2021 Vol. 27, No. 6
Article Contents

LI Xue, ZENG Yuyan, YU Fei, SHI Gang. 2021. Assessment of seismic liquefaction hazard in Shanghai based on ground motion intensity and Standard Penetration Test. Journal of Geomechanics, 27(6): 998-1010. doi: 10.12090/j.issn.1006-6616.2021.27.06.081
Citation: LI Xue, ZENG Yuyan, YU Fei, SHI Gang. 2021. Assessment of seismic liquefaction hazard in Shanghai based on ground motion intensity and Standard Penetration Test. Journal of Geomechanics, 27(6): 998-1010. doi: 10.12090/j.issn.1006-6616.2021.27.06.081

Assessment of seismic liquefaction hazard in Shanghai based on ground motion intensity and Standard Penetration Test

    Fund Project: This research is financially supported by the Financial Support Program of Shanghai (Grant No. 002021080001)
More Information
  • Shanghai is located in the alluvial plain of the Yangtze River Delta, the merge area of the Huangpu River and Suzhou River. The unique geographical and sedimentary environment have formed the shallow sand layers in Shanghai. Due to the significant urbanization process in Shanghai, geological hazard analysis, particularly the assessment for seismic liquefaction hazard in the Shanghai urban area has become an subject to be studied urgently. In this paper, we presented a regional liquefaction hazard analysis model. Based on the borehole Standard Penetration Test (SPT) data and regional Peak Ground Acceleration (PGA) zonation of the Shanghai area, we analyzed liquefaction risks with different probability of exceedance in 50 years. As our results indicated, under the condition that earthquake with 10% probability of exceedance in 50 years happens, more than 66.0% of the land area in Shanghai will not be affected by earthquake-induced liquefaction, 21.8% will only surfer modest liquefaction, and only 12.3% has the risks of serious liquefaction. These places cover Chongming island, Hengsha island, Changxing island and the banks of the Huangpujiang River and the Suzhou River. Provided that earthquake with 2% probability of exceedance in 50 years happens, due to the overall increase of peak ground motion acceleration, not less than 46.25% of the land area may suffer from modest to serious liquefaction risks. Although the rare seismic liquefaction risks exist, the probability of that is quite low. The current high fortification intensity for Shanghai in Chinese Code for Seismic Design of Building may result in unnecessary cost of construction. Our study provides new ideas and suggestions for perfecting the Code for Seismic Design of Building for Shanghai.

  • 加载中
  • BAKER J W, JAYARAM N, 2008. Correlation of spectral acceleration values from NGA ground motion models[J]. Earthquake Spectra, 24(1): 299-317. doi: 10.1193/1.2857544

    CrossRef Google Scholar

    BAO M F, SUN Y F, LIU J X, et al., 1981. Relationship between Quaternary hydrogeological engineering geological characteristics and land subsidence in Shanghai[J]. Shanghai Dizhi (1): 42-54. (in Chinese)

    Google Scholar

    CAI J T, 2019. Study on risk assessment and hidden danger prevention and control of ground collapse in Shanghai[J]. Shanghai Land and Resources, 40(4): 64-70. (in Chinese with English abstract)

    Google Scholar

    CHEN G X, JIN D D, CHANG X D, et al., 2013. Review of soil liquefaction characteristics during major earthquakes in recent twenty years and liquefaction susceptibility criteria for soils[J]. Rock and Soil Mechanics (10): 2737-2755, 2795. (in Chinese with English abstract)

    Google Scholar

    CHEN G X, KONG M Y, LI X J, et al., 2015. Deterministic and probabilistic triggering correlations for assessment of seismic soil liquefaction at nuclear power plant[J]. Rock and Soil Mechanics, 36(1): 9-27. (in Chinese with English abstract)

    Google Scholar

    HOLZER T L, 2008. Probabilistic liquefaction hazard mapping[C]//Geotechnical earthquake engineering and soil dynamics congress IV. Sacramento, California, United States: American Society of Civil Engineers: 1-32.

    Google Scholar

    HOLZER T L, NOCE T E, BENNETT M J, 2011. Liquefaction probability curves for surficial geologic deposits[J]. Environmental & Engineering Geoscience, 17(1): 1-21.

    Google Scholar

    HUANG Y, YE W M, CHEN Z C, 2009. Seismic response analysis of the deep saturated soil deposits in Shanghai[J]. Environmental Geology, 56(6): 1163-1169. doi: 10.1007/s00254-008-1216-1

    CrossRef Google Scholar

    HUO E J, LIU C S, 2002. Historical materials of natural disasters in Shanghai: from 751 to 1949A. D[M]. Beijing: Seismological Press. (in Chinese)

    Google Scholar

    IDRISS I M, BOULANGER R W, 2010. SPT-based liquefaction triggering procedures[R]. Davis, California: University of California.

    Google Scholar

    KRAMER S L, 1996. Geotechnical earthquake engineering[M]. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar

    LI J, ZHAO S, 2016. Application of 3D geological modeling in the analysis of sandy soil liquefaction: A case study of Tongzhou[J]. China Mining Magazine, 25(5): 164-168, 174. (in Chinese with English abstract)

    Google Scholar

    LI T, TANG X W, 2019. Experimental study on effect of coexistence of clay and silt on static and dynamic liquefaction of sand[J]. Chinese Journal of Geotechnical Engineering, 41(S2): 169-172. (in Chinese with English abstract)

    Google Scholar

    LI X, 2009. Tratigraphic subdivisions and sedimentary environmental evolutions of the Late Cenozoic sequences in Shanghai region[J]. Shanghai Geology (1): 1-7. (in Chinese with English abstract)

    Google Scholar

    LIU C Z, WU L C, CAO M, 1985. The sedimentary characteristics, origin and age of ancient sand dike (Gangshen) in the south Yangtze River Delta[J]. Acta Oceanologica Sinica, 7(1): 55-66. (in Chinese)

    Google Scholar

    LU Z J, 1980. Determinations of hydrological conditions in Shanghai[J]. Shanghai Geology (2): 1-9. (in Chinese)

    Google Scholar

    QIU J B, 2006. The progress of Quaternary geologic study in Shanghai[J]. Shanghai Geology (4): 5-9. (in Chinese with English abstract)

    Google Scholar

    SEED H B, IDRISS I M, 1971. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechanics and Foundations Division, 97(9): 1249-1273. doi: 10.1061/JSFEAQ.0001662

    CrossRef Google Scholar

    Shanghai Bureau of Geology and mineral Resources, 1988. Regional geology of Shanghai municipality[M]. Beijing: Seismological Press. (in Chinese)

    Google Scholar

    Shanghai Earthquake Agency, 1992. Assessment of seismic risk and review of basic seismic intensity in Shanghai area[M]. Beijing: Seismological Press. (in Chinese)

    Google Scholar

    Shanghai Earthquake Agency, Tongji University, 2004. Seismic ground motion parameters zonation of Shanghai[M]. Beijing: Seismological Press. (in Chinese)

    Google Scholar

    SHI Y J, CHEN H S, YANG T L, et al., 2009. Determinations of engineering geological layers and analyses of engineering geological conditions in Shanghai, China[J]. Shanghai Geology (1): 28-33. (in Chinese with English abstract)

    Google Scholar

    WANG W M, LI X F, LI Y, 2016. Measured data-based analysis of correlation between liquefactive characteristic parameters and liquefaction[J]. World Earthquake Engineering, 32(1): 8-14. (in Chinese with English abstract)

    Google Scholar

    WANG Y, DU J, TIAN G M, 2009. A preliminary study on gradation division of sand liquefaction by SPT method in the Panjin City precincts[J]. Jilin Geology, 28(3): 67-70. (in Chinese with English abstract)

    Google Scholar

    WEI Z X, ZHAI G Y, YAN X X, et al., 2010. Atlas of Shanghai urban geology[M]. Beijing: Geology Press. (in Chinese with English abstract)

    Google Scholar

    WHITMAN R V, 1971. Resistance of soil to liquefaction and settlement[J]. Soils and Foundations, 11(4): 59-68. doi: 10.3208/sandf1960.11.4_59

    CrossRef Google Scholar

    XU G D, XU G L, LI J J, 2011. Application of SPT and N-value to geotechnical engineering in Japan[J]. Safety and Environmental Engineering, 18(4): 33-38. (in Chinese with English abstract)

    Google Scholar

    YAN X X, SHI Y J, 2006. Structure characteristic of engineering geology in Shanghai[J]. Shanghai Geology (4): 19-24. (in Chinese with English abstract)

    Google Scholar

    YANG W W, YUE Z Q, 2006. The standard penetration test and its applications in geotechnical engineering[J]. Guangdong Water Resources and Hydropower (2): 31-33, 35. (in Chinese with English abstract)

    Google Scholar

    YOUD T L, IDRISS I M, ANDRUS R D, et al., 2001. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 127(10): 817-833. doi: 10.1061/(ASCE)1090-0241(2001)127:10(817)

    CrossRef Google Scholar

    ZHANG H, SHI G, WU H, et al., 2020. In-situ stress measurement in the shallow basement of the Shanghai area and its structural geological significance[J]. Journal of Geomechanics, 26(4): 583-594 (in Chinese with English abstract)

    Google Scholar

    ZHU G B, 2019. Mechanism, determination and hazard evaluation of seismic liquefaction[J]. Engineering and Technological Research, 4(2): 233-234. (in Chinese with English abstract)

    Google Scholar

    ZHU S Z, CHEN Y Y, SUN Y F, et al., 1980. Quaternary strata and palaeoclimate in Shanghai region[J]. Chinese Science Bulletin (5): 220-223. (in Chinese)

    Google Scholar

    包曼芳, 孙永福, 刘家贤, 等, 1981. 上海地区第四系水文地质工程地质特征与地面沉降的关系[J]. 上海国土资源 (1): 42-54.

    Google Scholar

    蔡剑韬, 2019. 上海地区地面塌陷风险评价及其隐患防控研究[J]. 上海国土资源, 40(4): 64-70.

    Google Scholar

    陈国兴, 金丹丹, 常向东, 等, 2013. 最近20年地震中场地液化现象的回顾与土体液化可能性的评价准则[J]. 岩土力学 (10): 2737-2755, 2795.

    Google Scholar

    陈国兴, 孔梦云, 李小军, 等, 2015. 以标贯试验为依据的砂土液化确定性及概率判别法[J]. 岩土力学, 36(1): 9-27.

    Google Scholar

    高广运, 陈青生, 何俊锋, 等, 2011. 地下水位上升对上海软土场地地震反应的影响[J]. 岩土工程学报, 33(7): 7.

    Google Scholar

    火恩杰, 刘昌森, 2002. 上海地区自然灾害史料汇编: 公元751~1949年[M]. 北京: 地震出版社.

    Google Scholar

    李静, 赵帅, 2016. 城市三维地质建模在砂土液化分析中的应用: 以通州为例[J]. 中国矿业, 25(5): 164-168, 174.

    Google Scholar

    李涛, 唐小微, 2019. 黏粒和粉粒的共存对砂土静动力液化影响的试验研究[J]. 岩土工程学报, 41(S2): 169-172.

    Google Scholar

    李晓, 2009. 上海地区晚新生代地层划分与沉积环境演化[J]. 上海地质 (1): 1-7.

    Google Scholar

    刘苍字, 吴立成, 曹敏, 1985. 长江三角洲南部古沙堤(冈身)的沉积特征、成因及年代[J]. 海洋学报, 7(1): 55-66.

    Google Scholar

    陆志坚, 1980. 上海地区水文地质条件简介[J]. 上海地质 (2): 1-9.

    Google Scholar

    邱金波, 2006. 上海市第四纪地质研究的进展[J]. 上海地质 (4): 5-9.

    Google Scholar

    上海地质矿产局, 1988. 上海市区域地质志[M]. 北京: 地震出版社.

    Google Scholar

    上海市地震局, 1992. 上海地区地震危险性分析与基本烈度复核[M]. 北京: 地震出版社.

    Google Scholar

    上海市地震局, 同济大学, 2004. 上海市地震动参数区划[M]. 北京: 地震出版社.

    Google Scholar

    史玉金, 陈洪胜, 杨天亮, 等, 2009. 上海市工程地质层层序厘定及工程地质条件分析[J]. 上海地质 (1): 28-33.

    Google Scholar

    王维铭, 李晓飞, 李元, 2016. 基于实测数据的场地特征参数与液化相关性分析[J]. 世界地震工程, 32(1): 8-14.

    Google Scholar

    王岩, 杜军, 田广明, 2009. 用标贯法对盘锦城区砂土液化进行等级分区[J]. 吉林地质, 28(3): 67-70.

    Google Scholar

    魏子新, 翟刚毅, 严学新, 等, 2010. 上海城市地质图集[M]. 北京: 地质出版社.

    Google Scholar

    徐光大, 徐光黎, 李俊杰, 2011. 日本标准贯入试验方法及其N值在岩土工程中的应用[J]. 安全与环境工程, 18(4): 33-38.

    Google Scholar

    严学新, 史玉金, 2006. 上海市工程地质结构特征[J]. 上海地质 (4): 19-24.

    Google Scholar

    杨文卫, 岳中琦, 2006. 标准贯入试验及其在岩土工程中的应用[J]. 广东水利水电 (2): 31-33, 35.

    Google Scholar

    张浩, 施刚, 巫虹, 等, 2020. 上海地区浅部地应力测量及其构造地质意义分析[J]. 地质力学学报, 26(4): 583-594.

    Google Scholar

    朱贵兵, 2019. 地震液化机理、判别及其危害性评价[J]. 工程技术研究, 4(2): 233-234.

    Google Scholar

    竹淑贞, 陈业裕, 孙永福, 等, 1980. 上海地区第四纪地层与古气候[J]. 科学通报 (5): 220-223.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(6)

Article Metrics

Article views(3131) PDF downloads(161) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint