Citation: | BI Yaqiang, LI Yongxin, CHEN Wenke, MA Hubiao, YU Chao, FENG Yu, ZHOU Lin, YUE Lei, YANG Zaijing, HU Defeng. 2022. Mineralization styles and structure-controlled mineralization rules of the Sanhe Pb-Zn Deposit in Inner Mongolia. Journal of Geomechanics, 28(1): 36-49. doi: 10.12090/j.issn.1006-6616.2021131 |
The Sanhe Pb-Zn deposit is studied in this paper through detailed field and underground geological investigations, structural geological surveys, drilling profile analysis combined with petrological and mineralogical analysis of ores and altered wall-rocks. We then discussed the ore-controlling structures and their distribution patterns, the styles of mineralization and alteration, the coupling relation between the mineralization and fault structures. Our results show that the mineralization in the Sanhe deposit show structure-controlled characteristics, and with dominant ore bodies trending NWW, dipping SSW. The extent of the ore-controlling faults can reach hundreds of meters to a few kilometers long, with relative stable occurrence. In the field, the ore-controlling faults occur as altered foliated zones but with tensional breccia veins and druse texture in them, showing a reactivated shear fault signature. NWW- and NNE- trending faults show post-ore deformation characteristics and usually with lamprophyre, syenite porphyry or calcite ±quartz ±fluorite ±clay mineral veins occuring in them. The NNW- and NNE- trending faults and related veins crosscut the mineralized carbonate-quartz veins and NWW-trending faults indicating a post-ore brittle deformation and hydrothermal activity. The post-ore faults and related hydrothermal veins usually occur as branching, bifurcation or irregular shapes and with druse texture in the center of the veins implying a extensional faults. Although the post-ore faults can slightly dislocate the ore bodies and contemporaneous hydrothermal veins, the displacement is negligible for exploration. The alteration around the non-mineralized calcite veins is dominated by clay alteration together with minor disseminated pyrite. Combined the structure-controlled mineralization and the alteration related Pb-Zn minerlization, it is concluded that the NWW-tending faults with silicification, pyritization, chloritization alteration halo, can be used as significant prospecting criteria in the deposit and the neighbouring area.
Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region, 1991. Regional geology of Inner Mongolia autonomous region[M]. Beijing: Geological Publishing House. 7-498. (in Chinese with English abstract) |
CARRANZA E J M, 2009. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features[J]. Ore Geology Reviews, 35(3-4): 383-400. doi: 10.1016/j.oregeorev.2009.01.001 |
CHEN B L. Fracture tectonic development process and evolution of ore-control structure formation: the case of Zoujiashan uranium deposit[J]. Journal of Geomechanics, 2020, 26(3): 285-298. (in Chinese with English abstract) |
CHEN C Y, GAO Y F, WU H B, et al., 2016. Zircon U-Pb chronology of volcanic rocks in the Hailaer Basin, NE China and its geological implications[J]. Earth Science, 41(8): 1259-1274. (in Chinese with English abstract) |
CHEN Z G, ZHANG L C, WAN B, 2006. Geological setting and metallogenic prognosis of the De'erbugan polymetallic belt in the Da Hinggan Mountains[J]. Mineral Deposits, 25(S1): 11-14. (in Chinese with English abstract) |
CHERNICOFF C J, RICHARDS J P, ZAPPETTINI E O, 2002. Crustal lineament control on magmatism and mineralization in northwestern Argentina: geological, geophysical, and remote sensing evidence[J]. Ore Geology Reviews, 21(3-4): 127-155. doi: 10.1016/S0169-1368(02)00087-2 |
CHI G J, 2003. Composition of silver deposit in Deierbuer Inner Mongolia[J]. Mineral Resources and Geology, 17(S1): 439-442. (in Chinese with English abstract) |
COX S F, KNACKSTEDT M A, BRAUN J, 2001. Principles of structural control on permeability and fluid flow in hydrothermal systems[J]. Reviews in Economic Geology, 14: 1-24. |
DAI M, YAN G S, LIU C, et al., 2016. The zircon U-Pb geochronology and the geochemistry of magmatic rocks and their constraints on the mineralization of Jiawula Pb-Zn-Ag deposit, Inner Mongolia, China[J]. Earth Science Frontiers, 23(5): 266-280. (in Chinese with English abstract) |
DUAN M X, REN Y S, HOU Z S, et al., 2014. Ore-forming fluid and ore genesis of the Biliya valley lead-zinc (silver) deposit in Erguna Region, Inner Mongolia[J]. Journal of Mineralogy and Petrology, 34(2): 60-67. (in Chinese with English abstract) |
DUAN P, FANG H B, 2003. The extensional direction of the Notheast part of Deerbugan deep fault: a remote sensing interpretation[J]. Remote Sensing for Land and Resources, (2): 1-4, 77. (in Chinese with English abstract) |
GE W C, LI X H, LIN Q, et al., 2001. Geochemistry of early cretaceous alkaline rhyolites from Hulun lake, Daxing'anling and its tectonic implications[J]. Chinese Journal of Geology, 36(2): 176-183. (in Chinese with English abstract) |
GE W C, WU F Y, ZHOU C Y, et al., 2005a. The age of the Tahe granite body in the northern Great Hinggan Mountains and its constraints on the structural ownership of the Erguna block[J]. Chinese Science Bulletin, 50(12): 1239-1247. (in Chinese) doi: 10.1360/csb2005-50-12-1239 |
GE W C, WU F Y, ZHOU C Y, et al., 2005b. Zircon U-Pb ages and its significance of the Mesozoic granites in the Wulanhaote region, central Da Hinggan Mountain[J]. Acta Petrologica Sinica, 21(3): 749-762. (in Chinese with English abstract) |
GOLDFARB R J, GROVES D I, GARDOLL S, 2001. Orogenic gold and geologic time: a global synthesis[J]. Ore Geology Reviews, 18(1-2): 1-75. doi: 10.1016/S0169-1368(01)00016-6 |
GROVES D I, GOLDFARB R J, GEBRE-MARIAM M, et al., 1998. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 13(1-5): 7-27. doi: 10.1016/S0169-1368(97)00012-7 |
GUO Z J, LI J W, XU X Y, et al., 2016. Sm-Nd dating and REE composition of scheelite for the Honghuaerji scheelite deposit, Inner Mongolia, northeast China[J]. Lithos, 261: 307-321. doi: 10.1016/j.lithos.2016.03.006 |
HUANG S Q, DONG S W, ZHANG F Q, et al., 2014. Tectonic deformation and dynamic characteristics of the middle part of the Mongolia-Okhotsk Collisional Belt, Mongolia[J]. Acta Geoscientia Sinica, 35(4): 415-424. (in Chinese with English abstract) |
JAQUES A L, JAIRETH S, WALSHE J L, 2002. Mineral systems of Australia: An overview of resources, settings and processes[J]. Australian Journal of Earth Sciences, 49(4): 623-660. doi: 10.1046/j.1440-0952.2002.00946.x |
JIA L M, LIU H Z, JU J X, et al., 2018. Protolith reconstruction and geotectonic environmental research of Xinghuadukou rock group in Lvlin forestry center, Daxing'anling[J]. Journal of Geomechanics, 24(4): 544-554. (in Chinese with English abstract) |
KUTINA J, 1999. The type of crustal fracture and the control of mineralization formed by the discontinuity of the mantle root structure[J]. Geoscience Frontiers, 6(1): 29-53. |
LI J W, LIANG Y W, WANG X Y, et al., 2011. The origin of the Erdaohezi lead-zinc Deposit, Inner Mongolia[J]. Journal of Jilin University (Earth Science Edition), 41(6): 1745-1754, 1783. (in Chinese with English abstract) |
LI J W, ZHANG D Q, ZHAO S B, et al., 2006. Metallogenic regularity and prospecting targets in the southwest part of the Derbugan PAGEXXXetallogenic belt[J]. Mineral Deposits, 25(S1): 19-22. (in Chinese with English abstract) |
LI J Y, 1986. A preliminary study on the ancient suture zone between the Sino-Korean plate and the Siberian plate in eastern Inner Mongolia[J]. Chinese Science Bulletin, 31(14): 1093-1096. (in Chinese) doi: 10.1360/csb1986-31-14-1093 |
LI J Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 26(3-4): 207-224. doi: 10.1016/j.jseaes.2005.09.001 |
LI J Y, ZHANG J, YANG T N, et al., 2009. Crustal tectonic division and evolution of the southern part of the North Asian orogenic region and its adjacent areas[J]. Journal of Jilin University (Earth Science Edition), 39(4): 584-605. (in Chinese with English abstract) |
LI T G, WU G, LIU J, et al., 2016. Geochronology, fluid inclusions and isotopic characteristics of the Chaganbulagen Pb-Zn-Ag deposit, Inner Mongolia, China[J]. Lithos, 261: 340-355. doi: 10.1016/j.lithos.2016.04.029 |
LI Y X, BI Y Q, LIU F H, et al., 2020. The ore-controlling rule and metallogenic prediction of No. 21 vein structure in Sanhe lead-zinc deposit[J]. China Resources Comprehensive Utilization, 38(6): 46-51. (in Chinese with English abstract) |
LIN Q, GE W C, CAO L, et al., 2003. Geochemistry of Mesozoic volcanic rocks in Da Hinggan Ling: The bimodal volcanic rocks[J]. Geochimica, 32(3): 208-222. (in Chinese with English abstract) |
LIU Y J, LI W M, FENG Z Q, et al., 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123-148. doi: 10.1016/j.gr.2016.03.013 |
MAO A S, XING L, LIU Z M, 2007. Geologic features, ore-hunting indicator of the Deerbuer Ag-Pb-Zn deposit[J]. Jilin Geology, 26(3): 18-21. (in Chinese with English abstract) |
MING Z, SUN J G, YAN J, et al., 2015. Forming environment and magmatic-hydrothermal evolution history of andesite in Deerbuer lead-zinc deposit of eastern Inner Mongolia: Zircon U-Pb dating[J]. Global Geology, 34(3): 590-598. (in Chinese with English abstract) |
MUHTAR M N, WU C Z, BRZOZOWSKI M J, et al., 2020. Geochronology, geochemistry, and Sr-Nd-Pb-Hf-S isotopes of the wall rocks of the Kanggur gold polymetallic deposit, Chinese North Tianshan: Implications for petrogenesis and sources of ore-forming materials[J]. Ore Geology Reviews, 125: 103688. doi: 10.1016/j.oregeorev.2020.103688 |
ROBERT F, 1990. Structural Setting and Control of Gold-bearing Quartz Veins of the Vald'Or Area, Southeastern Abitibi Subprovince. University of Western Australia Short Course Notes, 24: 167-210. |
SHE H Q, LI J W, XIANG A P, et al., 2012. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution[J]. Acta Petrologica Sinica, 28(2): 571-594. (in Chinese with English abstract) |
SHUANG B, 2012. Metallogenic series and metallogenic prognosis of nonferrous and precious metal deposits in Manzhouli-Xinbarag Youqi[D]. Changchun: Jilin University. (in Chinese with English abstract) |
SIBSON R H, ROBERT F, POULSEN K H, 1988. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits[J]. Geology, 16(6): 551-555. doi: 10.1130/0091-7613(1988)016<0551:HARFFP>2.3.CO;2 |
SILLITOE R H, 2000. Gold-rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery[J]. Reviews in Economic Geology, 13: 315-345. |
SUN G R, LI Y C, ZHANG Y, 2002. The basement tectonics of Ergun massif[J]. Geology and Resources, 11(3): 129-139. (in Chinese with English abstract) |
SUN L X, REN B F, ZHAO F Q, et al., 2013. Late Paleoproterozoic magmatic records in the Eerguna massif: evidences from the zircon U-Pb dating of granitic gneisses[J]. Geological Bulletin of China, 32(2-3): 341-352. (in Chinese with English abstract) |
WANG F, ZHOU X H, ZHANG L C, et al., 2006. Late Mesozoic volcanism in the Great Xing'an Range (NE China): Timing and implications for the dynamic setting of NE Asia[J]. Earth and Planetary Science Letters, 251(1-2): 179-198. doi: 10.1016/j.epsl.2006.09.007 |
WU F Y, SUN D Y, GE W C, et al., 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41(1): 1-30. doi: 10.1016/j.jseaes.2010.11.014 |
WU G, 2006. Metallogenic setting and metallogenesis of nonferrous-precious metals in Northern Da Hinggan Mountain[D]. Changchun: Jilin University. (in Chinese with English abstract) |
WU G, WANG G R, LIU J, et al., 2014. Metallogenic series and ore-forming pedigree of main ore deposits in northern Great Xing'an range[J]. Mineral Deposits, 33(6): 1127-1150. (in Chinese with English abstract) |
WU T T, ZHAO D F, SHAO J, et al., 2014. Geological and geochemical characteristics and genesis of the Biliyagu lead-zinc-silver deposit, Inner Mongolia[J]. Geology in China, 41(4): 1242-1252. (in Chinese with English abstract) |
XU W L, JI W Q, PEI F P, et al., 2009. Triassic volcanism in eastern Heilongjiang and Jilin provinces, NE China: Chronology, geochemistry, and tectonic implications[J]. Journal of Asian Earth Sciences, 34(3): 392-402. doi: 10.1016/j.jseaes.2008.07.001 |
XU Z G, CHEN Y C, WANG D H, et al., 2008. Scheme of the classification of the minerogenetic units in China[M]. Beijing: Geological Publishing House. (in Chinese with English abstract) |
ZHANG B, LI J W, ZHANG D Q, et al., 2011. Geochemic features of Dongjun lead-zinc-silver deposit, Hailar Basin, Inner Mongolia[J]. Geological Review, 57(2): 253-260. (in Chinese with English abstract) |
ZHAO D, HAN R S, WANG J S, et al. 2020. Tectonic analysis of the Xiaohe Pb-Zn deposit in the northeast Yunnan mining area and its ore control model[J]. Journal of Geomechanics, 26(3): 345-362. (in Chinese with English abstract) |
ZHANG Y Q, DONG S W, 2019. East Asia multi-plate convergence in Late Mesozoic and the development of continental tectonic systems[J]. Journal of Geomechanics, 25(5): 613-641. (in Chinese with English abstract) |
ZHAO Y, 2017. Metallogenetic model and prospectings of the Pb-Zn-Ag deposit in the De'rbugan metallogenic belt, Inner Mongolia[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract) |
ZHAO Y, LV J C, ZHANG D B, et al., 2017. Rb-Sr isochron age of De'rbur Pb-Zn-Ag deposit in Erguna massif of northeast Inner Mongolia and its geological significance[J]. Mineral Deposits, 36(4): 893-904. (in Chinese with English abstract) |
ZHAO Y, LV J C, ZHANG P, et al., 2018. Characteristics of ore-forming fluids in the De'rbur Pb-Zn-Ag deposit in the NW Great Hinggan mountains and its significance[J]. Acta Geologica Sinica, 92(1): 142-153. (in Chinese with English abstract) |
ZHAO Y, YANG Z Y, MA X H, 1994. Geotectonic transition from Paleoasian system and Paleotethyan system to Paleopacific active continental margin in eastern Asia[J]. Scientia Geologica Sinica, 29(2): 105-119. (in Chinese with English abstract) |
ZHOU Z H, 2011. Geology and geochemistry of Huanggang Sn-Fe deposit, Inner Mongolia[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract) |
陈柏林. 2020. 断裂构造发育过程与控矿构造形成演化: 以邹家山铀矿床为例[J]. 地质力学学报, 26(3): 285-298. |
陈崇阳, 高有峰, 吴海波, 等, 2016. 海拉尔盆地火山岩的锆石U-Pb年龄及其地质意义[J]. 地球科学, 41(8): 1259-1274. |
陈志广, 张连昌, 万博, 2006. 大兴安岭得尔布干多金属成矿带地质背景与成矿预测[J]. 矿床地质, 25(S1): 11-14. |
池贵军, 2003. 内蒙古得耳布尔银矿床物质组分特征[J]. 矿产与地质, 17(S1): 439-442. |
戴蒙, 严光生, 刘翠, 等, 2016. 内蒙古甲乌拉铅锌银矿区岩浆岩年代学、地球化学特征及其对成矿的约束[J]. 地学前缘, 23(5): 266-280. |
段明新, 任云生, 侯召硕, 等, 2014. 内蒙古额尔古纳地区比利亚谷铅锌(银)矿床成矿流体特征与矿床成因[J]. 矿物岩石, 34(2): 60-67. |
段鹏, 方洪宾, 2003. 关于得尔布干深大断裂北东段延伸去向问题的遥感分析[J]. 国土资源遥感, (2): 1-4, 77. |
葛文春, 李献华, 林强, 等, 2001. 呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J]. 地质科学, 36(2): 176-183. doi: 10.3321/j.issn:0563-5020.2001.02.005 |
葛文春, 吴福元, 周长勇, 等, 2005a. 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J]. 科学通报, 50(12): 1239-1247. |
葛文春, 吴福元, 周长勇, 等, 2005b. 大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J]. 岩石学报, 21(3): 749-762. |
黄始琪, 董树文, 张福勤, 等, 2014. 蒙古-鄂霍茨克构造带中段构造变形及动力学特征[J]. 地球学报, 35(4): 415-424. |
贾立民, 刘洪章, 鞠佳星, 等, 2018. 大兴安岭绿林林场一带兴华渡口岩群原岩恢复及大地构造环境探讨[J]. 地质力学学报, 24(4): 544-554. |
李进文, 张德全, 赵士宝, 等, 2006. 得尔布干成矿带西南段金属成矿规律及找矿方向[J]. 矿床地质, 25(S1): 19-22. |
李进文, 梁玉伟, 王向阳, 等, 2011. 内蒙古二道河子铅锌矿成因研究[J]. 吉林大学学报(地球科学版), 41(6): 1745-1754, 1783. |
李锦轶, 1986. 内蒙古东部中朝板块与西伯利亚板块之间古缝合带的初步研究[J]. 科学通报, 31(14): 1093-1096. |
李锦轶, 张进, 杨天南, 等, 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报(地球科学版), 39(4): 584-605. |
李永新, 毕亚强, 刘芳华, 等, 2020. 三河铅锌矿床21号脉构造控矿规律及成矿预测[J]. 中国资源综合利用, 38(6): 46-51. doi: 10.3969/j.issn.1008-9500.2020.06.015 |
林强, 葛文春, 曹林, 等, 2003. 大兴安岭中生代双峰式火山岩的地球化学特征[J]. 地球化学, 32(3): 208-222. doi: 10.3321/j.issn:0379-1726.2003.03.002 |
毛爱生, 邢琳, 刘智明, 2007. 得耳布尔银铅锌矿床地质特征及找矿标志[J]. 吉林地质, 26(3): 18-21. doi: 10.3969/j.issn.1001-2427.2007.03.005 |
明珠, 孙景贵, 闫佳, 等, 2015. 内蒙古东部得耳布尔铅锌矿床安山岩的形成环境和岩浆热液演化史: 锆石U-Pb定年[J]. 世界地质, 34(3): 590-598. doi: 10.3969/j.issn.1004-5589.2015.03.002 |
内蒙古自治区地质矿产局, 1991. 内蒙古自治区区域地质志[M]. 北京: 地质出版社. |
佘宏全, 李进文, 向安平, 等, 2012. 大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J]. 岩石学报, 28(2): 571-594. |
双宝, 2012. 满洲里-新巴尔虎右旗有色、贵金属矿床成矿系列与成矿预测[D]. 长春: 吉林大学. |
孙广瑞, 李仰春, 张昱, 2002. 额尔古纳地块基底地质构造[J]. 地质与资源, 11(3): 129-139. doi: 10.3969/j.issn.1671-1947.2002.03.001 |
孙立新, 任邦方, 赵凤清, 等, 2013. 内蒙古额尔古纳地块古元古代末期的岩浆记录: 来自花岗片麻岩的锆石U-Pb年龄证据[J]. 地质通报, 32(2-3): 341-352. |
武广, 2006. 大兴安岭北部区域成矿背景与有色、贵金属矿床成矿作用[D]. 长春: 吉林大学. |
武广, 王国瑞, 刘军, 等, 2014. 大兴安岭北部主要金属矿床成矿系列和区域矿床成矿谱系[J]. 矿床地质, 33(6): 1127-1150. doi: 10.3969/j.issn.0258-7106.2014.06.001 |
吴涛涛, 赵东芳, 邵军, 等, 2014. 内蒙古比利亚谷铅锌银矿床地质地球化学特征及成因[J]. 中国地质, 41(4): 1242-1252. doi: 10.3969/j.issn.1000-3657.2014.04.017 |
徐志刚, 陈毓川, 王登红, 等, 2008. 中国成矿区带划分方案[M]. 北京: 地质出版社. |
张斌, 李进文, 张德全, 等, 2011. 内蒙古海拉尔盆地东珺铅锌银矿床地球化学特征[J]. 地质论评, 57(2): 253-260. |
赵冻, 韩润生, 王加昇, 等. 2020. 滇东北矿集区小河铅锌矿床构造解析及其控矿模式[J]. 地质力学学报, 26(3): 345-362. |
张岳桥, 董树文, 2019. 晚中生代东亚多板块汇聚与大陆构造体系的发展[J]. 地质力学学报, 25(5): 613-641. |
赵越, 杨振宇, 马醒华, 1994. 东亚大地构造发展的重要转折[J]. 地质科学, 29(2): 105-119. |
赵岩, 2017. 内蒙古得尔布干成矿带铅锌银矿成矿模式与找矿预测[D]. 北京: 中国地质大学(北京). |
赵岩, 吕骏超, 张德宝, 等, 2017. 内蒙古东北部得耳布尔铅锌银矿床闪锌矿Rb-Sr年龄及地质意义[J]. 矿床地质, 36(4): 893-904. |
赵岩, 吕骏超, 张朋, 等, 2018. 大兴安岭北段得耳布尔铅锌银矿床成矿流体特征与意义[J]. 地质学报, 92(1): 142-153. doi: 10.3969/j.issn.0001-5717.2018.01.010 |
周振华, 2011. 内蒙古黄岗锡铁矿床地质与地球化学[D]. 北京: 中国地质科学院. |
Regional geological map of Ergun and surrounding areas (modified after Wu et al., 2014; Xu et al., 2008)
Geological map of the Sanhe Pb-Zn deposit
Drilling profile of the No.27 exploration line in the Shuangdingshan section of the Sanhe mining area
Schematic diagram showing the faulted structure in the Shuangdingshan section of the Sanhe Pb-Zn mining area
The branching and recombination of carbonate veins in the NWW-trending fault and the pinnate fissures at the edges
Interspersed relationship between different veins in the mining area
Main types of hydrothermal veins in the mining area
Common metal mineral combinations in the mining area
SEM/EDS analysis of main ore minerals
Cross-polarized light (a, c) and single-polarized light (b, d) micrographs of the intervening relationship of part of the veins
Isodensity map showing the occurrence statistics of the main ore bodies (n=69) in the mining area