2022 Vol. 28, No. 5
Article Contents

LI Wenyuan. 2022. Study of ore-forming theoretical innovation and prospecting breakthrough of magmatic copper–nickel–cobalt sulfide deposits in China. Journal of Geomechanics, 28(5): 793-820. doi: 10.12090/j.issn.1006-6616.20222810
Citation: LI Wenyuan. 2022. Study of ore-forming theoretical innovation and prospecting breakthrough of magmatic copper–nickel–cobalt sulfide deposits in China. Journal of Geomechanics, 28(5): 793-820. doi: 10.12090/j.issn.1006-6616.20222810

Study of ore-forming theoretical innovation and prospecting breakthrough of magmatic copper–nickel–cobalt sulfide deposits in China

    Fund Project: The research is financially supported by the National Key Research and Development Program of China (Grant 2019YFC0605201)
  • Chinese magmatic copper–nickel–cobalt sulfide deposit is the main source of strategic key metal resources, such as nickel, cobalt and platinum group elements in China, and it is an important deposit type with a future value that needs special attention. This type of deposit comes from the mafic and ultramafic magma formed by the upper mantle, especially the asthenosphere, and the immiscible (liquation) action between sulfide liquid–silicate melt is the main mineralization mechanism. They are mainly formed in two geological settings: the continental rift and the extended environment in the orogenic zone. China is a major producer of magmatic copper–nickel–cobalt sulfide deposits, but compared with the world it is relatively unique. Most magmatic copper–nickel–cobalt sulfide deposits in the world are formed in the ancient craton, and are the result of the mantle plume geodynamics. Archeozoic–early Proterozoic komatiite nickel–cobalt sulfide deposits is a distinct metallogenic characteristics. Ancient komatiite-related nickel–cobalt sulfide deposits have been rarely discovered in China, and their mineralization age is relatively late, mainly in the Neoproterozoic, Early and Late Paleozoic. The Neoproterozoic is represented by the Jinchuan super-large deposit with nickel metal reserves ranked the third in the world, and the Early Paleozoic by the Xiarihamu super-large deposit discovered in the prospecting breakthrough of recent years. The Xiarihamu deposit is also the only super-large magmatic copper–nickel–cobalt sulfide deposit found in the Tethys orogenic belt in the world. Mineralization theory of “big magma–deep immiscibility–injection” and “forming big ore deposits in small intrusive rocks” proposed by Chinese scholars based on China’s prospecting practice has been widely accepted and applied by field geological exploration workers, and has made important prospecting breakthrough discoveries. At the same time, it has been recognized by foreign peers, which changed the traditional metallogenic understanding of magma copper–nickel–cobalt sulfide deposits. The extensive distribution of magmatic copper–nickel–cobalt sulfide deposits in orogenic belts is an important feature of such deposits in China. According to the different evolution of orogenic zones and metallogenic history, it can be divided into two important types: Tethys type and Central Asian type. The Tethys type is represented by the Xiarihamu ore deposit, and it is the product of the Tethys structural transformation, which the Paleo-Tethys cracking after the Proto-Tethys orogeny; the Central Asian type is represented by a large number of the early Permian of the Late Palaeozoic magmatic copper–nickel–cobalt sulfide deposits distributed in the Eastern Tianshan–Beishan and Altai zones of the Central Asian Orogenic belt, which is the result of the dual geodynamics mechanism of plate tectonics and mantle plume. China's magmatic copper–nickel–cobalt sulfide deposit has huge prospecting potential, and the Jinchuan deposit as a result of nappe structure from deep horizontal “sill” thrusted to the surface of the inclined “dyke”, it still has significant prospecting potential in its deep and marginal locations, in which important new ore bodies have been found at both ends of the ore-bearing rock body; more than 10 new ore deposits (points) have been found in East Kunlun and its adjacent areas, where the Xiarihamu deposit is located. In the region, the southeastern margin of Tarim Landmass, the northern margin of Tarim Landmass, the western margin of Yangtze Landmass and the northeast margin of North China Landmass are the exploration prospect areas to strengthen prospecting, while the northern margins of Yangzi Landmass and North China land block are the new prospecting areas for urgent investigation.

  • 加载中
  • ARNDT N T, CZAMANSKE G K, WALKER R J, et al. , 2003. Geochemistry and origin of the intrusive hosts of the Noril'sk-TalnakhCu-Ni-PGE sulfide deposits[J]. Economic Geology, 98(3): 495-515.

    Google Scholar

    BARNES S J, LIGHTFOOT P C, 2005. Formation of magmatic nickel sulfide deposits and processes affecting their copper and platinum group element contents[M]//HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al. One hundredth anniversary volume. Littleton: Society of Economic Geologists: 179-213.

    Google Scholar

    BARNES S J, MUNGALL J E, MAIER W D, 2015. Platinum group elements in mantle melts and mantle samples[J]. Lithos, 232: 395-417. doi: 10.1016/j.lithos.2015.07.007

    CrossRef Google Scholar

    BÉDARD J H, 2005. Partitioning coefficients between olivine and silicate melts[J]. Lithos, 83(3-4): 394-419. doi: 10.1016/j.lithos.2005.03.011

    CrossRef Google Scholar

    BÉDARD J H, 2007. Trace element partitioning coefficients between silicate melts and orthopyroxene: parameterizations of D variations[J]. Chemical Geology, 244(1-2): 263-303. doi: 10.1016/j.chemgeo.2007.06.019

    CrossRef Google Scholar

    BÉDARD J H, 2014. Parameterizations of calcic clinopyroxene-melt trace element partition coefficients[J]. Geochemistry, Geophysics, Geosystems, 15(2): 303-336. doi: 10.1002/2013GC005112

    CrossRef Google Scholar

    BEZMEN N I, ASIF M, BRÜGMANN G E, et al. , 1994. Distribution of Pd, Rh, Ru, Jr, Os, and Au between sulfide and silicate metals[J]. Geochimica et Cosmochimica Acta, 58(4): 1251-1260. doi: 10.1016/0016-7037(94)90379-4

    CrossRef Google Scholar

    BOUGAULT H, DMITRIEV L, SCHILLING J G, et al. , 1988. Mantle heterogeneity from trace elements: MAR triple junction near 14 N[J]. Earth and Planetary Science Letters, 88(1-2): 27-36. doi: 10.1016/0012-821X(88)90043-X

    CrossRef Google Scholar

    CARROLL M R, RUTHERFORD M J, 1988. Sulfur speciation in hydrous experimental glasses of varying oxidation state; results from measured wavelength shifts of sulfur X-rays[J]. American Mineralogist, 73(7-8): 845-849.

    Google Scholar

    CRAIG J R, 1979. Geochemical aspects of the origins of ore deposits[M]//SIEGEL F F. Review of research on modern problems in geochemistry. Paris: UNESCO Earth Sciences: 225-271.

    Google Scholar

    DANG Z C, 2015. Petrology, geochemistry, ages and ore-bearing property evaluation of the mafic-ultramafic intrusions, the middle segment of Inner Mongolia[D]. Beijing: Chinese Academy of Geological Sciences: 1-116. (in Chinese with English abstract)

    Google Scholar

    DUAN J, LI C S, QIAN Z Z, et al. , 2016. Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China[J]. Mineralium Deposita, 51(4): 557-574. doi: 10.1007/s00126-015-0626-8

    CrossRef Google Scholar

    FLEET M E, CROCKET J H, STONE W E, 1996. Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt[J]. Geochimica et Cosmochimica Acta, 60(13): 2397-2412. doi: 10.1016/0016-7037(96)00100-7

    CrossRef Google Scholar

    FRISH W, MESCHEDE M, BLAKEY R C, 2011. Platetectonics-continental driftand mountain building[M]. Heidelberg: Springer: 1-212.

    Google Scholar

    GE W C, LI X H, LIANG X R, et al. , 2001. Geochemistry and geological implications of mafic-ultramafic rocks with the age of~ Ma in Yuanbaoshan-Baotan area of northern Guangxi[J]. Geochimica, 30(2): 123-130. (in Chinese with English abstract)

    Google Scholar

    HAN B F, JI J Q, SONG B, et al. , 2004. SHRIMP zircon U-Pb ages of Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications[J]. Chinese Science Bulletin, 49(22): 2424-2429.

    Google Scholar

    HAN Y X, 2021. The comparative study on platinum group elements in Jinchuan and Xiarihamu magmatic Cu-Ni sulfide deposits[D]. Xi’an: Chang’an University: 1-180. (in Chinese with English abstract)

    Google Scholar

    HAO L B, SUN L J, ZHAO Y Y, et al. , 2013. SHRIMP zircon U-Pb dating of Chajian mafic-ultramafic rocks in Hongqiling mine field, Jilin Province, and its implications[J]. Earth Science—Journal of China University of Geosciences, 38(2): 233-240. (in Chinese with English abstract) doi: 10.3799/dqkx.2013.024

    CrossRef Google Scholar

    HORAN M F, WALKER R J, FEDORENKO V A, et al. , 1995. Osmium and neodymium isotopic constraints on the temporal and spatial evolution of Siberian flood basalt sources[J]. Geochimica et Cosmochimica Acta, 59(24): 5159-5168. doi: 10.1016/0016-7037(96)89674-8

    CrossRef Google Scholar

    JIANG C Y, GUO N X, XIA M Z, et al. , 2012. Petrogenesis of the Poyi mafic-ultramafic layered intrusion, NE Tarim Plate[J]. Acta Petrologica Sinica, 28(7): 2209-2223. (in Chinese with English abstract)

    Google Scholar

    JIANG CY, LING J L, ZHOU W, et al. , 2015. Petrogenesis of the Xiarihamu Ni-bearing layered mafic-ultramafic intrusion, East Kunlun: implications for its extensional island arc environment[J]. ActaPetrologica Sinica, 31(4): 1117-1136. (in Chinese with English abstract)

    Google Scholar

    JUGO P J, LUTH R W, RICHARDS J P, 2005. An experimental study of the sulfur content in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300 °C and 1·0 GPa[J]. Journal of Petrology, 46(4): 783-798.

    Google Scholar

    KEAYS R R, 1995. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits[J]. Lithos, 34(1-3): 1-18. doi: 10.1016/0024-4937(95)90003-9

    CrossRef Google Scholar

    KEAYS R R, 1997. Requirements for the formation of giant Ni-Cu-PGE sulfide deposits: the role of magma generation[J]. EosTransactions American Geophysical Union, 78: F799.

    Google Scholar

    LARSEN L M, PEDERSEN A K, 2000. Processes in high-Mg, high-T magmas: evidence from olivine, chromite and glass in palaeogene picrites from West Greenland[J]. Journal of Petrology, 41(7): 1071-1098. doi: 10.1093/petrology/41.7.1071

    CrossRef Google Scholar

    LI C S, RIPLEY E M, 2011. The giant Jinchuan Ni-Cu-(PGE) deposit: tectonic setting, magma evolution, ore genesis, and exploration implications[M]//LI C S, RIPLEY E M. Magmatic Ni-Cu and PGE deposits: geology, geochemistry, and genesis. Toronto: Society of Economic Geologists: 163-180.

    Google Scholar

    LI C S, ZHANG Z W, LI W Y, et al. , 2015. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet plateau, western China[J]. Lithos, 216-217: 224-240. doi: 10.1016/j.lithos.2015.01.003

    CrossRef Google Scholar

    LI G H, SUN J G, HUANG Y W, et al. , 2010. Zircon U-Pb age of mineral-bearing rock body from Wuxing Pt-Pd deposit in Jidong, Heilongjiang Province and its geological significance[J]. Global Geology, 29(1): 28-33. (in Chinese with English abstract)

    Google Scholar

    LI H Q, CHEN F W, MEI Y P, et al. , 2006. Isotopic ages of No. 1intrusive body in Pobei mafic-ultramaficbelt of Xinjiang and their geological significance[J]. Mineral Deposits, 25(4): 463-469. (in Chinese with English abstract)

    Google Scholar

    LI L X, WANG D H, SONG Q H, et al. , 2009. Study on the age of ore-bearing intrusion of Chibosong copper-nickel sulfide deposit in Tonghua, Jilin Province[J]. Acta Mineralogica Sinica, 29(S1): 55-56 (in Chinese).

    Google Scholar

    LI S J, SUN F Y, GAO Y W, et al. , 2012. The Theoretical guidance and the practice of small Intrusions forming large deposits-the enlightenment and significance for searching breakthrough of Cu-Ni sulfide deposit in Xiarihamu, East Kunlun, Qinghai[J]. Northwestern Geology, 45(4): 185-191. (in Chinese with English abstract)

    Google Scholar

    LI T, 1976. Chemical element abundances in the earth and it’s major shells[J]. Geochimica(3): 167-174. (in Chinese with English abstract)

    Google Scholar

    LI W Y, 1995. Characteristics and exploration countermeasures of copper-nickel sulfide deposit in China[C]//Proceedings of the 2nd annual youth academic conference of China association for science and technology (basic science volume). Beijing: China Press of Science and Technology: 180-190. (in Chinese)

    Google Scholar

    LI W Y, 1996. Metallogenic series and geochemistry of nickel-copper sulfide deposits in China[M]. Xi'an: Xi'an Map Publishing House: 1-228. (in Chinese)

    Google Scholar

    LI W Y, 1999. Remote metallogenic effect of Continent-Continentcollision in the North Qilian Mountains: positioning and structural hydrothermal transformation of deep ore bodies in Longshoushan area[C]//Proceedings of continental structure and inland deformation and the sixth national geomechanics symposium. Beijing: Geological Society of China: 166-169. (in Chinese)

    Google Scholar

    LI W Y, WANG W, GUO Z P, 2005a. Magmatic Ni-Cu-PGE deposits in the Qilian-Longshou mountains, Northwest China-part of a Proterozoic large igneous province[C]//Eighthmineral deposit research: meeting the global challenge. Berlin: Springer: 429-431.

    Google Scholar

    LI W Y, 2006a. Mineralization and prospection of metallic sulfide deposit associated with the magmatic activity of Qilian mountain. northwest China[M]. Beijing: Geological Publishing House: 1-208. (in Chinese)

    Google Scholar

    LI W Y, 2006b. Mineral potential of mineral resources in Northwest China[M]. Beijing: Geological Publishing House: 1-438. (in Chinese)

    Google Scholar

    LI W Y, 2007. The current status and prospect on magmatic Ni-Cu-PGE deposits[J]. Northwestern Geology, 40(2): 1-28. (in Chinese with English abstract)

    Google Scholar

    LI W Y, 2012. Active global tectonics and ore-forming processes[J]. Northwestern Geology, 45(2): 27-42. (in Chinese with English abstract)

    Google Scholar

    LI W Y, NIU Y L, ZHANG Z W, et al. , 2012a. Geodynamic setting and further exploration of magmatism-related mineralization concentrated in the Late Paleozoic in the northern Xinjiang autonomous region[J]. Earth Science Frontiers, 19(4): 41-50. (in Chinese with English abstract)

    Google Scholar

    LI W Y, TANG L Z, ZHANG Z W, et al. , 2012b. The concept of mineralization of the small rock mass and prospecting significance[J]. Northwestern Geology, 45(4): 61-68. (in Chinese with English abstract)

    Google Scholar

    LI W Y, 2013. The continental growth and ore-forming processes[J]. Northwestern Geology, 46(1): 1-10. (in Chinese with English abstract)

    Google Scholar

    LI W Y, 2015. Metallogenic geological characteristics and newly discovered orebodies in Northwest China[J]. Geology in China, 42(3): 365-380. (in Chinese with English abstract)

    Google Scholar

    LI W Y, ZHANG Z W, CHEN B, 2015. The theory on small intrusions forminglarge deposits and its explorationsignificance: taking for magmatic Ni-Cu sulfidedeposits example in the northwestern of China[J]. Engineering Sciences, 17(2): 29-34. (in Chinese with English abstract)

    Google Scholar

    LI W Y, 2018. The Primary discussion on the relationship between Paleo-Asian Ocean and Paleo-Tethys Ocean[J]. Acta Petrologica Sinica, 34(8): 2201-2210. (in Chinese with English abstract)

    Google Scholar

    LI W Y, ZHANG Z W, WANG Y L, et al. , 2019a. Study on the relationship between large-scale magma and metallization in Late Paleozoic in Northern Xinjiang[M]. Beijing: Science Press: 1-324. (in Chinese)

    Google Scholar

    LI W Y, HONG J, CHEN B, et al. , 2019b. Distribution regularity and main scientific issues of strategic mineral resources in Central Asia and Adjacent Regions[J]. Bulletin of National Natural Science Foundation of China, 33(2): 119-124. (in Chinese with English abstract)

    Google Scholar

    LI W Y, WANG Y L, QIAN B, et al. , 2020. Discussion on the formation of magmatic Cu-Ni-Co sulfide deposits in Margin of Tarim Block[J]. Earth Science Frontiers, 27(2): 276-293. (in Chinese with English abstract)

    Google Scholar

    LI W Y, ZHANG Z W, GAO Y B, et al. , 2021. Tectonic transformation the Kunlun orogen of Paleo-Tethys, North China, and the metallization of critical mineral resource’s nickel, cobalt, manganese and lithium[J]. Geology in China, [2021-11-18].https://kns.cnki.net/kcms/detail/11.1167.P.20211118.0847.002.html. (in Chinese with English abstract)

    Google Scholar

    LI W Y, ZHANG Z W, WANG Y L, et al. , 2022. Tectonic transformation of Proto- and Paleo-Tethys and the metallization of magmatic Ni-Cu-Co sufide deposits in Kunlun orogen, Northwest China[J]. Journal of Earth Sciences and Environment, 44(1): 1-19. (in Chinese with English abstract)

    Google Scholar

    LI X H, SU L, CHUNG S L, et al. , 2005. Formation of the Jinchuan ultramafic intrusion and the world's third largest Ni-Cu sulfide deposit: associated with the ∼825 Ma south China mantle plume?[J]. Geochemistry, Geophysics, Geosystems, 6(11): Q11004.

    Google Scholar

    LI Y, AUDÉTATA, 2015. Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and silicate melt[J]. Geochimica et Cosmochimica Acta, 162: 25-45. doi: 10.1016/j.gca.2015.04.036

    CrossRef Google Scholar

    LIGHTFOOT P C, HAWKESWORTH C J, HERGT J, et al. , 1993. Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril'sk District, Siberian Trap, Russia[J]. Contributions to Mineralogy and Petrology, 114(2): 171-188. doi: 10.1007/BF00307754

    CrossRef Google Scholar

    LIGHTFOOT P C, HAWKESWORTH C J, OLSHEFSKY K, et al. , 1997. Geochemistry of Tertiary tholeiites and picrites from Qeqertarssuaq (Disko Island) and Nuussuaq, West Greenland with implications for the mineral potential of comagmatic intrusions[J]. Contributions to Mineralogy and Petrology, 128(2): 139-163.

    Google Scholar

    LIGHTFOOT P C, NALDRETT A J, 1999. Geological and geochemical relationships in the Voisey’s Bay intrusion, Nain plutonic suite, Labrador, Canada[M]//KEAYS R R, LESHER C M, LIGHTFOOT P C, et al. Dynamic processes in magmatic ore deposits and their application to mineral exploration. Toronto: Geological Association of Canada Short Course Notes, 13: 1-30.

    Google Scholar

    LIU Y G, LÜ X B, WU C M, et al. , 2016. The migration of Tarim plume magma toward the northeast in Early Permian and its significance for the exploration of PGE-Cu-Ni magmatic sulfide deposits in Xinjiang, NW China: as suggested by Sr-Nd-Hf isotopes, sedimentology and geophysical data[J]. Ore Geology Reviews, 72: 538-545. doi: 10.1016/j.oregeorev.2015.07.020

    CrossRef Google Scholar

    LIU Y G, LI W Y, LÜ X B, et al. , 2017. The Pobei Cu-Ni and Fe ore deposits in NW China are comagmatic evolution products: evidence from ore microscopy, zircon U-Pb chronology and geochemistry[J]. Geologica Acta, 15(1): 37-50.

    Google Scholar

    LIU Y G, LI W Y, JIA Q Z, et al. , 2018. The dynamic sulfide saturation process and a possible slab break-off model for the giant xiarihamu magmatic nickel ore deposit in the east kunlun orogenic belt, Northern Qinghai-Tibet Plateau, China[J]. Economic Geology, 113(6): 1383-1417. doi: 10.5382/econgeo.2018.4596

    CrossRef Google Scholar

    LIU Y G, CHEN Z G, LI W Y, et al. , 2019. The Cu-Ni mineralization potential of the Kaimuqi mafic-ultramafic complex and the indicators for the magmatic Cu-Ni sulfide deposit exploration in the East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau, China[J]. Journal of Geochemical Exploration, 198: 41-53. doi: 10.1016/j.gexplo.2018.12.002

    CrossRef Google Scholar

    MAIER W D, GROVES D I, 2011. Temporal and spatial controls on the formation of magmatic PGE and Ni-Cu deposits[J]. Mineralium Deposita, 46(8): 841-857. doi: 10.1007/s00126-011-0339-6

    CrossRef Google Scholar

    MAO J W, YANG J M, QU W J, et al. , 2002. Re-Os dating of Cu-Ni sulfide ores from huangshandong deposit in Xinjiang and its geodynamic significance[J]. Mineral Deposits, 21(4): 323-330. (in Chinese with English abstract)

    Google Scholar

    MAVROGENES J A, O’NEILL H S C, 1999. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas[J]. Geochimica et Cosmochimica Acta, 63(7-8): 1173-1180. doi: 10.1016/S0016-7037(98)00289-0

    CrossRef Google Scholar

    MCDONOUGH W F, SUN S S, 1995. The composition of the Earth[J]. Chemical Geology, 120(3-4): 223-253. doi: 10.1016/0009-2541(94)00140-4

    CrossRef Google Scholar

    MCKENZIE D, BICKLE M J, 1988. The volume and composition of melt generated by extension of the lithosphere[J]. Journal of Petrology, 29(3): 625-679. doi: 10.1093/petrology/29.3.625

    CrossRef Google Scholar

    MITCHELL A H G, GARSON M S, 1981. Mineral deposits and global tectonic settings[M]. London: Academic Press: 1-457.

    Google Scholar

    MOUNTAIN B W, WOOD S A, 1988. Chemical controls on the solubility, transport and deposition of platinum and palladium in hydrothermal solutions; a thermodynamic approach[J]. Economic Geology, 83(3): 492-510. doi: 10.2113/gsecongeo.83.3.492

    CrossRef Google Scholar

    MUDD G M, JOWITT S M, 2014. A detailed assessment of global nickel resource trends and endowments[J]. Economic Geology, 109(7): 1813-1841. doi: 10.2113/econgeo.109.7.1813

    CrossRef Google Scholar

    NALDRETT A J, 1989. Magmatic sulfide deposits[M]. Oxford: Oxford University Presss: 1-196.

    Google Scholar

    NALDRETT A J, 2004. Magmatic sulfide deposits: geology, geochemistry and exploration[M]. Berlin: Springer: 1-727.

    Google Scholar

    PALME H, O'NEILL H S, 2014. Cosmochemical estimates of mantle composition[M]//RUDNICK R L. Treatise on geochemistry. 2nd ed. Oxford: Elsevier: 1-39.

    Google Scholar

    PEACH C L, MATHEZ E A, KEAYS R R, 1990. Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: implications for partial melting[J]. Geochimica et Cosmochimica Acta, 54(12): 3379-3389. doi: 10.1016/0016-7037(90)90292-S

    CrossRef Google Scholar

    PEARCE J A, 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 100(1-4): 14-48. doi: 10.1016/j.lithos.2007.06.016

    CrossRef Google Scholar

    PEI F P, XU W L, YAN D B, et al. , 2005. SHRIMP zircon U-Pb dating and its geological significance of Chibaisong gabbro in Tonghua area, Jilin Province, China[J]. Science in China Series D, 49(4): 368-374.

    Google Scholar

    PIRAJNO F, 2000. Ore deposits and mantle plumes[M]. London: Springer: 1-540.

    Google Scholar

    PIRAJNO F, 2013. The geology and tectonic settings of China’s mineral deposits[M]. Dordrecht: Springer: 1-679.

    Google Scholar

    QIN K Z, DING K S, XU Y X, et al. , 2007. Ore potential of protoliths and modes of Co-Ni occurrence in Tulargen and Baishiquan Cu-Ni-Co deposits, East Tianshan, Xinjiang[J]. Mineral Deposits, 26(1): 1-14. (in Chinese with English abstract)

    Google Scholar

    QIN K Z, SU B X, SAKYI P A, et al. , 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): constraints on a ca. Ma mantle plume[J]. American Journal of Science, 311(3): 237-260. doi: 10.2475/03.2011.03

    CrossRef Google Scholar

    ROBB L, 2005. Introduction to ore-forming processes[M]. Oxford: Blackwell Science Ltd: 1-373.

    Google Scholar

    RUDNICK R L, GAO S, 2014. Composition of the continental crust[M]//HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. Oxford: Elsevier: 1-51.

    Google Scholar

    SAN J Z, QIN K Z, TANG Z L, et al. , 2010. Precise zircon U-Pb age dating of two mafic-ultramafic complexes at Tulargen large Cu-Ni district and its geological implication[J]. Acta Petrologica Sinica, 26(10): 3027-3035. (in Chinese with English abstract)

    Google Scholar

    SCHILLING J G, ZAJAC M, EVANS R, et al. , 1983. Petrologic and geochemical variations along the Mid-Atlantic ridge from 29 Degrees N to 73 Degrees N[J]. American Journal of Science, 283(6): 510-586. doi: 10.2475/ajs.283.6.510

    CrossRef Google Scholar

    SLACK J F, KIMBALL B E, SHEDD K B, 2017. Cobalt, chapter F[C]//SCHULZ K J, DE Y, J J H, et al. Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply. Reston, VA: U. S. Geological Survey: 1-40.

    Google Scholar

    SONG X Y, YI J N, CHEN L M, et al. , 2016. The Giant Xiarihamu Ni-Co sulfide deposit in the east Kunlun Orogenic Belt, Northern Tibet Plateau, China[J]. Economic Geology, 111(1): 29-55. doi: 10.2113/econgeo.111.1.29

    CrossRef Google Scholar

    SONG X Y, 2019. Current research status and important issues of magmatic sulfide deposits[J]. Mineral Deposits, 38(4): 699-710. (in Chinese with English abstract)

    Google Scholar

    SU B X, QIN K Z, SAKYI P A, et al. , 2011. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: tectonic implications and evidence for an Early-Permian mantle plume[J]. Gondwana Research, 20(2-3): 516-531. doi: 10.1016/j.gr.2010.11.015

    CrossRef Google Scholar

    SUN S S, TATSUMOTO M, SCHILLING J G, 1975. Mantle plume mixing along the Reykjanes ridge axis: lead isotopic evidence[J]. Science, 190(4210): 143-147. doi: 10.1126/science.190.4210.143

    CrossRef Google Scholar

    SUN T, LI C, ZHANG Z Q, et al. , 2016. Mineralogical characteristics of Taoke Cu-Ni sulfide deposit in Shandong Provinceand its indications for metallogenic genesis[J]. Mineral Deposits, 35(4): 724-736. (in Chinese with English abstract)

    Google Scholar

    SUN T, WANG D H, 2019. Geology of mineral resources in China-nickel mining volume[M]. Beijing: Geological Publishing House: 1-912. (in Chinese)

    Google Scholar

    TANG Q Y, ZHANG M J, LI C S, et al. , 2013. The chemical compositions and abundances of volatiles in the Siberian large igneous province: constraints on magmatic CO2 and SO2 emissions into the atmosphere[J]. Chemical Geology, 339: 84-91. doi: 10.1016/j.chemgeo.2012.08.031

    CrossRef Google Scholar

    TANG Z L, REN D J, XUE Z R, et al. , 1989. Nickel deposit in China[M]//Editorial Board of China Mineral Deposits. China mineral deposit (the first volume). Beijing: Geology Press: 104-123. (in Chinese)

    Google Scholar

    TANG Z L, YANG J D, XU S J, et al. , 1992. Sm-Nd dating of the Jinchuan ultramafic rock body, Gansu, China[J]. Chinese Science Bulletin, 37(23): 1988-1990.

    Google Scholar

    TANG Z L, LI W Y, 1995. Mineralization mode and geological comparison of Jinchuan copper-nickel sulfide (including platinum) deposit[M]. Beijing: Geology Press: 1-209. (in Chinese)

    Google Scholar

    TANG Z L, QIAN Z Z, JIANG C Y, et al. , 2006. Magmatic Ni-Cu-pge sulphide deposits and metallogenic prognosis in China[M]. Beijing: Geology Press: 1-304. (in Chinese)

    Google Scholar

    TAO Y, MA Y S, MIAO L C, et al. , 2008. SHRIMP U-Pb zircon age of the Jinbaoshan ultramafic intrusion, Yunnan Province, SW China[J]. Chinese Science Bulletin, 54(1): 168-172.

    Google Scholar

    TAO Y, PUTIRKA K, HU R Z, et al. , 2015. The magma plumbing system of the Emeishan large igneous province and its role in basaltic magma differentiation in a continental setting[J]. American Mineralogist, 100(11-12): 2509-2517. doi: 10.2138/am-2015-4907

    CrossRef Google Scholar

    The Sixth Geological Team of Gansu Provincial Bureau of Geology and Mineral Resources, 1984. Baijiazuizi copper and nickel sulfide deposit[M]. Beijing: Geological Publishing House: 1-198 (in Chinese)

    Google Scholar

    TUCHSCHERER M G, SPRA J G, 2002. Geology, mineralization, and emplacement of the foy offset dike, sudbury impact structure[J]. Economic Geology, 97(7): 1377-1397.

    Google Scholar

    VOGEL D C, KEAYS R R, 1997. The petrogenesis and platinum-group element geochemistry of the Newer Volcanic Province, Victoria, Australia[J]. Chemical Geology, 136(3-4): 181-204. doi: 10.1016/S0009-2541(96)00142-8

    CrossRef Google Scholar

    VOGT J H L, 1894. Beit rage zur Genet ischen Classificat ion der Durch Magmat ische Different iat ions Processe und der Durch Previnath loyse Entslandenen Erzvo skommen[J]. Z P rak t. Geo l. , 2: 381-399.

    Google Scholar

    WANG G, 2014. Metallogenesis of nickel deposits in Eastern Kunlun orogenic belt, Qinghai Province[D]. Changchun: Jilin University: 1-214. (in Chinese with English abstract)

    Google Scholar

    WANG H S, BAI W J, WAN C Y, 1978. A petro-chemical classification of basic and ultrabasic rocks[J]. Acta Geologica Sinica, 52(1): 33-39. (in Chinese with English abstract)

    Google Scholar

    WANG M X, WANG Y, ZHAO J H, 2012. Zircon U/Pb dating and Hf-O isotopes of the Zhouan ultramafic intrusion in the northern margin of the YangtzeBlock, SW China: constraints on the nature of mantle source and timing of the supercontinent Rodinia breakup[J]. Chinese Science Bulletin, 58(7): 777-787. (in Chinese with Englishabstract)

    Google Scholar

    WANG R T, HE Y, WANG D S, et al. , 2003. Re-Os isotope age and its application to the Jianchaling nickel-copper sulfide deposit, Lueyang, Shaanxi Province[J]. Geological Review, 49(2): 205-211. (in Chinese with Englishabstract)

    Google Scholar

    WANG Y, 2006. Petrogenesis of Permian flood basalts and mafic-ultramafic intrusion in the Jinping(SW China) and Songda(Northern Vietnam)districts[D]. Hong Kong, China: University of Hong Kong.

    Google Scholar

    WHITE W M, KLEIN E M, 2014. Composition of the oceanic crust[M]//RUDNICK R L. Treatise on geochemistry. 2nd ed. Oxford: Elsevier: 457-496.

    Google Scholar

    WILLIAMS-JONES A E, VASYUKOVA O V, 2022. Constraints on the genesis of cobalt deposits: part I. Theoretical considerations[J]. Economic Geology, 117(3): 513-528. doi: 10.5382/econgeo.4895

    CrossRef Google Scholar

    WU F Y, WAN B, ZHAO L, et al. , 2020. Tethyan geodynamics[J]. Acta Petrologica Sinica, 36(6): 1627-1674. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.06.01

    CrossRef Google Scholar

    XIA L Q, XU X Y, XIA Z C, et al. , 2004. Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, northwestern China[J]. GSA Bulletin, 116(3-4): 419-433.

    Google Scholar

    XIA M Z, JIANG C Y, LI C, et al. , 2013. Characteristics of a newly discovered Ni-Cu sulfide deposit hosted in the Poyi Ultramafic intrusion, Tarim Craton, NW China[J]. Economic Geology, 108(8): 1865-1878. doi: 10.2113/econgeo.108.8.1865

    CrossRef Google Scholar

    XIAO W J, WINDLEY B F, BADARCH G, et al. , 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia[J]. Journal of the Geological Society, 161(3): 339-342. doi: 10.1144/0016-764903-165

    CrossRef Google Scholar

    XIAO W J, SONG D F, WINDLEY B F, et al. , 2020. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: advances and perspectives[J]. Science China Earth Sciences, 63(3): 329-361. doi: 10.1007/s11430-019-9524-6

    CrossRef Google Scholar

    XIAO X C, HE G Q, XU X, et al. , 2010. Crustal tectonic framework and geological evolution of Xinjiang uygur autonomous region of China[M]. Beijing: Geological Publishing House: 1-233. (in Chinese)

    Google Scholar

    XIE W, SONG X Y, DENG Y Y, et al. , 2012. Geochemistry and petrogenetic implications of a Late Devonian mafic-ultramafic intrusion at the southern margin of the Central Asian Orogenic Belt[J]. Lithos, 144-145: 209-230. doi: 10.1016/j.lithos.2012.03.010

    CrossRef Google Scholar

    XU Y G, CHUNG S L, JAHN B M, et al. , 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China[J]. Lithos, 58(3-4): 145-168. doi: 10.1016/S0024-4937(01)00055-X

    CrossRef Google Scholar

    YAKUBCHUK A, 2004. Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model[J]. Journal of Asian Earth Sciences, 23(5): 761-779. doi: 10.1016/j.jseaes.2004.01.006

    CrossRef Google Scholar

    YAKUBCHUK A, 2017. Evolution of the Central Asian orogenic supercollage since Late Neoproterozoic revised again[J]. Gondwana Research, 47: 372-398. doi: 10.1016/j.gr.2016.12.010

    CrossRef Google Scholar

    YAN H Q, TANG Z L, WANG Y L, et al. , 2010. Zircon U-Pb age and geological significance of Zhouan ore-bearing ultramafic rocks in Henan province[J]. Mineral Deposits, 29(S1): 531-532. (in Chinese)

    Google Scholar

    YANG S H, CHEN J F, QU W J, et al. , 2007. Re-Os “ages” of Jinchuan copper-nickel sulfide deposit and their significance[J]. Geochimica, 36(1): 27-36. (in Chinese with English abstract)

    Google Scholar

    YOU M X, 2022. Origin and genetic mechanism of magmatic Ni-Cu sulfide deposits in the western part of Eastern Tianshan region, Xinjiang, China[D]. Beijing: Chinese Academy of Geological Sciences: 1-246. (in Chinese with English abstract)

    Google Scholar

    ZHANG C L, YANG D S, WANG H Y, et al. , 2011. Neoproterozoic mafic-ultramafic layered intrusion in Quruqtagh of northeastern Tarim Block, NW China: two phases of mafic igneous activity with different mantle sources[J]. Gondwana Research, 19(1): 177-190. doi: 10.1016/j.gr.2010.03.012

    CrossRef Google Scholar

    ZHANG M J, KAMO S L, LI C S, et al. , 2010. Precise U-Pb zircon-baddeleyite age of the Jinchuan sulfide ore-bearing ultramafic intrusion, western China[J]. Mineralium Deposita, 45(1): 3-9. doi: 10.1007/s00126-009-0259-x

    CrossRef Google Scholar

    ZHANG M J, LIU Y G, CHEN A P, et al. , 2021. The tectonic links between Palaeozoic eclogites and mafic magmatic Cu-Ni-Co mineralization in East Kunlun orogenic belt, western China[J]. International Geology Review,doi: 10.1080/00206814.2021.1885504.

    Google Scholar

    ZHANG Z B, 2016. Genetic significances from mineralogy of Xiarihamu Ni-Cu sulfide deposit, Eastern Kunlun orogenic belt[D]. Beijing: China University of Geosciences (Beijing): 1-150. (in Chinese with English abstract)

    Google Scholar

    ZHANG Z C, MAHONEY J J, WANG F S, et al. , 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China: evidence for a plume-head origin[J]. Acta Petrologica Sinica, 22(6): 1538-1552. (in Chinese with English abstract)

    Google Scholar

    ZHANG Z H, WANG Z L, WANG Y B, et al. , 2007. Shrimp zircon U-Pb dating of diorite from Qingbulake basic complex in western Tianshan Mountains of Xinjiang and its geological significance[J]. Mineral Deposits, 26(4): 353-360. (in Chinese with English abstract)

    Google Scholar

    ZHAO G C, WANG Y J, HUANG B C, et al. , 2018. Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 186: 262-286. doi: 10.1016/j.earscirev.2018.10.003

    CrossRef Google Scholar

    ZHENG Y F, CHEN Y X, DAI L Q, et al. , 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens[J]. Science China Earth Science, 58(7): 1045-1069. doi: 10.1007/s11430-015-5097-3

    CrossRef Google Scholar

    ZHENG Y F, XU Z, CHEN L, et al. , 2020. Chemical geodynamics of mafic magmatism above subduction zones[J]. Journal of Asian Earth Sciences, 194: 104185. doi: 10.1016/j.jseaes.2019.104185

    CrossRef Google Scholar

    ZHOU M F, ARNDT N T, MALPAS J, et al. , 2008. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China[J]. Lithos, 103(3-4): 352-368. doi: 10.1016/j.lithos.2007.10.006

    CrossRef Google Scholar

    党智财, 2015. 内蒙古中部地区镁铁质—超镁铁质岩岩石学、地球化学、年代学及含矿性评价[D]. 北京: 中国地质科学院: 1-116.

    Google Scholar

    甘肃省地质矿产局第六地质队, 1984. 白家咀子硫化铜镍矿床地质[M]. 北京: 地质出版社: 1-198.

    Google Scholar

    葛文春, 李献华, 梁细荣, 等, 2001. 桂北元宝山宝坛地区约825Ma镁铁-超镁铁岩的地球化学及其地质意义[J]. 地球化学, 30(2): 123-130. doi: 10.3321/j.issn:0379-1726.2001.02.003

    CrossRef Google Scholar

    韩宝福, 季建清, 宋彪, 等, 2004. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义[J]. 科学通报, 49(22): 2324-2328. doi: 10.3321/j.issn:0023-074X.2004.22.012

    CrossRef Google Scholar

    韩一筱, 2021. 金川与夏日哈木岩浆铜镍硫化物矿床铂族元素对比研究[D]. 西安: 长安大学: 1-180.

    Google Scholar

    郝立波, 孙立吉, 赵玉岩, 等, 2013. 吉林红旗岭镍矿田茶尖岩体锆石SHRIMP U-Pb年代学及其意义[J]. 地球科学—中国地质大学学报, 38(2): 233-240.

    Google Scholar

    姜常义, 郭娜欣, 夏明哲, 等, 2012. 塔里木板块东北部坡一镁铁质-超镁铁质层状侵入体岩石成因[J]. 岩石学报, 28(7): 2209-2223.

    Google Scholar

    姜常义, 凌锦兰, 周伟, 等, 2015. 东昆仑夏日哈木镁铁质-超镁铁质岩体岩石成因与拉张型岛弧背景[J]. 岩石学报, 31(4): 1117-1136.

    Google Scholar

    李光辉, 孙景贵, 黄永卫, 等, 2010. 黑龙江鸡东五星铂钯矿床含矿岩体的锆石U-Pb年龄及其地质意义[J]. 世界地质, 29(1): 28-33.

    Google Scholar

    李华芹, 陈富文, 梅玉萍, 等, 2006. 新疆坡北基性-超基性岩带Ⅰ号岩体Sm-Nd和SHRIMP U-Pb同位素年龄及其地质意义[J]. 矿床地质, 25(4): 463-469. doi: 10.3969/j.issn.0258-7106.2006.04.010

    CrossRef Google Scholar

    李立兴, 王登红, 松权衡, 等, 2009. 吉林通化赤柏松铜镍硫化物矿床含矿岩体之时代研究[J]. 矿物学报, 29(S1): 55-56. doi: 10.3321/j.issn:1000-4734.2009.z1.031

    CrossRef Google Scholar

    李世金, 孙丰月, 高永旺, 等, 2012. 小岩体成大矿理论指导与实践: 青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义[J]. 西北地质, 45(4): 185-191. doi: 10.3969/j.issn.1009-6248.2012.04.017

    CrossRef Google Scholar

    黎彤, 1976. 化学元素的地球丰度[J]. 地球化学(3): 167-174

    Google Scholar

    李文渊, 1995. 中国铜镍硫化物矿床特征及勘查对策[C]//中国科学技术协会第二届青年学术年会论文集(基础科学分册). 北京: 中国科学技术出版社: 180-190.

    Google Scholar

    李文渊, 1996. 中国铜镍硫化物矿床成矿系列与地球化学[M]. 西安: 西安地图出版社: 1-228.

    Google Scholar

    李文渊, 1999. 北祁连山陆-陆碰撞的远程成矿效应: 龙首山地区深成矿体定位及构造热液改造[C]//大地构造及陆内变形暨第六届全国地质力学学术讨论会论文集. 北京: 中国地质学会: 166-169.

    Google Scholar

    李文渊, 2006a. 祁连山岩浆作用有关金属硫化物矿床成矿与找矿[M]. 北京: 地质出版社: 1-208.

    Google Scholar

    李文渊, 2006b. 西北地区矿产资源找矿潜力[M]. 北京: 地质出版社: 1-438.

    Google Scholar

    李文渊, 2007. 岩浆Cu-Ni-PGE矿床研究现状及发展趋势[J]. 西北地质, 40(2): 1-28. doi: 10.3969/j.issn.1009-6248.2007.02.001

    CrossRef Google Scholar

    李文渊, 2012. 超大陆旋回与成矿作用[J]. 西北地质, 45(2): 27-42. doi: 10.3969/j.issn.1009-6248.2012.02.002

    CrossRef Google Scholar

    李文渊, 牛耀龄, 张照伟, 等, 2012a. 新疆北部晚古生代大规模岩浆成矿的地球动力学背景和战略找矿远景[J]. 地学前缘, 19(4): 41-50.

    Google Scholar

    李文渊, 汤中立, 张照伟, 等, 2012b. 对小岩体成矿的认识及其找矿意义[J]. 西北地质, 45(4): 61-68.

    Google Scholar

    李文渊, 2013. 大陆生长演化与成矿作用讨论[J]. 西北地质, 46(1): 1-10. doi: 10.3969/j.issn.1009-6248.2013.01.001

    CrossRef Google Scholar

    李文渊, 2015. 中国西北部成矿地质特征及找矿新发现[J]. 中国地质, 42(3): 365-380. doi: 10.3969/j.issn.1000-3657.2015.03.001

    CrossRef Google Scholar

    李文渊, 张照伟, 陈博, 2015. 小岩体成大矿的理论与找矿实践意义: 以西北地区岩浆铜镍硫化物矿床为例[J]. 中国工程科学, 17(2): 29-34 doi: 10.3969/j.issn.1009-1742.2015.02.004

    CrossRef Google Scholar

    李文渊, 2018. 古亚洲洋与古特提斯洋关系初探[J]. 岩石学报, 34(8): 2201-2210.

    Google Scholar

    李文渊, 张照伟, 王亚磊, 等, 2019a. 新疆北部晚古生代大规模岩浆作用与成矿耦合关系研究[M]. 北京: 科学出版社: 1-324.

    Google Scholar

    李文渊, 洪俊, 陈博, 等, 2019b. 中亚及邻区战略性关键矿产的分布规律与主要科学问题[J]. 中国科学基金, 33(2): 119-123.

    Google Scholar

    李文渊, 王亚磊, 钱兵, 等, 2020. 塔里木陆块周缘岩浆Cu-Ni-Co硫化物矿床形成的探讨[J]. 地学前缘, 27(2): 276-293.

    Google Scholar

    李文渊, 张照伟, 高永宝, 等, 2021. 昆仑古特提斯构造转换与镍钴锰锂关键矿产成矿作用研究[J]. 中国地质, [2021-11-18]. https://kns.cnki.net/kcms/detail/11.1167.P.20211118.0847.002.html.

    Google Scholar

    李文渊, 张照伟, 王亚磊, 等, 2022. 东昆仑原、古特提斯构造转换与岩浆铜镍钴硫化物矿床成矿作用[J]. 地球科学与环境学报, 44(1): 1-19.

    Google Scholar

    毛景文, 杨建民, 屈文俊, 等, 2002. 新疆黄山东铜镍硫化物矿床Re-Os同位素测定及其地球动力学意义[J]. 矿床地质, 21(4): 323-330. doi: 10.3969/j.issn.0258-7106.2002.04.002

    CrossRef Google Scholar

    裴福萍, 许文良, 杨德彬, 等, 2005. 吉林通化赤柏松辉长岩锆石SHRIMP U-Pb定年及其地质意义[J]. 中国科学D辑: 地球科学, 35(5): 393-398.

    Google Scholar

    秦克章, 丁奎首, 许英霞, 等, 2007. 东天山图拉尔根、白石泉铜镍钴矿床钴、镍赋存状态及原岩含矿性研究[J]. 矿床地质, 26(1): 1-14. doi: 10.3969/j.issn.0258-7106.2007.01.001

    CrossRef Google Scholar

    三金柱, 秦克章, 汤中立, 等, 2010. 东天山图拉尔根大型铜镍矿区两个镁铁-超镁铁岩体的锆石U-Pb定年及其地质意义[J]. 岩石学报, 26(10): 3027-3035.

    Google Scholar

    宋谢炎, 2019. 岩浆硫化物矿床研究现状及重要科学问题[J]. 矿床地质, 38(4): 699-710. doi: 10.16111/j.0258-7106.2019.04.002

    CrossRef Google Scholar

    孙涛, 李超, 张增奇, 等, 2016. 山东桃科铜镍矿床矿物学特征及其对矿床成因的指示[J]. 矿床地质, 35(4): 724-736. doi: 10.16111/j.0258-7106.2016.04.007

    CrossRef Google Scholar

    孙涛, 王登红, 2019. 中国地质矿产志-镍矿卷[M]. 北京: 地质出版社: 1-912.

    Google Scholar

    汤中立, 任端进, 薛增瑞, 等, 1989. 中国镍矿床[M]//《中国矿床》编委会. 中国矿床-上册. 北京: 地质出版社: 104-123.

    Google Scholar

    汤中立, 杨杰东, 徐士进, 等, 1992. 金川含矿超铁镁岩的Sm-Nd定年[J]. 科学通报, 37(10): 918-920.

    Google Scholar

    汤中立, 李文渊, 1995. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M]. 北京: 地质出版社: 1-209.

    Google Scholar

    汤中立, 钱壮志, 姜常义, 等, 2006. 中国镍铜铂岩浆硫化物矿床与成矿预测[M]. 北京: 地质出版社: 1-304.

    Google Scholar

    陶琰, 马言胜, 苗来成, 等, 2008. 云南金宝山超镁铁岩体锆石SHRIMP年龄[J]. 科学通报, 53(22): 2828-2832. doi: 10.3321/j.issn:0023-074X.2008.22.023

    CrossRef Google Scholar

    王冠, 2014. 东昆仑造山带镍矿成矿作用研究[D]. 长春: 吉林大学: 1-214.

    Google Scholar

    王恒升, 白文吉, 宛传永, 1978. 基性岩与超基性岩的岩石化学分类[J]. 地质学报, 52(1): 33-39.

    Google Scholar

    王梦玺, 王焰, 赵军红, 2012. 扬子板块北缘周庵超镁铁质岩体锆石U/Pb年龄和Hf-O同位素特征: 对源区性质和Rodinia超大陆裂解时限的约束[J]. 科学通报, 57(34): 3283-3294.

    Google Scholar

    王瑞廷, 赫英, 王东生, 等, 2003. 略阳煎茶岭铜镍硫化物矿床Re-Os同位素年龄及其地质意义[J]. 地质论评, 49(2): 205-211. doi: 10.3321/j.issn:0371-5736.2003.02.014

    CrossRef Google Scholar

    吴福元, 万博, 赵亮, 等, 2020. 特提斯地球动力学[J]. 岩石学报, 36(6): 1627-1674. doi: 10.18654/1000-0569/2020.06.01

    CrossRef Google Scholar

    肖序常, 何国琪, 徐新, 等, 2010. 中国新疆地壳结构与地质演化[M]. 北京: 地质出版社: 1-233.

    Google Scholar

    闫海卿, 汤中立, 王亚磊, 等, 2010. 河南周庵含矿超镁铁岩体锆石U-Pb年龄及地质意义[J]. 矿床地质, 29(S1): 531-532. doi: 10.16111/j.0258-7106.2010.s1.271

    CrossRef Google Scholar

    杨胜洪, 陈江峰, 屈文俊, 等, 2007. 金川铜镍硫化物矿床的Re-Os“年龄”及其意义[J]. 地球化学, 36(1): 27-36. doi: 10.3321/j.issn:0379-1726.2007.01.003

    CrossRef Google Scholar

    尤敏鑫, 2022. 新疆东天山西段岩浆铜镍硫化物矿床岩浆起源与成矿机制[D]. 北京: 中国地质科学院: 1-246.

    Google Scholar

    张志炳, 2016. 东昆仑夏日哈木铜镍硫化物矿床矿物成因意义探讨[D]. 北京: 中国地质大学(北京): 1-150.

    Google Scholar

    张招崇, MAHONEY J J, 王福生, 等, 2006. 峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学: 地幔柱头部熔融的证据[J]. 岩石学报, 22(6): 1538-1552. doi: 10.3321/j.issn:1000-0569.2006.06.012

    CrossRef Google Scholar

    张作衡, 王志良, 王彦斌, 等, 2007. 新疆西天山菁布拉克基性杂岩体闪长岩锆石SHRI MP定年及其地质意义[J]. 矿床地质, 26(4): 353-360. doi: 10.3969/j.issn.0258-7106.2007.04.001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(3)

Article Metrics

Article views(4286) PDF downloads(80) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint