2022 Vol. 28, No. 3
Article Contents

LI Yihao, DU Xingxing, LI Tianxiu. 2022. Characterization of the Holocene extensional structures in the Wuwei Basin, northeastern margin of the Xizang Plateau, and their formation mechanism. Journal of Geomechanics, 28(3): 353-366. doi: 10.12090/j.issn.1006-6616.2021151
Citation: LI Yihao, DU Xingxing, LI Tianxiu. 2022. Characterization of the Holocene extensional structures in the Wuwei Basin, northeastern margin of the Xizang Plateau, and their formation mechanism. Journal of Geomechanics, 28(3): 353-366. doi: 10.12090/j.issn.1006-6616.2021151

Characterization of the Holocene extensional structures in the Wuwei Basin, northeastern margin of the Xizang Plateau, and their formation mechanism

    Fund Project: This research is financially supported by the Geological Survey Project of China Geological Survey (Grants No.DD20190018, DD20221644)
More Information
  • The Wuwei Basin at the eastern end of the Hexi Corridor, between the North Qilian Mountain and the Longshou Mountain in the northeastern margin of the Xizang Plateau, was in a NE-trending compressional environment during the Holocene. Our field survey results indicate that there are two groups of near-vertical normal faults, namely the NWW-trending and NE-trending faults. The OSL dating results show that the two groups of normal faults experienced two periods of tectonic activity in 0.70 ka and 0.49~0.18 ka. The analysis concludes that the NWW-trending normal faults were formed by the differential stress perpendicular to the stratigraphy, which was produced by the continuous uplift of the Fenmenshan uplift in the Wuwei Basin. The NE-trending normal faults could be the extensional rupture (T rupture) produced by the nearly EW-trending sinistral strike-slip faults on both sides of the Wuwei Basin, or be formed by the extension vertical to the NE-trending compression of the Xizang Plateau. Therefore, the tectonic deformation in the Wuwei Basin was controlled by the tectonic activities in the northeastern margin of the Xizang Plateau during the late Holocene.

  • 加载中
  • AI S, ZHANG B, FAN C, et al., 2017. Surface tracks and slip rate of the fault along the southern margin of the Wuwei basin in the late Quaternary[J]. Seismology and Geology, 39(2): 408-422. (in Chinese with English abstract)

    Google Scholar

    AN Z S, KUTZBACH J E, PRELL W L, et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Xizang plateau since late Miocene times[J]. Nature, 411(6833): 62-66. doi: 10.1038/35075035

    CrossRef Google Scholar

    BALLARINI M, WALLINGA J, MURRAY A S, et al., 2003. Optical dating of young coastal dunes on a decadal time scale[J]. Quaternary Science Reviews, 22(10-13): 1011-1017. doi: 10.1016/S0277-3791(03)00043-X

    CrossRef Google Scholar

    BOVET P M, RITTS B D, GEHRELS G, et al., 2009. Evidence of Miocene crustal shortening in the North Qilian Shan from Cenozoic stratigraphy of the western Hexi Corridor, Gansu Province, China[J]. American Journal of Science, 309(4): 290-329. doi: 10.2475/00.4009.02

    CrossRef Google Scholar

    Bureau of Geology and Mineral Resources of Gansu Province, 1997. Stratigraphy(lithostratic) of Gansu province[M]. Wuhan: China University of Geosciences Press. (in Chinese)

    Google Scholar

    CARDELLO G L, TESEI T, 2013. Transtensive faulting in carbonates at different crustal levels: examples from SW Helvetics and central Apennines[J]. Rendiconti Online Societa Geologica Italiana, 29: 20-23.

    Google Scholar

    CHAMPAGNAC J D, YUAN D Y, GE W P, et al., 2010. Slip rate at the north-eastern front of the Qilian Shan, China[J]. Terra Nova, 22(3): 180-187. doi: 10.1111/j.1365-3121.2010.00932.x

    CrossRef Google Scholar

    CHEN B L, LIU J M, LIU J S, et al., 2006. Study on the activity and chronology of the Gaotai Railway Station fault during Holocene Epoch[J]. Acta Geologica Sinica, 80(4): 497-507. (in Chinese with English abstract)

    Google Scholar

    CHEN B L, WANG C Y, CUI L L, et al., 2008. Developing model of thrust fault system in western part of Northern Qilian Mountains margin-Hexi Corridor Basin during late Quaternary[J]. Earth Science Frontiers, 15(6): 260-277. (in Chinese with English abstract)

    Google Scholar

    CHEN B L, LIU J S, 2009. Geodetic deformation in Northern Qilianshan margin and Hexi Corridor area, Northwest China and its relation to the earthquake[J]. Geological Bulletin of China, 28(10): 1439-1447. (in Chinese with English abstract)

    Google Scholar

    CHEN W B, 2003. Principal features of tectonic deformation and their generation mechanism in the Hexi Corridor and its adjacent regions since late Quaternary[D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract)

    Google Scholar

    CUI Z H, TANG L J, 2007. A genetic model of normal fault under compressive tectonic setting[J]. Xinjiang Petroleum Geology, 28(2): 254-256. (in Chinese with English abstract)

    Google Scholar

    CUNNINGHAM D, ZHANG J, LI Y F, 2016. Late Cenozoic transpressional mountain building directly north of the Altyn Tagh fault in the Sanweishan and Nanjieshan, north Xizang foreland, China[J]. Tectonophysics, 687: 111-128. doi: 10.1016/j.tecto.2016.09.010

    CrossRef Google Scholar

    DENG Q D, ZHANG W Q, ZHANG P Z, et al., 1989. Haiyuan strike-slip fault zone and its compressional structures of the end[J]. Seismology and Geology, 11(1): 1-14. (in Chinese with English abstract)

    Google Scholar

    GE X H, LIU J L, 1999. Formation and tectonic background of the Northern Qilian orogenic belt[J]. Earth Science Frontiers, 6(4): 223-230. (in Chinese with English abstract)

    Google Scholar

    GUO H J, YANG L R, ZHU X H, et al., 2016. River terrace and Quaternary tectonic uplift in the Qilian Mountain[J]. Geological Bulletin of China, 35(12): 2033-2044. (in Chinese with English abstract)

    Google Scholar

    HE G Y, YANG S F, CHEN H L, et al., 2004. On faults of western Hexi corridor and its vicinity, Northwestern China Ⅰ: Thrust and strike-slip faults of late Cenozoic[J]. Acta Seismologica Sinica, 26(6): 601-608. (in Chinese with English abstract)

    Google Scholar

    HE X, DU X X, LIU J, et al., 2022. Sedimentary process and tectonic significance of Wuwei basin during the Quaternary[J]. Seismology and Geology, 44(1): 76-97. (in Chinese with English abstract)

    Google Scholar

    HOU K M, ZHENG Q D, LIU B C, 1999. Research on tectonic environment and seismogenic mechanism of 1927 Gulang great earthquake[J]. Earthquake Research in China, 15(4): 339-348. (in Chinese with English abstract)

    Google Scholar

    HU X F, 2010. The research on temporal and spatial distributions of erosionrates and tectonic deformation in the Northern Qilianshan[D]. Lanzhou: Lanzhou University. (in Chinese with English abstract)

    Google Scholar

    JIANG Z S, MA Z J, ZHANG X, et al., 2001. Analysis of recent horizontal crustal strain field and tectonic deformation in the northeast margin of Qinghai-Xizang block[J]. Seismology and Geology, 23(3): 337-346. (in Chinese with English abstract)

    Google Scholar

    JIN S, ZHANG L T, JIN Y J, et al., 2012. Crustal electrical structure along the Hezuo-Dajing profile across the northeastern margin of the Xizang Plateau[J]. Chinese Journal of Geophysics, 55(12): 3979-3990. (in Chinese with English abstract)

    Google Scholar

    LAI Z P, OU X J, 2013. Basic procedures of optically stimulated luminescence (OSL) dating[J]. Progress in Geography, 32(5): 683-693. (in Chinese with English abstract)

    Google Scholar

    LI F Q, WANG C S, ZHU L D, et al., 2002. The basin-range coupling under the regional compressional regimes: examples from the Hexi Corridor Basin and North Qilian Mountains[J]. Sedimentary Geology and Tethyan Geology, 22(4): 17-25. (in Chinese with English abstract)

    Google Scholar

    LI J Y, ZHENG W J, WANG W T, et al., 2020. The northward growth of the northeastern Xizang Plateau in late Cenozoic: Implications from apatite(U-Th)/He ages of Longshoushan[J]. Seismology and Geology, 42(2): 472-491. (in Chinese with English abstract)

    Google Scholar

    LI W L, CHENG H H, ZHANG H, et al., 2019. Three-dimensional numerical modeling of the tectonic evolution of the serial basins in the Hexi Corridor in Northwest China[J]. Journal of University of Chinese Academy of Sciences, 36(2): 196-207. (in Chinese with English abstract)

    Google Scholar

    LI X, WAN Y G, CUI H W, et al., 2016. Tectonic stress field of 2016, MS6.4 Menyuan, Qinghai earthquake[J]. North China Earthquake Sciences, 34(2): 36-41. (in Chinese with English abstract)

    Google Scholar

    LI Y L, YANG J C, LI B J, et al., 1997. On the tectonic landform of the Yumu Mountain, Hexi Corridor, Gansu Province[J]. Journal of Geomechanics, 3(4): 20-26. (in Chinese with English abstract)

    Google Scholar

    LIU B Y, ZENG W H, YUAN D Y, et al., 2014. Fault parameters and slip properties of the 1954 northern Tengger Desert M7.0 earthquake[J]. China Earthquake Engineering Journal, 36(3): 622-627. (in Chinese with English abstract)

    Google Scholar

    LIU B Y, ZENG W H, YUAN D Y, et al., 2015. The research on fault parameter and sliding behavior of the 1927 Gulang M8.0 earthquake[J]. Seismology and Geology, 37(3): 818-828. (in Chinese with English abstract)

    Google Scholar

    LIU H C, DAI H G, LI L H, et al., 2000. A preliminary study on the 1954 Minqin MS7.0 earthquake in Gansu province[J]. Northwestern Seismological Journal, 22(3): 232-235. (in Chinese with English abstract)

    Google Scholar

    LIU H F, LIANG H S, CAI L G, et al., 1994. Evolution and structural style of Tianshan and adjacent basins, Northwestern China[J]. Earth Science, 19(6): 727-741. (in Chinese with English abstract)

    Google Scholar

    LIU X W, YUAN D Y, SU Q, et al., 2020. Late Quaternary tectonic activity and slip rates of active faults in the Western Hexi Corridor, NW China[J]. Journal of Earth Science, 31(5): 968-977. doi: 10.1007/s12583-020-1287-9

    CrossRef Google Scholar

    MURRAY A S, WINTLE A G, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J]. Radiation Measurements, 32(1): 57-73. doi: 10.1016/S1350-4487(99)00253-X

    CrossRef Google Scholar

    MURRAY A S, WINTLE A G, 2003. The single aliquot regenerative dose protocol: Potential for improvements in reliability[J]. Radiation Measurements, 37(4-5): 377-381. doi: 10.1016/S1350-4487(03)00053-2

    CrossRef Google Scholar

    PEI H L, 2017. Manifestation of new tectonic activity on the proluvial landform in the northern Yumu Mountain marginal fault[D]. Beijing: China University of Geosciences(Beijing). (in Chinese with English abstract)

    Google Scholar

    SHI W, LIU Y, LIU Y, et al., 2013. Cenozoic evolution of the Haiyuan fault zone in the northeast margin of the Xizang Plateau[J]. Earth Science Frontiers, 20(4): 1-17. (in Chinese with English abstract)

    Google Scholar

    SHI Y J, ZHANG C W, CUN S C, 1995. Discovery of nappe structure in Longshou Mountain and its geological significance[J]. Chinese Science Bulletin, 40(9): 812-813. (in Chinese) doi: 10.1360/csb1995-40-9-812

    CrossRef Google Scholar

    SONG C H, 2006. Tectonic uplift and Cenozoic sedimentary evolution in the northern margin of the Xizang Plateau[D]. Lanzhou: Lanzhou University. (in Chinese with English abstract)

    Google Scholar

    TAN L H, YANG J C, DUAN F J, 1998. Stages of Cenozoic tectonic movement in Hexi Corridor, Gansu province[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 34(4): 523-532. (in Chinese with English abstract)

    Google Scholar

    THORNTON J M, MARIETHOZ G, BRUNNER P, 2018. A 3D geological model of a structurally complex Alpine region as a basis for interdisciplinary research[J]. Scientific Data, 5(1): 180238. doi: 10.1038/sdata.2018.238

    CrossRef Google Scholar

    WALDRON J W F, 2005. Extensional fault arrays in strike-slip and transtension[J]. Journal of Structural Geology, 27(1): 23-34. doi: 10.1016/j.jsg.2004.06.015

    CrossRef Google Scholar

    WAN J L, ZHENG W J, ZHENG D W, et al., 2010. Low closure temperature thermochronometry study on the late Cenozoic tectonic active of Northern Qilianshan and its implication for dynamics of Xizang Plateau growth[J]. Geochimica, 39(5): 439-446. (in Chinese with English abstract)

    Google Scholar

    WANG C S, DAI J G, LIU Z F, et al., 2009. The uplift history of the Xizang Plateau and Himalaya and its study approaches and techniques: a review[J]. Earth Science Frontiers, 16(3): 1-30. (in Chinese with English abstract)

    Google Scholar

    WANG J M, ZHANG J J, LIU K, et al., 2016a. Spatial and temporal evolution of tectonometamorphic discontinuities in the central Himalaya: constraints from P-T paths and geochronology[J]. Tectonophysics, 679: 41-60. doi: 10.1016/j.tecto.2016.04.035

    CrossRef Google Scholar

    WANG W T, KIRBY E, ZHANG P Z, et al., 2013. Tertiary basin evolution along the northeastern margin of the Xizang Plateau: Evidence for basin formation during Oligocene transtension[J]. GSA Bulletin, 125(3-4): 377-400. doi: 10.1130/B30611.1

    CrossRef Google Scholar

    WANG W T, ZHANG P Z, ZHENG D W, et al., 2014. Late Cenozoic tectonic deformation of the Haiyuan fault zone in the northeastern margin of the Xizang Plateau[J]. Earth Science Frontiers, 21(4): 266-274. (in Chinese with English abstract)

    Google Scholar

    WANG W T, ZHANG P Z, PANG J Z, et al., 2016b. The Cenozoic growth of the Qilian Shan in the northeastern Xizang Plateau: a sedimentary archive from the Jiuxi Basin[J]. Journal of Geophysical Research: Solid Earth, 121(4): 2235-2257. doi: 10.1002/2015JB012689

    CrossRef Google Scholar

    WANG W T, ZHENG D W, LI C P, et al., 2020. Cenozoic exhumation of the Qilian Shan in the Northeastern Xizang Plateau: evidence from low-temperature thermochronology[J]. Tectonics, 39(4): e2019TC005705.

    Google Scholar

    WANG X L, LI X N, LU Y C, 2004. Red LED and its application to luminescence lighting[J]. Marine Geology & Quaternary Geology, 24(1): 133-137. (in Chinese with English abstract)

    Google Scholar

    XIAO K Z, TONG H M, 2020. Progress on strike-slip fault research and its significance[J]. Journal of Geomechanics, 26(2): 151-166. (in Chinese with English abstract)

    Google Scholar

    XIAO Q B, ZHANG J, WANG J J, et al., 2012. Electrical resistivity structures between the Northern Qilian Mountains and Beishan Block, NW China, and tectonic implications[J]. Physics of the Earth and Planetary Interiors, 200-201: 92-104. doi: 10.1016/j.pepi.2012.04.008

    CrossRef Google Scholar

    XIAO Q B, ZHANG J, ZHAO G Z, et al., 2013a. Electrical resistivity structures northeast of the Eastern Kunlun Fault in the Northeastern Xizang: tectonic implications[J]. Tectonophysics, 601: 125-138. doi: 10.1016/j.tecto.2013.05.003

    CrossRef Google Scholar

    XIAO Q B, SHAO G H, JINGL Z, et al., 2015. Eastern termination of the Altyn Tagh Fault, Western China: constraints from a magnetotelluric survey[J]. Journal of Geophysical Research: Solid Earth, 120(5): 2838-2858. doi: 10.1002/2014JB011363

    CrossRef Google Scholar

    XIAO W J, WINDLEY B F, ALLEN M B, et al., 2013b. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J]. Gondwana Research, 23(4): 1316-1341. doi: 10.1016/j.gr.2012.01.012

    CrossRef Google Scholar

    YAN C F, YUAN J Y, 2011. Sedimentary environment and hydrocarbon potential of Carboniferous in Wuwei Basin[J]. Natural Gas Geoscience, 22(2): 267-274. (in Chinese with English abstract)

    Google Scholar

    YAN D P, SUN M, GONG L X, et al., 2020. Composite structure and growth of the Longmenshan foreland thrust belt in the eastern margin of the Qinghai-Xizang Plateau[J]. Journal of Geomechanics, 26(5): 615-633. (in Chinese with English abstract)

    Google Scholar

    YAN M D, FANG X M, VAN DER VOO R, et al., 2013. Neogene rotations in the Jiuquan Basin, Hexi Corridor, China[J]. Geological Society, London, Special Publications, 373(1): 173-189. doi: 10.1144/SP373.6

    CrossRef Google Scholar

    YANG J C, TAN L H, LI Y L, et al., 1998. River terraces and neotectonic evolution at north margin of the Qilianshan mountains[J]. Quaternary Sciences(3): 229-237. (in Chinese with English abstract)

    Google Scholar

    YU J X, ZHENG W J, KIRBY E, et al., 2016. Kinematics of late Quaternary slip along the Yabrai fault: implications for Cenozoic tectonics across the Gobi Alashan block, China[J]. Lithosphere, 8(3): 199-218. doi: 10.1130/L509.1

    CrossRef Google Scholar

    YU J X, ZHENG W J, ZHANG P Z, et al., 2017. Late Quaternary strike-slip along the Taohuala Shan-Ayouqi fault zone and its tectonic implications in the Hexi Corridor and the southern Gobi Alashan, China[J]. Tectonophysics, 721: 28-44. doi: 10.1016/j.tecto.2017.09.014

    CrossRef Google Scholar

    YUAN D Y, GE W P, CHEN Z W, et al., 2013. The growth of northeastern Xizang and its relevance to large-scale continental geodynamics: a review of recent studies[J]. Tectonics, 32(5): 1358-1370. doi: 10.1002/tect.20081

    CrossRef Google Scholar

    YUN L, ZHANG J, WANG J, et al., 2021. Discovery of active faults in the southern Beishan area, NW China: implications for regional tectonics[J]. Journal of Geomechanics, 27(2): 195-207. (in Chinese with English abstract)

    Google Scholar

    ZHANG B H, ZHANG J, ZHAO H, et al., 2021a. Kinematics and geochronology of Late Paleozoic-Early Mesozoic ductile deformation in the Alxa Block, NW China: new constraints on the evolution of the Central Asian Orogenic belt[J]. Lithosphere, 2021(1): 3365581. doi: 10.2113/2021/3365581

    CrossRef Google Scholar

    ZHANG H P, ZHANG P Z, PRUSH V, et al., 2017. Tectonic geomorphology of the Qilian Shan in the northeastern Xizang Plateau: insights into the plateau formation processes[J]. Tectonophysics, 706-707: 103-115. doi: 10.1016/j.tecto.2017.04.016

    CrossRef Google Scholar

    ZHANG J, MA Z J, XIAO W X, et al., 2006. Geological evidences of the deformation in Central-Southern Ningxia in the Miocene and its significance[J]. Acta Geologica Sinica, 80(11): 1650-1659. (in Chinese with English abstract)

    Google Scholar

    ZHANG J, LI J Y, LI Y F, et al., 2007. The cenozoic deformation of the Alxa block in central Asia-Question on the northeastern extension of the Altyn Tagh Fault in Cenozoic time[J]. Acta Geologica Sinica, 81(11): 1481-1497. (in Chinese with English abstract)

    Google Scholar

    ZHANG J, CUNNINGHAM D, CHENG H Y, 2010. Sedimentary characteristics of Cenozoic strata in central-southern Ningxia, NW China: implications for the evolution of the NE Qinghai-Xizang plateau[J]. Journal of Asian Earth Sciences, 39(6): 740-759. doi: 10.1016/j.jseaes.2010.05.008

    CrossRef Google Scholar

    ZHANG J, CUNNINGHAM D, YUN L, et al., 2021b. Kinematic variability of late Cenozoic fault systems and contrasting mountain building processes in the Alxa block, western China[J]. Journal of Asian Earth Sciences, 205: 104597. doi: 10.1016/j.jseaes.2020.104597

    CrossRef Google Scholar

    ZHANG K Q, WU Z H, LV T Y, et al., 2015. Review and progress of OSL dating[J]. Geological Bulletin of China, 34(1): 183-203. (in Chinese with English abstract)

    Google Scholar

    ZHANG P Z, ZHENG D W, YIN G M, et al., 2006. Discussion on late Cenozoic growth and rise of northeastern margin of the Xizang Plateau[J]. Quaternary Sciences, 26(1): 5-13. (in Chinese with English abstract)

    Google Scholar

    ZHANG P Z, ZHANG H P, ZHENG W J, et al., 2014. Cenozoic tectonic evolution of Continental eastern Asia[J]. Seismology and Geology, 36(3): 574-585. (in Chinese with English abstract)

    Google Scholar

    ZHANG Y Q, LI H L, 2016. Late Cenozoic tectonic events in east Xizang Plateau and extrusion-related orogenic system[J]. Geology in China, 43(6): 1829-1852. (in Chinese with English abstract)

    Google Scholar

    ZHAO H, ZHANG J, LI Y F, et al., 2019. Characteristics of Cenozoic faults in Langshan area, Inner Mongolia: constraint on the development of normal faults[J]. Geology in China, 46(6): 1433-1453. (in Chinese with English abstract)

    Google Scholar

    ZHAO L Q, ZHAN Y, WANG Q L, et al., 2018. Deep electrical structure beneath the 1954 MS7.0 Minqin, Gansu earthquake and its seismotectonic environment[J]. Seismology and Geology, 40(3): 552-565. (in Chinese with English abstract)

    Google Scholar

    ZHAO Z X, 2021. Late Cenozoic sedimentary, tectonic and geomorphic evolution in the northeastern Qilian Shan[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)

    Google Scholar

    ZHENG D W, CLARK M K, ZHANG P Z, et al., 2010. Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Xizang Plateau)[J]. Geosphere, 6(6): 937-941. doi: 10.1130/GES00523.1

    CrossRef Google Scholar

    ZHENG W J, YUAN D Y, HE W G, 2004. Characteristics of palaeo-earthquake activity along the active Tianqiaogou-Huangyangchuan fault on the eastern section of the Qilianshan Mountains[J]. Seismology and Geology, 26(4): 645-657. (in Chinese with English abstract)

    Google Scholar

    ZHENG W J, HE W G, ZHAO G K, et al., 2005. Discussion on the causative structure and mechanism of the 2003 Minle-Shandan, Gansu M6.1, 5.8 earthquakes[J]. Journal of Seismological Research, 28(2): 133-140. (in Chinese with English abstract)

    Google Scholar

    ZHENG W J, 2009. Geometric pattern and active tectonics of the Hexi Corridor and its adjacent regions[D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract)

    Google Scholar

    ZHENG W J, ZHANG P Z, HE W G, et al., 2013. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Xizang Plateau: Evidence from decadal GPS measurements and late Quaternary slip rates on faults[J]. Tectonophysics, 584: 267-280. doi: 10.1016/j.tecto.2012.01.006

    CrossRef Google Scholar

    ZHENG W T, YANG J C, DUAN F J, 2000. A study on the relationbetween deformation of river terraces and neotectonic activity for the Wuwei Basin[J]. Seismology and Geology, 22(3): 318-328. (in Chinese with English abstract)

    Google Scholar

    ZOU X B, 2018. Study on tectonic deformation and seismogenic mechanism of the Minle-Yongchang active fault in the Hexi Corridor[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology. (in Chinese with English abstract)

    Google Scholar

    艾晟, 张波, 樊春, 等, 2017. 武威盆地南缘断裂晚第四纪活动地表形迹与活动速率[J]. 地震地质, 39(2): 408-422. doi: 10.3969/j.issn.0253-4967.2017.02.010

    CrossRef Google Scholar

    陈柏林, 刘建民, 刘建生, 等, 2006. 高台车站断裂全新世活动特征[J]. 地质学报, 80(4): 497-507. doi: 10.3321/j.issn:0001-5717.2006.04.004

    CrossRef Google Scholar

    陈柏林, 刘建生, 2009. 祁连山北缘-河西走廊地区大地形变与地震的关系[J]. 地质通报, 28(10): 1439-1447. doi: 10.3969/j.issn.1671-2552.2009.10.010

    CrossRef Google Scholar

    陈柏林, 王春宇, 崔玲玲, 等, 2008. 祁连山北缘-河西走廊西段晚新生代逆冲推覆断裂发育模式[J]. 地学前缘, 15(6): 260-277. doi: 10.3321/j.issn:1005-2321.2008.06.033

    CrossRef Google Scholar

    陈文彬, 2003. 河西走廊及邻近地区最新构造变形基本特征及构造成因分析[D]. 北京: 中国地震局地质研究所.

    Google Scholar

    崔泽宏, 汤良杰, 2007. 一种挤压构造背景下正断层的成因模式[J]. 新疆石油地质, 28(2): 254-256. doi: 10.3969/j.issn.1001-3873.2007.02.035

    CrossRef Google Scholar

    邓起东, 张维岐, 张培震, 等, 1989. 海原走滑断裂带及其尾端挤压构造[J]. 地震地质, 11(1): 1-14.

    Google Scholar

    甘肃省地质矿产局, 1997. 甘肃省岩石地层[M]. 武汉: 中国地质大学出版社.

    Google Scholar

    葛肖虹, 刘俊来, 1999. 北祁连造山带的形成与背景[J]. 地学前缘, 6(4): 223-230. doi: 10.3321/j.issn:1005-2321.1999.04.004

    CrossRef Google Scholar

    郭怀军, 杨利荣, 朱小辉, 等, 2016. 祁连山地区河流阶地与第四纪构造隆升[J]. 地质通报, 35(12): 2033-2044. doi: 10.3969/j.issn.1671-2552.2016.12.011

    CrossRef Google Scholar

    何光玉, 杨树锋, 陈汉林, 等, 2004. 河西走廊西段及邻区主要断裂(一): 晚新生代逆断层与走滑断层的地震剖面解释[J]. 地震学报, 26(6): 601-608. doi: 10.3321/j.issn:0253-3782.2004.06.005

    CrossRef Google Scholar

    何翔, 杜星星, 刘健, 等, 2022. 武威盆地第四纪沉积过程及其构造意义[J]. 地震地质, 44(1): 76-97.

    Google Scholar

    侯康明, 邓起东, 刘百篪, 1999. 对古浪8级大震孕育和发生的构造环境及发震模型的讨论[J]. 中国地震, 15(4): 339-348.

    Google Scholar

    胡小飞, 2010. 祁连山北部侵蚀速率的时空分布与构造抬升变形研究[D]. 兰州: 兰州大学.

    Google Scholar

    江在森, 马宗晋, 张希, 等, 2001. 青藏块体东北缘水平应变场与构造变形分析[J]. 地震地质, 23(3): 337-346. doi: 10.3969/j.issn.0253-4967.2001.03.001

    CrossRef Google Scholar

    金胜, 张乐天, 金永吉, 等, 2012. 青藏高原东北缘合作-大井剖面地壳电性结构研究[J]. 地球物理学报, 55(12): 3979-3990. doi: 10.6038/j.issn.0001-5733.2012.12.010

    CrossRef Google Scholar

    赖忠平, 欧先交, 2013. 光释光测年基本流程[J]. 地理科学进展, 32(5): 683-693.

    Google Scholar

    李奋其, 王成善, 朱利东, 等, 2002. 区域挤压体制下盆-山耦合关系探讨: 以河西走廊和北祁连山为例[J]. 沉积与特提斯地质, 22(4): 17-25. doi: 10.3969/j.issn.1009-3850.2002.04.003

    CrossRef Google Scholar

    李佳昱, 郑文俊, 王伟涛, 等, 2020. 青藏高原东北部龙首山晚新生代剥露历史: 来自磷灰石(U-Th)/He的证据[J]. 地震地质, 42(2): 472-491. doi: 10.3969/j.issn.0253-4967.2020.02.014

    CrossRef Google Scholar

    李蔚琳, 程惠红, 张怀, 等, 2019. 河西走廊系列盆地构造演化的三维数值模拟[J]. 中国科学院大学学报, 36(2): 196-207.

    Google Scholar

    李祥, 万永革, 崔华伟, 等, 2016. 2016年1月21日青海门源Ms6.4地震构造应力场[J]. 华北地震科学, 34(2): 36-41. doi: 10.3969/j.issn.1003-1375.2016.02.007

    CrossRef Google Scholar

    李有利, 杨景春, 李保俊, 等, 1997. 河西走廊榆木山边缘断层构造地貌研究[J]. 地质力学学报, 3(4): 20-26.

    Google Scholar

    刘白云, 曾文浩, 袁道阳, 等, 2014. 1954年腾格里沙漠北7级地震断层面参数和滑动性质研究[J]. 地震工程学报, 36(3): 622-627. doi: 10.3969/j.issn.1000-0844.2014.03.0622

    CrossRef Google Scholar

    刘白云, 曾文浩, 袁道阳, 等, 2015. 1927年古浪8级大地震断层面参数和滑动性质[J]. 地震地质, 37(3): 818-828. doi: 10.3969/j.issn.0253-4967.2015.03.012

    CrossRef Google Scholar

    刘洪春, 戴华光, 李龙海, 等, 2000. 对1954年民勤7级地震的初步研究[J]. 西北地震学报, 22(3): 232-235.

    Google Scholar

    刘和甫, 梁慧社, 蔡立国, 等, 1994. 天山两侧前陆冲断系构造样式与前陆盆地演化[J]. 地球科学, 19(6): 727-741. doi: 10.3321/j.issn:1000-2383.1994.06.005

    CrossRef Google Scholar

    裴红连, 2017. 榆木山北缘断裂第四纪新构造活动在洪积地貌上的表现[D]. 北京: 中国地质大学(北京).

    Google Scholar

    施炜, 刘源, 刘洋, 等, 2013. 青藏高原东北缘海原断裂带新生代构造演化[J]. 地学前缘, 20(4): 1-17.

    Google Scholar

    石应骏, 张朝文, 寸树苍, 1995. 龙首山推覆构造的发现及其地质意义[J]. 科学通报, 40(9): 812-813. doi: 10.3321/j.issn:0023-074X.1995.09.014

    CrossRef Google Scholar

    宋春晖, 2006. 青藏高原北缘新生代沉积演化与高原构造隆升过程[D]. 兰州: 兰州大学.

    Google Scholar

    谭利华, 杨景春, 段烽军, 1998. 河西走廊新生代构造运动的阶段划分[J]. 北京大学学报(自然科学版), 34(4): 523-532. doi: 10.3321/j.issn:0479-8023.1998.04.017

    CrossRef Google Scholar

    万景林, 郑文俊, 郑德文, 等, 2010. 祁连山北缘晚新生代构造活动的低温热年代学证据[J]. 地球化学, 39(5): 439-446.

    Google Scholar

    王成善, 戴紧根, 刘志飞, 等, 2009. 西藏高原与喜马拉雅的隆升历史和研究方法: 回顾与进展[J]. 地学前缘, 16(3): 1-30. doi: 10.3321/j.issn:1005-2321.2009.03.001

    CrossRef Google Scholar

    王伟涛, 张培震, 郑德文, 等, 2014. 青藏高原东北缘海原断裂带晚新生代构造变形[J]. 地学前缘, 21(4): 266-274.

    Google Scholar

    王旭龙, 李晓妮, 卢演俦, 2004. 红光固体二极管点阵在释光测年中的光照应用[J]. 海洋地质与第四纪地质, 24(1): 133-137.

    Google Scholar

    肖坤泽, 童亨茂, 2020. 走滑断层研究进展及启示[J]. 地质力学学报, 26(2): 151-166.

    Google Scholar

    阎存凤, 袁剑英, 2011. 武威盆地石炭系沉积环境及含油气远景[J]. 天然气地球科学, 22(2): 267-274.

    Google Scholar

    颜丹平, 孙铭, 巩凌霄, 等, 2020. 青藏高原东缘龙门山前陆逆冲带复合结构与生长[J]. 地质力学学报, 26(5): 615-633.

    Google Scholar

    杨景春, 谭利华, 李有利, 等, 1998. 祁连山北麓河流阶地与新构造演化[J]. 第四纪研究(3): 229-237. doi: 10.3321/j.issn:1001-7410.1998.03.006

    CrossRef Google Scholar

    云龙, 张进, 王驹, 等, 2021. 甘肃北山南部活动断裂的发现及其区域构造意义[J]. 地质力学学报, 27(2): 195-207.

    Google Scholar

    张进, 马宗晋, 肖文霞, 等, 2006. 宁夏中南部中新世构造活动的地质证据及其意义[J]. 地质学报, 80(11): 1650-1659. doi: 10.3321/j.issn:0001-5717.2006.11.002

    CrossRef Google Scholar

    张进, 李锦轶, 李彦峰, 等, 2007. 阿拉善地块新生代构造作用: 兼论阿尔金断裂新生代东向延伸问题[J]. 地质学报, 81(11): 1481-1497. doi: 10.3321/j.issn:0001-5717.2007.11.003

    CrossRef Google Scholar

    张克旗, 吴中海, 吕同艳, 等, 2015. 光释光测年法: 综述及进展[J]. 地质通报, 34(1): 183-203. doi: 10.3969/j.issn.1671-2552.2015.01.015

    CrossRef Google Scholar

    张培震, 郑德文, 尹功明, 等, 2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论[J]. 第四纪研究, 26(1): 5-13. doi: 10.3321/j.issn:1001-7410.2006.01.002

    CrossRef Google Scholar

    张培震, 张会平, 郑文俊, 等, 2014. 东亚大陆新生代构造演化[J]. 地震地质, 36(3): 574-585. doi: 10.3969/j.issn.0253-4967.2014.03.003

    CrossRef Google Scholar

    张岳桥, 李海龙, 2016. 青藏高原东部晚新生代重大构造事件与挤出造山构造体系[J]. 中国地质, 43(6): 1829-1852.

    Google Scholar

    赵衡, 张进, 李岩峰, 等, 2019. 内蒙古狼山地区新生代断层活动特征: 对正断层生长的限定[J]. 中国地质, 46(6): 1433-1453.

    Google Scholar

    赵凌强, 詹艳, 王庆良, 等, 2018. 1954年甘肃民勤7级地震区深部电性结构特征及地震构造环境研究[J]. 地震地质, 40(3): 552-565. doi: 10.3969/j.issn.0253-4967.2018.03.004

    CrossRef Google Scholar

    赵子贤, 2021. 祁连山东北缘晚新生代沉积-构造-地貌演化过程[D]. 北京: 中国地质科学院.

    Google Scholar

    郑文俊, 袁道阳, 何文贵, 2004. 祁连山东段天桥沟-黄羊川断裂古地震活动习性研究[J]. 地震地质, 26(4): 645-657. doi: 10.3969/j.issn.0253-4967.2004.04.011

    CrossRef Google Scholar

    郑文俊, 何文贵, 赵广坤, 等, 2005. 2003年甘肃民乐-山丹6.1, 5.8级地震发震构造及发震机制探讨[J]. 地震研究, 28(2): 133-140. doi: 10.3969/j.issn.1000-0666.2005.02.006

    CrossRef Google Scholar

    郑文俊, 2009. 河西走廊及其邻区活动构造图像及构造变形模式[D]. 北京: 中国地震局地质研究所.

    Google Scholar

    郑文涛, 杨景春, 段锋军, 2000. 武威盆地晚更新世河流阶地变形与新构造活动[J]. 地震地质, 22(3): 318-328. doi: 10.3969/j.issn.0253-4967.2000.03.012

    CrossRef Google Scholar

    邹小波, 2018. 河西走廊内部民乐-永昌断裂构造变形特征与发震机制研究[D]. 兰州: 中国地震局兰州地震研究所.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(2033) PDF downloads(77) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint