2022 Vol. 28, No. 2
Article Contents

LIU Yuandong, SU Xiaolang, CHENG Haiyan, ZHANG Jianfang, LI Xiang, LIU Fenglong. 2022. Geochronological and geochemical characteristics of the Caledonian Longquan pluton in southern Zhejiang, and their geological significance. Journal of Geomechanics, 28(2): 237-256. doi: 10.12090/j.issn.1006-6616.2021093
Citation: LIU Yuandong, SU Xiaolang, CHENG Haiyan, ZHANG Jianfang, LI Xiang, LIU Fenglong. 2022. Geochronological and geochemical characteristics of the Caledonian Longquan pluton in southern Zhejiang, and their geological significance. Journal of Geomechanics, 28(2): 237-256. doi: 10.12090/j.issn.1006-6616.2021093

Geochronological and geochemical characteristics of the Caledonian Longquan pluton in southern Zhejiang, and their geological significance

    Fund Project: This research is financially supported by the Special Fund Project of Basic Public Welfare Strategic Geological Work of Zhejiang Province (Grant No.2018006) and the Geological Project of the China Geological Survey (Grant No.12120114043101)
More Information
  • The Longquan pluton is a rare Caledonian granitic rock mass in southern Zhejiang. Studies on the Longquan pluton using petrology, geochemistry, and chronology were conducted in this paper, which reveal that it is composed of granite-monzogranite assemblage (granitoid) and tonalite-trondhjemite-granodiorite assemblage (TTG). The two types of rocks are generally enriched in large ion lithophile elements Rb, Ba, Th, U and K, and depleted in high field strength elements Nb, Ta, P and Ti, showing the characteristics of island arc magmatic rocks. The geochemical characteristics of the TTG rocks show that they belong to the typical high-pressure type TTG, and its magma originated from the remelting of the basic lower crust under the action of subducted slab fluid. While the granitoids were mainly derived from partial melting of ancient crustal sediments. Neither of them was significantly contaminated by mantle. The zircon SHRIMP U-Pb and LA-ICP-MS U-Pb dating results show that the Longquan pluton was formed between 443±3 Ma~410±3 Ma. Combined with its petrological and geochemical characteristics, it is indicated that the subduction of oceanic crust had still existed in the Longquan area until early Devonian.

  • 加载中
  • ALTHERR R, HOLL A, HEGNER E, et al., 2000. High-potassium, calc-alkaline Ⅰ-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 50(1-3): 51-73. doi: 10.1016/S0024-4937(99)00052-3

    CrossRef Google Scholar

    ANDERSEN T, 2002. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X

    CrossRef Google Scholar

    ATHERTON M P, PETFORD N, 1993. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 362(6416): 144-146. doi: 10.1038/362144a0

    CrossRef Google Scholar

    BAI D Y, HUANG J Z, MA T Q, et al., 2006a. Geology and geochemistry of the Silurian Penggongmiao granitic pluton in the southeastern Hunan province and its implication for tectonic setting[J]. Geoscience, 20(1): 130-140. (in Chinese with English abstract)

    Google Scholar

    BAI D Y, WANG X H, MA T Q, et al., 2006b. Characteristics and forming mechanism of Indosinian folds in the southeast Hunan[J]. Geology and Mineral Resources of South China(4): 50-57. (in Chinese with English abstract)

    Google Scholar

    BAI D Y, JIA B H, ZHONG X, et al., 2012. Potential genesis of the trending changes of Jinning Period and Caledonian structural lineamens in middle-southern Hunan[J]. Journal of Geomechanics, 18(2): 165-177. (in Chinese with English abstract)

    Google Scholar

    BAI D Y, ZHONG X, JIA P Y, et al., 2014. Zircon SHRIMP U-Pb dating and geochemistry of Caledonian Miao' ershan pluton in the western part of the Nanling Mountains and their tectonic significance[J]. Acta Petrologica et Mineralogica, 33(3): 407-423. (in Chinese with English abstract)

    Google Scholar

    BARKER F, 1979. Trondhjemites, dacites, and related rocks[M]. Amsterdam: Elsevier Scientific Publishing Company.

    Google Scholar

    CHENG L K, 2018. Zircon U-Pb dating and geological significance of Caledonian Dadongshan pluton in the Northern Guangdong province[J]. Geology and Mineral Resources of South China, 34(1): 31-40. (in Chinese with English abstract)

    Google Scholar

    CONDIE K C, 1982. Plate tectonic and crustal evolution[M]. New York: Pergamon Press: 1-310.

    Google Scholar

    CONDIE K C, 2005a. Earth as an evolving planetary system[M]. 2nd ed. Amsterdam: Elsevier: 1-447.

    Google Scholar

    CONDIE K C, 2005b. TTGs and adakites: are they both slab melts?[J]. Lithos, 80(1-4): 33-44. doi: 10.1016/j.lithos.2003.11.001

    CrossRef Google Scholar

    CONDIE K C, BENN K, 2006. Archean geodynamics: similar to or different from Modern geodynamics?[M]//BENN K, MARESCHAL J C, CONDIE K C. Archean geodynamics and environments, volume 164. Washington: American Geophysical Union: 47-59.

    Google Scholar

    DEFANT M J, DRUMMOND M S, 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 347(6294): 662-665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    DENG J F, LIU C, FENG Y F, et al., 2010. High magnesian andesitic/dioritic rocks (HMA) and magnesian andesitic/dioritic rocks (MA): two igneous rock types related to oceanic subduction[J]. Geology in China, 37(4): 1112-1118. (in Chinese with English abstract)

    Google Scholar

    DENG J F, FENG Y F, DI Y J, et al., 2017. Intrusive Geotectonics of China[M]. Beijing: Geological Publishing House: 1-583(in Chinese with English abstract).

    Google Scholar

    DENG J F, LIU C, DI Y J, et al., 2018. Discussion on the tonalite-trondhjemite-granodiorite (TTG) petrotectonic assemblage and its subtypes[J]. Earth Science Frontiers, 25(6): 42-50. (in Chinese with English abstract)

    Google Scholar

    DIWU C R, SUN Y, LIN C L, et al., 2007. Zircon U-Pb ages and Hf isotopes and their geological significance of Yiyang TTG gneisses from Henan province, China[J]. Acta Petrologica Sinica, 23(2): 253-262. (in Chinese with English abstract)

    Google Scholar

    DRUMMOND M S, DEFANT M J, 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slabmelting: Archean to modern comparisons[J]. Journal of Geophysical Research: Solid Earth, 95(B13): 21503-21521. doi: 10.1029/JB095iB13p21503

    CrossRef Google Scholar

    FENG Y F, DENG J F, WANG S J, et al., 2010. The recognition of the magnesian andesitic series (MA) in the Precambrian granitic rocks in western Shandong Province and the continental crustal growth[J]. Geology in China, 37(4): 1119-1129. (in Chinese with English abstract)

    Google Scholar

    FENG Y F, DENG J F, XIAO Q H, et al., 2011. Recognizing the TTG rock types: discussion and suggestion[J]. Geological Journal of China Universities, 17(3): 406-414(in Chinese with English abstract).

    Google Scholar

    GUAN Y L, YUAN C, LONG X P, et al., 2013. Early Paleozoic intracontinental orogeny of the eastern South China block: evidence from Ⅰ-type granitic plutons in the SE Yangtze Block[J]. Geotectonica et Metallogenia, 37(4): 698-720. (in Chinese with English abstract)

    Google Scholar

    GUAN Y L, YUAN C, LONG X P, et al., 2016. Genesis of mafic enclaves from early Paleozoic granites in the South China Block: evidence from petrology, geochemistry and zircon U-Pb geochronology[J]. Geotectonica et Metallogenia, 40(1): 109-124. (in Chinese with English abstract)

    Google Scholar

    HAO Y, LI S Z, JIN C, et al., 2010. Caledonian structural characteristics and mechanism in Hunan-Jiangxi-Guangxi Provinces[J]. Geotectonica et Metallogenia, 34(2): 166-180. (in Chinese with English abstract)

    Google Scholar

    HU Y H, QIAN J F, ZHU X Y, et al, 2012. The overview and origin analysis for the Caledonian movement in the South China block[J]. Bulletin of Science and Technology, 28(11): 42-48, 71. (in Chinese with English abstract)

    Google Scholar

    Irvine T N, Barager W R A. 1971. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 8: 523-548. doi: 10.1139/e71-055

    CrossRef Google Scholar

    JIANG Y, ZHAO X L, LIN S F, et al., 2014. Identification and tectonic implication of neoproterozoic continental margin-Arc TTG Assemblage in Southeastern Margin of the Yangtze carton[J]. Acta Geologica Sinica, 88(8): 1461-1474. (in Chinese with English abstract)

    Google Scholar

    LAI S C, ZHU Y, 2020. Petrogenesis and geodynamic implications of Neoproterozoic typical intermediate-felsic magmatism in the western margin of the Yangtze Block, South China[J]. Journal of Geomechanics, 26(5): 759-790(in Chinese with English abstract).

    Google Scholar

    LIU H, ZHAO X L, GEY P, et al., 2020. U-Pb dating of zircons from Xiayuan and Hongyegang intrusives in Dikou area and their geological significance[J]. Geological Review, 66(3): 637-650. (in Chinese with English abstract)

    Google Scholar

    LIU Y D, LIU F L, ZHANG J F, et al., 2021. Geochronological and geochemical characteristics of the metamorphic basic rocks and their tectonic implications in the Longquan area, Zhejiang Province[J]. Acta Geologica Sinica, 95(2): 413-426. (in Chinese with English abstract)

    Google Scholar

    LUDWIG K R, 2003. User's manual for Isoplot/Ex, Version 3.00. A geochronological toolkit for Microsoft excel[J]. Berkeley Geochronology Center Special Publication, 4(2): 1-70.

    Google Scholar

    MANIAR P D, PICCOLI P M, 1989. Tectonic discrimination of granitoids[J]. GSA Bulletin, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    MARTIN H, 1999. Adakitic magmas: modern analogues of Archaean granitoids[J]. Lithos, 46(3): 411-429. doi: 10.1016/S0024-4937(98)00076-0

    CrossRef Google Scholar

    MARTIN H, SMITHIES R H, RAPP R, et al., 2005. An overview of adakite, tonalite-trondhjemite-granodiorite(TTG), and sanukitoid: relationships and some implications for crustal evolution[J]. Lithos, 79(1-2): 1-24. doi: 10.1016/j.lithos.2004.04.048

    CrossRef Google Scholar

    MIDDLEMOST E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9

    CrossRef Google Scholar

    MORRISON G W, 1980. Characteristics and tectonic setting of the shoshonite rock association[J]. Lithos, 13(1): 97-108. doi: 10.1016/0024-4937(80)90067-5

    CrossRef Google Scholar

    MOYEN J F, MARTIN H, 2012. Forty years of TTG research[J]. Lithos, 148: 312-336. doi: 10.1016/j.lithos.2012.06.010

    CrossRef Google Scholar

    NIE T C, 2018. Determination and significance of Mamianshan subduction accretionary complex in Jianou Area, Fujian Province[J]. Geology of Fujian, 37(4): 273-287. (in Chinese with English abstract)

    Google Scholar

    NIE T C, ZHOU X D, 2019. Geological characteristics and its origin of quartzite in Mamianshan subduction accretive complex of Gaomen Area of Jianou City, Fujian Province[J]. Geology of Fujian, 38(4): 237-247. (in Chinese with English abstract)

    Google Scholar

    O′CONNOR J T, 1965. A classification for quartz-rich igneous rocks based on feldspar ratios[R]. Reston: United StatesGeological Survey: 79-84.

    Google Scholar

    PAN G T, LU S N, XIAO Q H, et al., 2016. Division of tectonic stages and tectonic evolution in China[J]. Earth Science Frontiers, 23(6): 1-23(in Chinese with English abstract).

    Google Scholar

    PATIÑO DOUCE A E, 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?[J]. Geological Society, London, Special Publications, 168(1): 55-75. doi: 10.1144/GSL.SP.1999.168.01.05

    CrossRef Google Scholar

    PEARCE J A, HARRIS N B W, TINDLE A G, 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    PENG S B, JIN Z M, LIU Y H, et al., 2006a. Petrochemistry, chronology and tectonic setting of strong peraluminous anatectic granitoids in Yunkai orogenic Belt, western Guangdong Province, China[J]. Earth Science-Journal of China University of Geosciences, 31(1): 110-120. (in Chinese with English abstract)

    Google Scholar

    PENG S B, JIN Z M, FU J M, et al., 2006b. Geochemical characteristics of basic intrusive rocks in the Yunkai uplift, Guangdong-Guangxi, China, and their tectonic significance[J]. Geological Bulletin of China, 25(4): 434-441. (in Chinese with English abstract)

    Google Scholar

    PETFORD N, ATHERTON M, 1996. Na-rich partial melts from newly underplated basalticcrust: the Cordillera Blanca batholith, Peru[J]. Journal of Petrology, 37(6): 1491-1521. doi: 10.1093/petrology/37.6.1491

    CrossRef Google Scholar

    PITCHER W S, 1982. Granite type and tectonic environment[M]//HSÈU K J. Mountain building processes. London: Academic Press: 19-40.

    Google Scholar

    PITCHER W S, 1993. The nature and origin of granite[M]. London: Blackie Academic & Professional.

    Google Scholar

    QIN X F, WANG Z Q, HU G A, et al., 2013. Geochronology and geochemistry of Hudong gneissic composite pluton in the junction of Guangdong and Guangxi provinces: implications for Early Paleozoic tectono-magmatism along the northern margin of Yunkai massif[J]. Acta Petrologica Sinica, 29(9): 3115-3130. (in Chinese with English abstract)

    Google Scholar

    RICKWOOD PC, 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5

    CrossRef Google Scholar

    RAPP R P, WATSON E B, 1995. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling[J]. Jouranal of Petrology, 36(4): 891-931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    SHEN W Z, ZHANG F R, SHU L S, et al., 2008. Formation age, geochemical characteristics of the Ninggang granite body in Jiangxi Province and its tectonic significance[J]. Acta Petrologica Sinica, 24(10): 2244-2254. (in Chinese with English abstract)

    Google Scholar

    SHU L S, YU J H, JIA D, et al., 2008. Early Paleozoic orogenic belt in the eastern segment of South China[J]. Geological Bulletin of China, 27(10): 1581-1593. (in Chinese with English abstract)

    Google Scholar

    SHU L S, 2012. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 31(7): 1035-1053. (in Chinese with English abstract)

    Google Scholar

    SMITHIES R H, 2000. The Archaean tonalite-trondhjemite-granodiorite(TTG) series is not an analogue of Cenozoic adakite[J]. Earth and Planetary Science Letters, 182(1): 115-125. doi: 10.1016/S0012-821X(00)00236-3

    CrossRef Google Scholar

    SONG B, ZHANG Y H, WAN Y S, et al., 2002. Mount making and procedure of the SHRIMP dating[J]. Geological Review, 48(S1): 26-30(in Chinese with English abstract).

    Google Scholar

    WANG D Z, 2004. The study of granitic rocks in South China: looking back and forward[J]. Geological Journal of China Universities, 10(3): 305-314(in Chinese with English abstract).

    Google Scholar

    WANG F, 2021. Zircon U-Pb geochronology, geochemical characteristics and tectonic implications of Caledonian granites from the Xuanhe area, Southwestern Fujian Province[J]. Geology in China, 48(1): 207-228. (in Chinese with English abstract)

    Google Scholar

    WEI C J, GUAN X, DUNG J, 2017. HT-UHT metamorphism of metabasites and the petrogenesis of TTGs[J]. Acta Petrologica Sinica, 33(5): 1381-1404. (in Chinese with English abstract)

    Google Scholar

    WILLIAMS I S, 1998. U-Th-Pb geochronology by ion microprobe[M]//MCKIBBEN M A, SHANKS Ⅲ W C, RIDLEY W I. Applications of microanalytical techniques to understanding mineralising processes. Colorado: Society of Economic Geologists: 1-35.

    Google Scholar

    WRIGHT J B, 1969. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine, 106(4): 370-384. doi: 10.1017/S0016756800058222

    CrossRef Google Scholar

    WU M Q, ZUO M L, ZHANG D H, et al., 2014. Genesis and diagenetic environment of TTG suite[J]. Geological Review, 60(3): 503-514(in Chinese with English abstract).

    Google Scholar

    XI W W, CHEN S Z, 2019. Identification of Caledonian granite in the Zhenghe area, Fujian province and its tectonic significance[J]. Acta Geologica Sinica, 93(4): 804-815. (in Chinese with English abstract)

    Google Scholar

    XU D R, CHEN G H, XIA B, et al., 2006. The caledonian adakite-like granodiorites in Banshanpu Area, Eastern Hunan Province, South China: petrogenesis and geological significance[J]. Geological Journal of China Universities, 12(4): 507-521. (in Chinese with English abstract)

    Google Scholar

    YOGODZINSKI G M, KAY R W, VOLYNETS O N, et al., 1995. Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge[J]. GSA Bulletin, 107(5): 505-519. doi: 10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2

    CrossRef Google Scholar

    ZHANG C Z, ZHANG Q, JIN W J, et al., 2018. Can Archean TTG compare with Adakite? Global data gives results[J]. Chinese Journal of Geology, 53(4): 1254-1266. (in Chinese with English abstract)

    Google Scholar

    ZHANG F F, WANG Y J, FAN W M, et al., 2010. LA-ICPMS zircon U-Pb geochronology of late Early Paleozoic granites in eastern Hunan and western Jiangxi provinces, South China[J]. Geochimica, 39(5): 414-426. (in Chinese with English abstract)

    Google Scholar

    ZHANG F R, SHU L S, WANG D Z, et al., 2009. Discussions on the tectonic setting of Caledonian granitoids in the eastern segment of South China[J]. Earth Science Frontiers, 16(1): 248-260. (in Chinese with English abstract)

    Google Scholar

    ZHANG F R, 2011. The geological and geochemical characteristics and its petrogenesis for Caledonian granites in the central-Southern JiangXi Province[D]. Nanjing: Nanjing University. (in Chinese with English abstract)

    Google Scholar

    ZHANG Y, SHU L S, CHEN X Y, 2011. Geochemistry, geochronology, and petro-genesis of the early Paleozoic granitic plutons in the central-southern Jiangxi Province, China[J]. Science China Earth Sciences, 54(10): 1492-1510. doi: 10.1007/s11430-011-4249-3

    CrossRef Google Scholar

    Zhejiang Institute of Geological Survey, 2013. 1∶250000 Regional Geological Survey of Quzhou[R]. Hangzhou: Zhejiang Institute of Geological Survey. (in Chinese with English abstract)

    Google Scholar

    Zhejiang Institute of Geological Survey, 2015. Geological structure of Jiangshan-Shaoxing Suture[R]. Hangzhou: Zhejiang Institute of Geological Survey. (in Chinese with English abstract)

    Google Scholar

    Zhejiang Institute of Geological Survey, 2016. 1∶50000 Regional Geological Survey of Xuanhu, Ruiyang[R]. Hangzhou: Zhejiang Institute of Geological Survey. (in Chinese with English abstract)

    Google Scholar

    ZHOU X D, 2020. Geochemistry and geochronology characteristics of diagonal amphibole, within the Mamianshan subbduction-accretionary complex zone, and its geological significance in Jianou City, Northwest Fujian Province[J]. Geology of Fujian, 39(2): 79-95. (in Chinese with English abstract)

    Google Scholar

    ZHOU X M, 2003. My thinking about granite geneses of South China[J]. Geological Journal of China Universities, 9(4): 556-565. (in Chinese with English abstract)

    Google Scholar

    ZHU Q B, HUANG W C, MENG Q X, et al., 2015. Caledonian tectonic event of Cathaysia block: constraints on zircon U-Pb geochronology and Lu-Hf isotope for two kinds of granite[J]. Geology in China, 42(6): 1715-1739. (in Chinese with English abstract)

    Google Scholar

    柏道远, 黄建中, 马铁球, 等, 2006a. 湘东南志留纪彭公庙花岗岩体的地质地球化学特征及其构造环境[J]. 现代地质, 20(1): 130-140.

    Google Scholar

    柏道远, 王先辉, 马铁球, 等, 2006b. 湘东南印支期褶皱特征及形成机制[J]. 华南地质与矿产(4): 50-57.

    Google Scholar

    柏道远, 贾宝华, 钟响, 等, 2012. 湘中南晋宁期和加里东期构造线走向变化成因[J]. 地质力学学报, 18(2): 165-177. doi: 10.3969/j.issn.1006-6616.2012.02.007

    CrossRef Google Scholar

    柏道远, 钟响, 贾朋远, 等, 2014. 南岭西段加里东期苗儿山岩体锆石SHRIMP U-Pb年龄、地球化学特征及其构造意义[J]. 岩石矿物学杂志, 33(3): 407-423. doi: 10.3969/j.issn.1000-6524.2014.03.001

    CrossRef Google Scholar

    程亮开, 2018. 粵北大东山岩体加里东期花岗岩锆石U-Pb年龄及地质意义[J]. 华南地质与矿产, 34(1): 31-40. doi: 10.3969/j.issn.1007-3701.2018.01.004

    CrossRef Google Scholar

    邓晋福, 刘翠, 冯艳芳, 等, 2010. 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA): 与洋俯冲作用相关的两类典型的火成岩类[J]. 中国地质, 37(4): 1112-1118. doi: 10.3969/j.issn.1000-3657.2010.04.025

    CrossRef Google Scholar

    邓晋福, 冯艳芳, 狄永军, 等, 2017. 中国侵入岩大地构造[M]. 北京: 地质出版社: 1-583.

    Google Scholar

    邓晋福, 刘翠, 狄永军, 等, 2018. 英云闪长岩-奥长花岗岩-花岗闪长岩(TTG)岩石构造组合及其亚类划分[J]. 地学前缘, 25(6): 42-50.

    Google Scholar

    第五春荣, 孙勇, 林慈銮, 等, 2007. 豫西宜阳地区TTG质片麻岩锆石U-Pb定年和Hf同位素地质学[J]. 岩石学报, 23(2): 253-262.

    Google Scholar

    冯艳芳, 邓晋福, 王世进, 等, 2010. 鲁西地区早前寒武纪花岗岩类中镁安山质岩石系列(MA)的识别及大陆地壳生长[J]. 中国地质, 37(4): 1119-1129. doi: 10.3969/j.issn.1000-3657.2010.04.026

    CrossRef Google Scholar

    冯艳芳, 邓晋福, 肖庆辉, 等, 2011. TTG岩类的识别: 讨论与建议[J]. 高校地质学报, 17(3): 406-414. doi: 10.3969/j.issn.1006-7493.2011.03.005

    CrossRef Google Scholar

    关义立, 袁超, 龙晓平, 等, 2013. 华南地块东部早古生代的陆内造山作用: 来自Ⅰ型花岗岩的启示[J]. 大地构造与成矿学, 37(4): 698-720.

    Google Scholar

    关义立, 袁超, 龙晓平, 等, 2016. 华南早古生代花岗岩中暗色包体的成因: 岩石学、地球化学和锆石年代学证据[J]. 大地构造与成矿学, 40(1): 109-124.

    Google Scholar

    郝义, 李三忠, 金宠, 等, 2010. 湘赣桂地区加里东期构造变形特征及成因分析[J]. 大地构造与成矿学, 34(2): 166-180. doi: 10.3969/j.issn.1001-1552.2010.02.003

    CrossRef Google Scholar

    胡艳华, 钱俊锋, 褚先尧, 等, 2012. 华南加里东运动研究综述及其性质初探[J]. 科技通报, 28(11): 42-48, 71. doi: 10.3969/j.issn.1001-7119.2012.11.011

    CrossRef Google Scholar

    姜杨, 赵希林, 林寿发, 等, 2014. 扬子克拉通东南缘新元古代陆缘弧型TTG的厘定及其构造意义[J]. 地质学报, 88(8): 1461-1474.

    Google Scholar

    赖绍聪, 朱毓, 2020. 扬子板块西缘新元古代典型中酸性岩浆事件及其深部动力学机制: 研究进展与展望[J]. 地质力学学报, 26(5): 759-790. doi: 10.12090/j.issn.1006-6616.2020.26.05.062

    CrossRef Google Scholar

    刘欢, 赵希林, 葛延鹏, 等, 2020. 武夷地块北东部迪口地区下元岩体和红叶岗岩体锆石La-ICP-MS U-Pb年龄及其地质意义[J]. 地质论评, 66(3): 637-650.

    Google Scholar

    刘远栋, 刘风龙, 张建芳, 等, 2021. 浙江龙泉地区变质基性岩年代学、地球化学特征及构造意义[J]. 地质学报, 95(2): 413-426.

    Google Scholar

    聂童春, 2018. 福建建瓯地区马面山俯冲增生杂岩的厘定及其意义[J]. 福建地质, 37(4): 273-287. doi: 10.3969/j.issn.1001-3970.2018.04.001

    CrossRef Google Scholar

    聂童春, 周小栋, 2019. 福建建瓯高门地区马面山俯冲增生杂岩中石英岩地质特征及其成因探讨[J]. 福建地质, 38(4): 237-247.

    Google Scholar

    潘桂棠, 陆松年, 肖庆辉, 等, 2016. 中国大地构造阶段划分和演化[J]. 地学前缘, 23(6): 1-23.

    Google Scholar

    彭松柏, 金振民, 刘云华, 等, 2006a. 云开造山带强过铝深熔花岗岩地球化学、年代学及构造背景[J]. 地球科学—中国地质大学学报, 31(1): 110-120.

    Google Scholar

    彭松柏, 金振民, 付建明, 等, 2006b. 两广云开隆起区基性侵入岩的地球化学特征及其构造意义[J]. 地质通报, 25(4): 434-441.

    Google Scholar

    覃小锋, 王宗起, 胡贵昂, 等, 2013. 两广交界地区壶垌片麻状复式岩体的年代学和地球化学: 对云开地块北缘早古生代构造-岩浆作用的启示[J]. 岩石学报, 29(9): 3115-3130.

    Google Scholar

    沈渭洲, 张芳荣, 舒良树, 等, 2008. 江西宁冈岩体的形成时代、地球化学特征及其构造意义[J]. 岩石学报, 24(10): 2244-2254.

    Google Scholar

    舒良树, 于津海, 贾东, 等, 2008. 华南东段早古生代造山带研究[J]. 地质通报, 27(10): 1581-1593. doi: 10.3969/j.issn.1671-2552.2008.10.001

    CrossRef Google Scholar

    舒良树, 2012. 华南构造演化的基本特征[J]. 地质通报, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003

    CrossRef Google Scholar

    宋彪, 张玉海, 万渝生, 等, 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评, 48(S1): 26-30.

    Google Scholar

    王德滋, 2004. 华南花岗岩研究的回顾与展望[J]. 高校地质学报, 10(3): 305-314. doi: 10.3969/j.issn.1006-7493.2004.03.001

    CrossRef Google Scholar

    王峰, 2021. 闽西南宣和加里东期花岗岩锆石U-Pb年龄、地球化学特征及对华南造山的启示[J]. 中国地质, 48(1): 207-228.

    Google Scholar

    魏春景, 关晓, 董杰, 2017. 基性岩高温-超高温变质作用与TTG质岩成因[J]. 岩石学报, 33(5): 1381-1404.

    Google Scholar

    吴鸣谦, 左梦璐, 张德会, 等, 2014. TTG岩套的成因及其形成环境[J]. 地质论评, 60(3): 503-514.

    Google Scholar

    隰弯弯, 陈世忠, 2019. 福建政和地区加里东期花岗岩的厘定及其大地构造意义[J]. 地质学报, 93(4): 804-815.

    Google Scholar

    许德如, 陈广浩, 夏斌, 等, 2006. 湘东地区板杉铺加里东期埃达克质花岗闪长岩的成因及地质意义[J]. 高校地质学报, 12(4): 507-521. doi: 10.3969/j.issn.1006-7493.2006.04.012

    CrossRef Google Scholar

    张昌振, 张旗, 金维浚, 等, 2018. 太古宙TTG能否与埃达克岩对比?: 全球数据给出的结果[J]. 地质科学, 53(4): 1254-1266.

    Google Scholar

    张芳荣, 舒良树, 王德滋, 等, 2009. 华南东段加里东期花岗岩类形成构造背景探讨[J]. 地学前缘, 16(1): 248-260. doi: 10.3321/j.issn:1005-2321.2009.01.027

    CrossRef Google Scholar

    张芳荣, 2011. 江西中—南部加里东期花岗岩地质地球化学特征及其成因[D]. 南京: 南京大学.

    Google Scholar

    张菲菲, 王岳军, 范蔚茗, 等, 2010. 湘东-赣西地区早古生代晚期花岗岩体的LA-ICPMS锆石U-Pb定年研究[J]. 地球化学, 39(5): 414-426.

    Google Scholar

    张苑, 舒良树, 陈祥云, 2011. 华南早古生代花岗岩的地球化学、年代学及其成因研究: 以赣中南为例[J]. 中国科学: 地球科学, 41(8): 1061-1079.

    Google Scholar

    浙江省地质调查院, 2013. 浙江1∶25万衢州市幅区域地质调查成果报告[R]. 杭州: 浙江省地质调查院.

    Google Scholar

    浙江省地质调查院, 2015. 江山-绍兴拼合带地质构造研究成果报告[R]. 杭州: 浙江省地质调查院.

    Google Scholar

    浙江省地质调查院, 2016. 浙江1∶5万铉湖、瑞洋区域地质矿产调查成果报告[R]. 杭州: 浙江省地质调查院.

    Google Scholar

    周小栋, 2020. 闽西北建瓯马面山俯冲增生杂岩带内斜长角闪岩的地球化学、年代学特征及其地质意义[J]. 福建地质, 39(2): 79-95. doi: 10.3969/j.issn.1001-3970.2020.02.001

    CrossRef Google Scholar

    周新民, 2003. 对华南花岗岩研究的若干思考[J]. 高校地质学报, 9(4): 556-565. doi: 10.3969/j.issn.1006-7493.2003.04.009

    CrossRef Google Scholar

    朱清波, 黄文成, 孟庆秀, 等, 2015. 华夏地块加里东期构造事件: 两类花岗岩的锆石U-Pb年代学和Lu-Hf同位素制约[J]. 中国地质, 42(6): 1715-1739.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(5)

Article Metrics

Article views(4906) PDF downloads(70) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint