic tin and tungsten mineralization: Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting[J]. Gondwana Research, 31: 60-95. doi: 10.1016/j.gr.2015.11.002

    CrossRef Google Scholar

    SHENTU B Y, 1997. Geological and geochemical characteristics and metallogenic model forthe Lalachang copper deposit inHuili, Sichuan[J]. Tethyan Geology(21): 112-126. (in Chinese with English abstract)

    Google Scholar

    SINGER D A, MENZIE W D, 2010. Quantitative mineral resource assessments: An integrated approach[M]. Oxford: Oxford University Press.

    Google Scholar

    SUN J Y, YU W J, TANG Z X, et al. , 2019. Discovery of the ore-bearing mafic layered sill in the Lala Fe-Cu ore district, western Sichuan province, China and its implications for petrogenesis and metallogenesis[J]. Earth Science Frontiers, 26(1): 313-325. (in Chinese with English abstract)

    Google Scholar

    TANG L, LIU J J, ZHU X Y, et al. , 2017. Geochemical characteristics and geological implication of Kuijiashan granite pluton, Inner Mongolia[J]. Mineral Exploration, 8(6): 1031-1043. (in Chinese with English abstract)

    Google Scholar

    VAN CAPPELLEN P, WANG Y F, 1996. Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese[J]. American Journal of Science, 296(3): 197-243. doi: 10.2475/ajs.296.3.197

    CrossRef Google Scholar

    WANG F X, BAGAS L, JIANG S H, et al. , 2017. Geological, geochemical, and geochronological characteristics of Weilasituo Sn-polymetal deposit, Inner Mongolia, China[J]. Ore Geology Reviews, 80: 1206-1229. doi: 10.1016/j.oregeorev.2016.09.021

    CrossRef Google Scholar

    WANG G W, ZHANG Z Q, LI R X, et al. , 2021. Resource prediction and assessment based on 3D/4D big data modeling and deep integration in key ore districts of North China[J]. Science China Earth Sciences, 64(9): 1590-1606. doi: 10.1007/s11430-020-9791-4

    CrossRef Google Scholar

    WANG S C, 2010. The new development of theory and method of synthetic information mineral resources prognosis[J]. Geological Bulletin of China, 29(10): 1399-1403. (in Chinese with English abstract)

    Google Scholar

    WHITE N C, HEDENQUIST J W, 1995. Epithermal gold deposits: styles, characteristics and exploration[J]. SEG Newsletter(23): 1-9.

    Google Scholar

    XIAO K Y, ZHANG X H, WANG S L, et al. , 2000a. GIS assessment system of mineral resources[M]. Beijing: Geological Press. (in Chinese)

    Google Scholar

    XIAO K Y, ZHU Y S, SONG G Y, 2000b. GIS quantitative assessment and prospecting of mineral resources[J]. Geology in China(7): 29-32. (in Chinese)

    Google Scholar

    XIAO K Y, DING J H, LIU R, 2006. The discussion of three-part form of non-fuel mineral resource assessment[J]. Geological Review, 52(6): 793-798. (in Chinese with English abstract)

    Google Scholar

    XIAO K Y, LI N, SUN L, et al. , 2012. Large scale 3D mineral prediction methods and channels based on 3D information technology[J]. Journal of Geology, 36(3): 229-236. (in Chinese with English abstract)

    Google Scholar

    XIAO K Y, SUN L, LI N, et al. , 2015. Mineral resources assessment under the thought of big data[J]. Geological Bulletin of China, 34(7): 1266-1272. (in Chinese with English abstract)

    Google Scholar

    YE T Z, 2013. Theoretical framework of methodology of deposit modeling and integrated geological information for mineral resource potential assessment[J]. Journal of Jilin University (Earth Science Edition), 43(4): 1053-1072. (in Chinese with English abstract)

    Google Scholar

    YE T Z, LÜ Z C, PANG Z S, et al. , 2014. Introduction of Prospecting prediction theory and method in exploration area[M]. Beijing: Geological Press. (in Chinese)

    Google Scholar

    YE T Z, WEI C S, WANG Y W, et al. , 2017. Inclusion of Prospecting prediction theory and method in exploration area[M]. Beijing: Geological Press. (in Chinese)

    Google Scholar

    YU P P, CHEN J P, CHAI F S, et al. , 2015. Research on model-driven quantitative prediction and evaluation of mineral resources based on geological big data concept[J]. Geological Bulletin of China, 34(7): 1333-1343. (in Chinese with English abstract)

    Google Scholar

    YU X F, LÜ Z C, SUN H R, et al. , 2020. Metallogenic system of integrated exploration area and new exploration progress[J]. Journal of Jilin University (Earth Science Edition), 50(5): 1261-1288. (in Chinese with English abstract)

    Google Scholar

    ZHAI M G, HU B, 2021. Thinking to state security, international competition and national strategy of mineral resources[J]. Journal of Earth Sciences and Environment, 43(1): 1-11. (in Chinese with English abstract)

    Google Scholar

    ZHAI Y S, 2000. Metallogenic system and its evolution: From preliminary practice to theoretical consideration[J]. Earth Science-Journal of China University of Geosciences, 25(4): 333-339. (in Chinese with English abstract)

    Google Scholar

    ZHAI Y S, 2003a. Research on metallogenic system[J]. Geological Survey and Research, 26(2): 65-71. (in Chinese with English abstract)

    Google Scholar

    ZHAI Y S, 2003b. Research on metallogenic system[J]. Geological Survey and Research, 26(3): 129-135. (in Chinese with English abstract)

    Google Scholar

    ZHAI Y S, DENG J, PENG R M, et al. , 2010. Metallogenic system[M]. Beijing: Geological Press. (in Chinese)

    Google Scholar

    ZHANG B L, ZHANG L C, FENG J, et al. , 2018. Genesis of the large-scale Orto Karnash manganese carbonate deposit in the Malkansu District, western Kunlun: Evidence from geological features[J]. Geological Review, 64(2): 361-377. (in Chinese with English abstract)

    Google Scholar

    ZHANG B L, WANG C L, ROBBINS L J, et al. , 2020. Petrography and geochemistry of the Carboniferous Ortokarnash manganese deposit in the western Kunlun mountains, Xinjiang Province, China: Implications for the depositional environment and the origin of mineralization[J]. Economic Geology, 115(7): 1559-1588. doi: 10.5382/econgeo.4729

    CrossRef Google Scholar

    ZHANG H, 2009. Study on geological features and ore genesis of Aktash and Saluoyi VMS deposits, West Kunlun[D]. Jilin: Jilin University, 1-74. (in Chinese with English abstract)

    Google Scholar

    ZHANG L C, ZHANG B L, DONG Z G, et al. , 2020. Tectonic setting and metallogenetic conditions of Carboniferous Malkansu giant manganese belt in west Kunlun orogen[J]. Journal of Jilin University (Earth Science Edition), 50(5): 1340-1357. (in Chinese with English abstract)

    Google Scholar

    ZHANG S H, LIN Z Y, 2021. Technological and methodological changes of (uranium) mineral resources prediction in big data era[J]. Uranium Geology, 37(5): 913-919. (in Chinese with English abstract)

    Google Scholar

    ZHAO P D, HU W L, LI Z J, 1983. The theory and practices of statistical prediction for mineral deposits[J]. Earth Science-Journal of China University of Geosciences, 8(4): 107-121. (in Chinese with English abstract)

    Google Scholar

    ZHAO P D, CHI S D, 1991. A preliminary view on geological anomaly[J]. Earth Science-Journal of China University of Geosciences, 16(3): 241-248. (in Chinese with English abstract)

    Google Scholar

    ZHAO P D, LI Z J, HU G D, 1992. Statistical prediction of three-dimensional deposits in key metallogenic areas: a case study in the Yueshan district[M]. Wuhan: China University of Geosciences Press. (in Chinese)

    Google Scholar

    ZHAO P D, MENG X G, 1993. Geological anomaly and mineral prediction[J]. Earth Science-Journal of China University of Geosciences, 18(1): 39-47. (in Chinese with English abstract)

    Google Scholar

    ZHAO P D, HU W L, LI Z J, 1994. Statistical prediction of mineral deposits[M]. 2nd ed. Beijing: Geological Press. (in Chinese)

    Google Scholar

    ZHAO P D, WANG J G, RAO M H, et al. , 1995. Geologic anomaly of China[J]. Earth Science-Journal of China University of Geosciences, 20(2): 117-127. (in Chinese with English abstract)

    Google Scholar

    ZHAO P D, CHI S D, CHEN Y Q, 1996. A thorough investigation of geo-anomaly: A basis of metallogenic prognosis[J]. Geological Journal of China Universities, 2(4): 361-373. (in Chinese with English abstract)

    Google Scholar

    ZHAO P D, CHEN Y Q, 1998. The main way of geo-anomaly location of ore body[J]. Earth Science-Journal of China University of Geosciences, 23(2): 111-114. (in Chinese with English abstract)

    Google Scholar

    ZHAO P D, 2000. “Three Components” quantitative mineral prediction[M]. Beijing: China University of Geosciences Press. (in Chinese)

    Google Scholar

    ZHAO P D, CHEN J P, CHEN J G, 2001. On diversity of mineralization and the spectrum of ore deposits[J]. Earth Science-Journal of China University of Geosciences, 26(2): 111-117. (in Chinese with English abstract)

    Google Scholar

    ZHAO P D, 2002. “Three-Component” quantitative resource prediction and assessments: theory and practice of digital mineral prospecting[J]. Earth Science-Journal of China University of Geosciences, 27(5): 482-489. (in Chinese with English abstract)

    Google Scholar

    ZHAO P D, CHEN J P, ZHANG S T, 2003. The new development of“Three Components”quantitative mineral prediction[J]. Earth Science Frontiers, 10(2): 455-463. (in Chinese with English abstract)

    Google Scholar

    ZHAO P D, 2007. Quantitative mineral prediction and deep mineral exploration[J]. Earth Science Frontiers, 14(5): 1-10. (in Chinese with English abstract)

    Google Scholar

    ZHAO P D, 2015. Digital mineral exploration and quantitative evaluation in the big data age[J]. Geological Bulletin of China, 34(7): 1255-1259. (in Chinese with English abstract)

    Google Scholar

    ZHAO P D, CHEN Y Q, 2021. Digital geology and quantitative mineral exploration[J]. Earth Science Frontiers, 28(3): 1-5. (in Chinese with English abstract)

    Google Scholar

    ZHAO X F, ZHOU M F, LI J W, et al. , 2010. Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: implications for tectonic evolution of the Yangtze Block[J]. Precambrian Research, 182(1-2): 57-69. doi: 10.1016/j.precamres.2010.06.021

    CrossRef Google Scholar

    ZHAO X F, ZHOU M F, 2011. Fe-Cu deposits in the Kangdian region, SW China: a Proterozoic IOCG (iron-oxide-copper-gold) metallogenic province[J]. Mineralium Deposita, 46(7): 731-747. doi: 10.1007/s00126-011-0342-y

    CrossRef Google Scholar

    ZHAO X F, ZHOU M F, HITZMAN M W, et al. , 2012. Late Paleoproterozoic to early Mesoproterozoic Tangdan sedimentary rock-hosted strata-bound copper deposit, Yunnan Province, Southwest China[J]. Economic Geology, 107(2): 357-375. doi: 10.2113/econgeo.107.2.357

    CrossRef Google Scholar

    ZHAO X F, ZHOU M F, LI J W, et al. , 2013. Sulfide Re-Os and Rb-Sr isotope dating of the Kangdian IOCG metallogenic province, southwest China: implications for regional metallogenesis[J]. Economic Geology, 108(6): 1489-1498. doi: 10.2113/econgeo.108.6.1489

    CrossRef Google Scholar

    ZHOU J Y, ZHENG R C, ZHU Z M, et al. , 2008. Geochemical characteristics of trace elements of pyrite and its implications to the metallogenesis in the LALA copper deposit[J]. Journal of Mineralogy and Petrology, 28(3): 64-71. (in Chinese with English abstract)

    Google Scholar

    ZHOU J Y, MAO J W, ZHU Z M, et al. , 2009. The fluid process of Lala iron oxide gold-copper deposit: constrain from trace elements of pyrite from different mineral stage[J]. Acta Mineralogica Sinica, 29(S1): 272-273. (in Chinese)

    Google Scholar

    ZHOU M F, ZHAO X F, CHEN W T, et al. , 2014. Proterozoic Fe-Cu metallogeny and supercontinental cycles of the southwestern Yangtze Block, southern China and northern Vietnam[J]. Earth-Science Reviews, 139: 59-82. doi: 10.1016/j.earscirev.2014.08.013

    CrossRef Google Scholar

    ZHOU Y Z, CHEN S, ZHANG Q, et al. , 2018. Advances and prospects of big data and mathematical geoscience[J]. Acta PetrologicaSinica, 34(2): 255-263. (in Chinese with English abstract)

    Google Scholar

    ZHOU Z H, GAO X, OUYANG H G, et al. , 2019. Formation mechanism and intrinsic genetic relationship between tin-tungsten-lithium mineralization and peripheral lead-zinc-silver-copper mineralization: exemplified by Weilasituo tin-tungsten-lithium polymetallic deposit, Inner Mongolia[J]. Mineral Deposits, 38(5): 1004-1022. (in Chinese with English abstract)

    Google Scholar

    ZHU K Y, JIANG S Y, SU H M, et al. , 2021. In situ geochemical analysis of multiple generations of sphalerite from the Weilasituo Sn-Li-Rb-Cu-Zn ore field (Inner Mongolia, northeastern China): Implication for critical metal enrichment and ore-forming process[J]. Ore Geology Reviews, 139: 104473. doi: 10.1016/j.oregeorev.2021.104473

    CrossRef Google Scholar

    ZHU Y S, XIAO K Y, DING P F, et al. , 1997. Methods of mineral resources prediction[M]. Beijing: Geological Press. (in Chinese)

    Google Scholar

    ZHU Z M, ZENG L X, ZHOU J Y, et al. , 2009. Lala iron oxide-copper-gold deposit in Sichuan province: evidences from mineralography[J]. Geological Journal of China Universities, 15(4): 485-495. (in Chinese with English abstract)

    Google Scholar

    ZHU Z M, SUB Y L, 2013. Direct Re-Os dating of chalcopyrite from the Lala IOCG deposit in the Kangdian Copper Belt, China[J]. Economic Geology, 108(4): 871-882. doi: 10.2113/econgeo.108.4.871

    CrossRef Google Scholar

    ZHU Z M, TAN H Q, LIU Y D, et al. , 2018. Multiple episodes of mineralization revealed by Re-Os molybdenite geochronology in the Lala Fe-Cu deposit, SW China[J]. Mineralium Deposita, 53(3): 311-322. doi: 10.1007/s00126-017-0740-x

    CrossRef Google Scholar

    ZOU T, ZHU X Y, YANG S S, et al. , 2022. A comprehensive model of tin polymetallic ore prospecting and exploration in the southern Great Xing’an Range: a case study of the ore-forming system of Weilasituo polymetallic ore[J]. Acta Geologica Sinica, 96(2): 673-690. (in Chinese with English abstract)

    Google Scholar

    陈登辉, 隋清霖, 赵晓健, 等, 2019. 西昆仑穆呼锰矿晚石炭世含锰碳酸盐岩地质地球化学特征及其沉积环境[J]. 沉积学报, 37(3): 477-490.

    Google Scholar

    陈登辉, 隋清霖, 郭周平, 等, 2022. 西昆仑玛尔坎苏地区穆呼锰矿含锰岩系沉积环境: 来自䗴类化石及碳酸盐岩碳、氧、锶同位素证据[J]. 西北地质, 55(2): 1-13.

    Google Scholar

    陈根文, 1991. 会理地区河口群细碧-角斑岩系特征及成因探讨[J]. 四川地质学报, 11(4): 255-261.

    Google Scholar

    陈根文, 程德荣, 余孝伟, 1992. 四川拉拉铜矿黄铁矿标型特征研究[J]. 矿物岩石, 12(3): 85-91.

    Google Scholar

    陈根文, 夏斌, 2001. 四川拉拉铜矿床成因研究[J]. 矿物岩石地球化学通报, 20(1): 42-44. doi: 10.3969/j.issn.1007-2802.2001.01.009

    CrossRef Google Scholar

    陈辉, 林鲁军, 庞振山, 等, 2021. 四川会理拉拉铜矿找矿预测模型构建与找矿示范[J]. 地学前缘, 28(3): 309-327.

    Google Scholar

    陈建平, 吕鹏, 吴文, 等, 2007. 基于三维可视化技术的隐伏矿体预测[J]. 地学前缘, 14(5): 54-62. doi: 10.3321/j.issn:1005-2321.2007.05.006

    CrossRef Google Scholar

    陈建平, 李婧, 崔宁, 等, 2015. 大数据背景下地质云的构建与应用[J]. 中国地质通报, 34(7): 1260-1265.

    Google Scholar

    陈伟, 赵新福, 李晓春, 等, 2019. 中国铁氧化物-铜-金(IOCG)矿床的基本特征及研究进展[J]. 岩石学报, 35(1): 99-118. doi: 10.18654/1000-0569/2019.01.07

    CrossRef Google Scholar

    陈毓川, 裴荣富, 王登红, 2006. 三论矿床的成矿系列问题[J]. 地质学报, 80(10): 1501-1508. doi: 10.3321/j.issn:0001-5717.2006.10.003

    CrossRef Google Scholar

    陈裕琪, 陈毓川, 赵一鸣, 等, 1983. 再论矿床的成矿系列问题[J]. 中国地质科学院院报(6): 1-64.

    Google Scholar

    董锡泽, 杨贺, 樊金虎, 等, 2019. 内蒙古维拉斯托Zn-Cu-Ag矿床硫同位素及成矿物理化学条件研究[J]. 世界地质, 38(4): 953-961. doi: 10.3969/j.issn.1004-5589.2019.04.007

    CrossRef Google Scholar

    董志国, 张连昌, 董飞羽, 等, 2020a. 西昆仑穆呼锰矿床地质特征、控矿因素及成矿模式[J]. 吉林大学学报(地球科学版), 50(5): 1358-1372.

    Google Scholar

    董志国, 张连昌, 王长乐, 等, 2020b. 沉积碳酸锰矿床研究进展及有待深入探讨的若干问题[J]. 矿床地质, 39(2): 237-255.

    Google Scholar

    范永香, 阳正熙, 2003. 成矿规律与成矿预测[M]. 徐州: 中国矿业大学出版社.

    Google Scholar

    方维萱, 2012. 地球化学岩相学类型及其在沉积盆地分析中应用[J]. 现代地质, 26(5): 996-1007. doi: 10.3969/j.issn.1000-8527.2012.05.021

    CrossRef Google Scholar

    方维萱, 2014. 论扬子地块西缘元古宙铁氧化物铜金型矿床与大地构造演化[J]. 大地构造与成矿学, 38(4): 733-757. doi: 10.3969/j.issn.1001-1552.2014.04.002

    CrossRef Google Scholar

    高永宝, 滕家欣, 陈登辉, 等, 2016. 西昆仑奥尔托喀讷什锰矿地质、地球化学及成因[J]. 矿床地质, 35(S1): 5-6.

    Google Scholar

    高永宝, 滕家欣, 李文渊, 等, 2018. 新疆西昆仑奥尔托喀讷什锰矿地质、地球化学及成因[J]. 岩石学报, 34(8): 2341-2358.

    Google Scholar

    耿元生, 旷红伟, 杜利林, 等, 2019. 从哥伦比亚超大陆裂解事件论古/中元古代的界限[J]. 岩石学报, 35(8): 2299-2324. doi: 10.18654/1000-0569/2019.08.02

    CrossRef Google Scholar

    韩润生, 2003. 初论构造成矿动力学及其隐伏矿定位预测研究内容和方法[J]. 地质与勘探, 39(1): 5-9.

    Google Scholar

    韩润生, 2005. 隐伏矿定位预测的矿田(床)构造地球化学方法[J]. 地质通报, 24(10-11): 978-984. doi: 10.3969/j.issn.1671-2552.2005.10.018

    CrossRef Google Scholar

    胡惠民, 赵鹏大, 李紫金, 1995. 大比例尺成矿预测方法[M]. 北京: 地质出版社.

    Google Scholar

    黄崇轲, 白冶, 朱裕生, 等, 2001. 中国铜矿床[M]. 北京: 地质出版社.

    Google Scholar

    江思宏, 张莉莉, 刘翼飞, 等, 2018. 兴蒙造山带成矿规律及若干科学问题[J]. 矿床地质, 37(4): 671-711.

    Google Scholar

    金川, 谢月桥, 李玉飞, 等, 2021. 西昆仑玛尔坎苏锰矿带含锰岩系沉积相分布特征[J]. 新疆有色金属, 44(1): 26-27.

    Google Scholar

    金明霞, 沈苏, 1998. 四川会理拉拉铜矿床流体特征及成矿条件研究[J]. 地质科技情报, 17(S1): 45-48.

    Google Scholar

    李泽琴, 王奖臻, 刘家军, 等, 2003. 拉拉铁氧化物-铜-金-钼-稀土矿床Re-Os同位素年龄及其地质意义[J]. 地质找矿论丛, 18(1): 39-42. doi: 10.3969/j.issn.1001-1412.2003.01.007

    CrossRef Google Scholar

    刘瑞麟, 武广, 李铁刚, 等, 2018. 大兴安岭南段维拉斯托锡多金属矿床LA-ICP-MS锡石和锆石U-Pb年龄及其地质意义[J]. 地学前缘, 25(5): 183-201.

    Google Scholar

    毛景文, 张作衡, 裴荣富, 2012. 中国矿床模型概论[M]. 北京: 地质出版社.

    Google Scholar

    梅微, 吕新彪, 唐然坤, 等, 2015. 大兴安岭南段西坡拜仁达坝-维拉斯托矿床成矿流体特征及其演化[J]. 地球科学-中国地质大学学报, 40(1): 145-162.

    Google Scholar

    慕生禄, 2016. 西昆仑昆盖山火山岩构造环境与典型矿床研究[D]. 广州: 中国科学院广州地球化学研究所, 1-186.

    Google Scholar

    覃英, 温官国, 李代平, 2014. 新疆西昆仑阿克陶地区优质富锰矿的发现及意义[J]. 西部探矿工程, 26(8): 112-115. doi: 10.3969/j.issn.1004-5716.2014.08.035

    CrossRef Google Scholar

    邱林, 周军, 刘晓葳, 等, 2016. 综合物探在四川会理拉拉M163-1航磁异常查证中的应用[J]. 物探化探计算技术, 38(5): 603-609. doi: 10.3969/j.issn.1001-1749.2016.05.05

    CrossRef Google Scholar

    权鸿雁, 蔡文艳, 张雪冰, 等, 2017. 内蒙古维拉斯托铅锌矿床流体包裹体特征及矿床成因研究[J]. 世界地质, 36(1): 105-117. doi: 10.3969/j.issn.1004-5589.2017.01.009

    CrossRef Google Scholar

    申屠保涌, 1997. 四川会理拉拉厂铜矿床地质地球化学特征及成矿模式[J]. 特提斯地质(21): 112-126.

    Google Scholar

    孙君一, 于文佳, 唐泽勋, 等, 2019. 川西拉拉Fe-Cu矿区含矿镁铁质层状岩席的首次发现及其成岩成矿意义[J]. 地学前缘, 26(1): 313-325.

    Google Scholar

    唐雷, 刘家军, 祝新友, 等, 2017. 内蒙古盔甲山岩体岩石地球化学特征及地质意义[J]. 矿产勘查, 8(6): 1031-1043. doi: 10.3969/j.issn.1674-7801.2017.06.012

    CrossRef Google Scholar

    王功文, 张智强, 李瑞喜, 等, 2021. 华北重点矿集区大数据三维/四维建模与深层次集成的资源预测评价[J]. 中国科学: 地球科学, 51(9): 1594-1610.

    Google Scholar

    王世称, 2010. 综合信息矿产预测理论与方法体系新进展[J]. 地质通报, 29(10): 1399-1403. doi: 10.3969/j.issn.1671-2552.2010.10.002

    CrossRef Google Scholar

    肖克炎, 张晓华, 王四龙, 等, 2000a. 矿产资源GIS评价系统[M]. 北京: 地质出版社.

    Google Scholar

    肖克炎, 朱裕生, 宋国耀, 2000b. 矿产资源GIS定量评价[J]. 中国地质(7): 29-32.

    Google Scholar

    肖克炎, 丁建华, 刘锐, 2006. 美国“三步式”固体矿产资源潜力评价方法评述[J]. 地质论评, 52(6): 793-798. doi: 10.3321/j.issn:0371-5736.2006.06.010

    CrossRef Google Scholar

    肖克炎, 李楠, 孙莉, 等, 2012. 基于三维信息技术大比例尺三维立体矿产预测方法及途径[J]. 地质学刊, 36(3): 229-236. doi: 10.3969/j.issn.1674-3636.2012.03.229

    CrossRef Google Scholar

    肖克炎, 孙莉, 李楠, 等, 2015. 大数据思维下的矿产资源评价[J]. 中国地质通报, 34(7): 1266-1272.

    Google Scholar

    叶天竺, 2013. 矿床模型综合地质信息预测技术方法理论框架[J]. 吉林大学学报(地球科学版), 43(4): 1053-1072.

    Google Scholar

    叶天竺, 吕志成, 庞振山, 等, 2014. 勘查区找矿预测理论与方法(总论)[M]. 北京: 地质出版社.

    Google Scholar

    叶天竺, 韦昌山, 王玉往, 等, 2017. 勘查区找矿预测理论与方法(各论)[M]. 北京: 地质出版社.

    Google Scholar

    于萍萍, 陈建平, 柴福山, 等, 2015. 基于地质大数据理念的模型驱动矿产资源定量预测[J]. 地质通报, 34(7): 1333-1343. doi: 10.3969/j.issn.1671-2552.2015.07.011

    CrossRef Google Scholar

    于晓飞, 吕志成, 孙海瑞, 等, 2020. 全国整装勘查区成矿系统研究与矿产勘查新进展[J]. 吉林大学学报(地球科学版), 50(5): 1261-1288.

    Google Scholar

    翟明国, 胡波, 2021. 矿产资源国家安全、国际争夺与国家战略之思考[J]. 地球科学与环境学报, 43(1): 1-11. doi: 10.19814/j.jese.2020.10018

    CrossRef Google Scholar

    翟裕生, 2000. 成矿系统及其演化: 初步实践到理论思考[J]. 地球科学-中国地质大学学报, 25(4): 333-339. doi: 10.3321/j.issn:1000-2383.2000.04.001

    CrossRef Google Scholar

    翟裕生, 2003a. 成矿系统研究与找矿[J]. 地质调查与研究, 26(2): 65-71.

    Google Scholar

    翟裕生, 2003b. 成矿系统研究与找矿[J]. 地质调查与研究, 26(3): 129-135.

    Google Scholar

    翟裕生, 邓军, 彭润民, 等, 2010. 成矿系统论[M]. 北京: 地质出版社.

    Google Scholar

    张帮禄, 张连昌, 冯京, 等, 2018. 西昆仑玛尔坎苏地区奥尔托喀讷什大型碳酸锰矿床地质特征及成因探讨[J]. 地质论评, 64(2): 361-377.

    Google Scholar

    张晗, 2009. 西昆仑阿克塔什、萨落依VMS矿床地质特征及成因[D]. 吉林: 吉林大学, 1-74.

    Google Scholar

    张连昌, 张帮禄, 董志国, 等, 2020. 西昆仑玛尔坎苏石炭纪大型锰矿带构造背景与成矿条件[J]. 吉林大学学报(地球科学版), 50(5): 1340-1357.

    Google Scholar

    张士红, 林子瑜, 2021. 大数据时代(铀)成矿预测技术方法变革[J]. 铀矿地质, 37(5): 913-919.

    Google Scholar

    赵鹏大, 胡旺亮, 李紫金, 1983. 矿床统计预测的理论与实践[J]. 地球科学-中国地质大学学报, 8(4): 107-121.

    Google Scholar

    赵鹏大, 池顺都, 1991. 初论地质异常[J]. 地球科学-中国地质大学学报, 16(3): 241-248. doi: 10.3321/j.issn:1000-2383.1991.03.001

    CrossRef Google Scholar

    赵鹏大, 李紫金, 胡光道, 1992. 重点成矿区三维立体矿床统计预测: 以安徽月山地区为例[M]. 武汉: 中国地质大学出版社.

    Google Scholar

    赵鹏大, 孟宪国, 1993. 地质异常与矿产预测[J]. 地球科学-中国地质大学学报, 18(1): 39-47. doi: 10.3321/j.issn:1000-2383.1993.01.001

    CrossRef Google Scholar

    赵鹏大, 胡旺亮, 李紫金, 1994. 矿床统计预测[M]. 2版. 北京: 地质出版社.

    Google Scholar

    赵鹏大, 王京贵, 饶明辉, 等, 1995. 中国地质异常[J]. 地球科学-中国地质大学学报, 20(2): 117-127. doi: 10.3321/j.issn:1000-2383.1995.02.004

    CrossRef Google Scholar

    赵鹏大, 池顺都, 陈永清, 1996. 查明地质异常: 成矿预测的基础[J]. 高校地质学报, 2(4): 361-373.

    Google Scholar

    赵鹏大, 陈永清, 1998. 地质异常矿体定位的基本途径[J]. 地球科学-中国地质大学学报, 23(2): 111-114. doi: 10.3321/j.issn:1000-2383.1998.02.001

    CrossRef Google Scholar

    赵鹏大, 2000. “三联式”定量成矿预测[M]. 北京: 中国地质大学出版社.

    Google Scholar

    赵鹏大, 陈建平, 陈建国, 2001. 成矿多样性与矿床谱系[J]. 地球科学-中国地质大学学报, 26(2): 111-117. doi: 10.3321/j.issn:1000-2383.2001.02.001

    CrossRef Google Scholar

    赵鹏大, 2002. “三联式”资源定量预测与评价: 数字找矿理论与实践探讨[J]. 地球科学-中国地质大学学报, 27(5): 482-489. doi: 10.3321/j.issn:1000-2383.2002.05.002

    CrossRef Google Scholar

    赵鹏大, 陈建平, 张寿庭, 2003. “三联式”成矿预测新进展[J]. 地学前缘, 10(2): 455-463. doi: 10.3321/j.issn:1005-2321.2003.02.025

    CrossRef Google Scholar

    赵鹏大, 2007. 成矿定量预测与深部找矿[J]. 地学前缘, 14(5): 1-10. doi: 10.3321/j.issn:1005-2321.2007.05.001

    CrossRef Google Scholar

    赵鹏大, 2015. 大数据时代数字找矿与定量评价[J]. 地质通报, 34(7): 1255-1259. doi: 10.3969/j.issn.1671-2552.2015.07.001

    CrossRef Google Scholar

    赵鹏大, 陈永清, 2021. 数字地质与数字矿产勘查[J]. 地学前缘, 28(3): 1-5.

    Google Scholar

    周家云, 郑荣才, 朱志敏, 等, 2008. 拉拉铜矿黄铁矿微量元素地球化学特征及其成因意义[J]. 矿物岩石, 28(3): 64-71. doi: 10.3969/j.issn.1001-6872.2008.03.011

    CrossRef Google Scholar

    周家云, 毛景文, 朱志敏, 等, 2009. 拉拉铁氧化物-铜-金矿床(IOCG)的流体过程—不同矿化阶段黄铁矿微量元素约束[J]. 矿物学报, 29(S1): 272-273.

    Google Scholar

    周永章, 陈烁, 张旗, 等, 2018. 大数据与数学地球科学研究进展: 大数据与数学地球科学专题代序[J]. 岩石学报, 34(2): 255-263.

    Google Scholar

    周振华, 高旭, 欧阳荷根, 等, 2019. 锡钨锂矿化与外围脉状铅锌银铜矿化的内在成因关系和形成机制: 以内蒙古维拉斯托锡钨锂多金属矿床为例[J]. 矿床地质, 38(5): 1004-1022.

    Google Scholar

    朱裕生, 肖克炎, 丁鹏飞, 等, 1997. 成矿预测方法[M]. 北京: 地质出版社.

    Google Scholar

    朱志敏, 曾令熙, 周家云, 等, 2009. 四川拉拉铁氧化物铜金矿床(IOCG)形成的矿相学证据[J]. 高校地质学报, 15(4): 485-495. doi: 10.3969/j.issn.1006-7493.2009.04.007

    CrossRef Google Scholar

    邹滔, 祝新友, 杨尚松, 等, 2022. 大兴安岭南段锡多金属矿找矿勘查综合模型: 以维拉斯托锡多金属矿成矿系统为例[J]. 地质学报, 96(2): 673-690. doi: 10.3969/j.issn.0001-5717.2022.02.021

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(2)

Article Metrics

Article views(3519) PDF downloads(216) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint