2021 Vol. 27, No. 5
Article Contents

LIU Jianmin, LIU Xiaochun, ZHAO Yue, ZHANG Shuanhong, XU Gang, DONG Shuwen, MAO Qian, CHEN Bailin. 2021. Microstructure and geochronology of pseudotachylite from the Hamm Peak, East Antarctica, and its geological significances. Journal of Geomechanics, 27(5): 747-758. doi: 10.12090/j.issn.1006-6616.2021.27.05.061
Citation: LIU Jianmin, LIU Xiaochun, ZHAO Yue, ZHANG Shuanhong, XU Gang, DONG Shuwen, MAO Qian, CHEN Bailin. 2021. Microstructure and geochronology of pseudotachylite from the Hamm Peak, East Antarctica, and its geological significances. Journal of Geomechanics, 27(5): 747-758. doi: 10.12090/j.issn.1006-6616.2021.27.05.061

Microstructure and geochronology of pseudotachylite from the Hamm Peak, East Antarctica, and its geological significances

    Fund Project: This research is financially supported by the National Natural Science Foundation of China(Grant No.41941004)
  • The pseudotachylite in granulite facies granitic gneisses from the Hamm Peak, southwestern Prydz Bay, East Antarctica, occurs along the east-west-trending ductile-brittle shear zone. The characteristics of microstructure show that the pseudotachylite was formed by the frictional-melt during the rapid faulting along the paleoseismic zone. This inference is supported by the common presence of spherulites and different morphological microlites, such as skeletal, dendritic, acicular and globular in the matrix of pseudotachylite. There exist two kinds of microlite mineral assemblage. One consists mainly of hyperite and plagioclase, which developed in the northeastern part of the shear zone. The other consists of biotite, plagioclase, alkali feldspar and quartz, etc, which developed in the southwestern part of the shear zone. The occurrence of different kinds of microlite mineral assemblage indicates the differences of tectonic surrounding and stress distribution along different parts of the shear zone. Moreover, the presence of aluminous-rich hyperite may indicates the relatively high temperature and high pressure in the ambient physical condition during the pseudotachylite formation and crystallization afterwards, i.e., under the granulite facies conditions. The K-Ar age of bulk matrix of pseudotachylite is 878.1±16.8 Ma. Bulk 40Ar/39Ar step-heating release spectrum gave the varying ages mainly from 925 to 626 Ma. Combined with the regional comparison, we conclude that the pseudotachylite formed during the Grenvillian tectonic events.

  • 加载中
  • ALLEN A R, 1979. Mechanism of frictional fusion in fault zones[J]. Journal of Structural Geology, 1(3): 239-243.

    Google Scholar

    AUSTRHEIM H, BOUNDY T M, 1994. Pseudotachylytes generated during seismic faulting and eclogitization of the deep crust[J]. Science, 265(5168): 82-83. doi: 10.1126/science.265.5168.82

    CrossRef Google Scholar

    CHEN W, LIU X Y, ZHANG S, 2002. Continuous laser stepwise heating 40Ar/39Ar dating technique[J]. Geological Review, 48(Supplement): 127-134. (in Chinese with English abstract)

    Google Scholar

    BLACK L P, KINNY P D, SHERATON J W, et al., 1991. Rapid production and evolution of late Archaean felsic crust in the Vestfold Block of east Antarctica[J]. Precambrian Research, 50(3-4): 283-310. doi: 10.1016/0301-9268(91)90026-7

    CrossRef Google Scholar

    CLARKE G L, 1990. Pyroxene microlites and contact metamorphism in pseudotachylite veinlets from MacRobertson Land, East Antarctica[J]. Australian Journal of Earth Sciences, 37(1): 1-8. doi: 10.1080/08120099008727900

    CrossRef Google Scholar

    DAVIDSON C, DAVIS K J, BAILEY C M, et al., 2003. Age, origin, and significance of brittle faulting and pseudotachylyte along the coast shear zone, Prince Rupert, British Columbia[J]. Geology, 31(1): 43-46. doi: 10.1130/0091-7613(2003)031<0043:AOASOB>2.0.CO;2

    CrossRef Google Scholar

    DIRKS P H G M, HAND M, 1995. Clarifying temperature-pressure paths via structures in granulite from the Bolingen Islands, Antarctica[J]. Australian Journal of Earth Sciences, 42(2): 157-172. doi: 10.1080/08120099508728189

    CrossRef Google Scholar

    FITZSIMONS I C W, KINNY P D, HARLEY S L, 1997. Two stages of zircon and monazite growth in anatectic leucogneiss: SHRIMP constraints on the duration and intensity of Pan-African metamorphism in Prydz Bay, East Antarctica[J]. Terra Nova, 9(1): 47-51. doi: 10.1046/j.1365-3121.1997.d01-8.x

    CrossRef Google Scholar

    HARLEY S L, SNAPE I, BLACK L P, 1998. The evolution of a layered metaigneous complex in the Rauer Group, East Antarctica: evidence for a distinct Archaean terrane[J]. Precambrian Research, 89(3-4): 175-205. doi: 10.1016/S0301-9268(98)00031-X

    CrossRef Google Scholar

    HENSEN B J, ZHOU B, 1995. A pan-African granulite facies metamorphic episode in Prydz Bay, Antarctica: evidence from Sm-Nd garnet dating[J]. Australian Journal of Earth Sciences, 42(3): 249-258. doi: 10.1080/08120099508728199

    CrossRef Google Scholar

    HOBBSBE, ORDA, TEYSSIERC, 1986. Earthquakes in the ductile regime?[J]Pure and Appiled Geophysies, 124: 309-336. doi: 10.1007/BF00875730

    CrossRef Google Scholar

    KELLEY S P, REDDY S M, MADDOCK R, 1994. Laser-probe 40Ar/39Ar investigation of a pseudotachylyte and its host rock from the Outer Isles Thrust, Scotland[J]. Geology, 22(5): 443-446. doi: 10.1130/0091-7613(1994)022<0443:LPAAIO>2.3.CO;2

    CrossRef Google Scholar

    KINNY P D, BLACK L P, SHERATON J W, 1993. Zircon ages and the distribution of Archaean and Proterozoic rocks in the Rauer Islands[J]. Antarctic Science, 5(2): 193-206. doi: 10.1017/S0954102093000252

    CrossRef Google Scholar

    LI Z X, ZHANG L H, POWELL C M, 1995. South China in Rodinia: part of the missing link between Australia-East Antarctica and Laurentia?[J]. Geology, 23(5): 407-410. doi: 10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2

    CrossRef Google Scholar

    LI Z X, METCALFE I, POWELL C M, 1996. Breakup of Rodinia and Gondwanaland and assembly of Asia: Introduction[J]. Australian Journal of Earth Sciences, 43(6): 591-592. doi: 10.1080/08120099608728280

    CrossRef Google Scholar

    LIN A M, 1994a. Microlite morphology and chemistry in pseudotachylite from the Fuyun fault zone, China[J]. The Journal of geology, 102(3): 317-329. doi: 10.1086/629674

    CrossRef Google Scholar

    LIN A M, 1994b. Glassy pseudotachylite veins from the Fuyunfault zone, northwest China[J]. Journal of Structural Geology, 16 (1): 71-83. doi: 10.1016/0191-8141(94)90019-1

    CrossRef Google Scholar

    LIN A M, 1996. Injection veins of crushing-originated pseudotachylyte and fault gouge formed during seismic faulting[J]. Engineering Geology, 43(2-3): 213-224. doi: 10.1016/0013-7952(96)00062-2

    CrossRef Google Scholar

    LIN A M, SHIMAMOTO T, 1998. Selective melting processes as inferred from experimentally generated pseudotachylyte[J]. Journal of Asian Earth Sciences, 16(5-6): 533-545. doi: 10.1016/S0743-9547(98)00040-3

    CrossRef Google Scholar

    LIU J M, DONG S W, ZHANG J S, et al., 2003. Origin of pseudotachylites from the the eastern Dabieshan Orogenic Belt[J]. Journal of Geomechanics, 9 (2): 97-105.

    Google Scholar

    LIU J M, DONG S W, ZHANG J S, et al., 2004. K-Ar and 40Ar-39Ar ages of pseudotachylites and their wall rocks from the Eastern Dabie mountains and their implications[J] Acta Geologica Sinica, 78(3): 374-379. (in Chinese with English abstract)

    Google Scholar

    LIU J M, DONG S W, ZHANG J S, et al., 2004. Origin, age and significance of pseudotachylites from the eastern Dabieshan Orogenic Belt, China[J]. Acta Geologica Sinica, 78(1): 52-60.

    Google Scholar

    LIU J M, CHEN B L, DONG S W, et al., 2009. Ages of pseudotachylite and its wall rocks from the Keketuohai-Ertai fault zone, Xinjiang, Northwest China[J]. Geological Review, 55(4): 581-589. (in Chinese with English abstract)

    Google Scholar

    LIU X C, ZHAO Y, ZHAO G C, et al., 2007. Petrology and geochronology of granulites from the McKaskle Hills, Eastern Amery Ice Shelf, Antarctica, and implications for the evolution of the Prydz belt[J]. Journal of Petrology, 48(8): 1443-1470. doi: 10.1093/petrology/egm024

    CrossRef Google Scholar

    LIU X C, ZHAO Y, SONG B, et al., 2009. SHRIMP U-Pb zircon geochronology of high-grade rocks and charnockites from the eastern Amery Ice Shelf and southwestern Prydz Bay, East Antarctica: constraints on Late Mesoproterozoic to Cambrian tectonothermal events related to supercontinent assembly[J]. Gondwana Research, 16(2): 342-361. doi: 10.1016/j.gr.2009.02.003

    CrossRef Google Scholar

    LIU X C, JAHN B M, ZHAO Y, et al., 2014. Geochemistry and geochronology of Mesoproterzoic basement rocks from the eastern Amery ice shelf and southwestern Prydz Bay, East Antarctica: implications for a long-lived magmatic accretion in a continental arc[J]. American Journal of Science, 314: 508-547. doi: 10.2475/02.2014.03

    CrossRef Google Scholar

    LUDWIG K R, 2001. Users manual for Isoplot/Ex(rev 2.49): A geochronological toolkit for microsoft excel. Berkeley Geochronological Center Special Publication, 1a: 1-55.

    Google Scholar

    MAGLOUGHLIN J F, HALL C M, VAN DER PLUIJM B A, 2001. 40Ar-39Ar geochronometry of pseudotachylytes by vacuum encapsulation: North Cascade Mountains, Washington, USA[J]. Geology, 29(1): 51-54. doi: 10.1130/0091-7613(2001)029<0051:AAGOPB>2.0.CO;2

    CrossRef Google Scholar

    MADDOCK R H, 1983. Melt origin of fault-generated pseudotaehylytes demonstratedbytexture[J]. Geology, 12: 105-105.

    Google Scholar

    MAGOFUGHILN J F, 1989. The nature and significance of pseudotachyilte from the Nason terrane, North Cascade Mountains, Washington[J]. Journal of Structural Geology, 21(7): 907-917.

    Google Scholar

    MAGLOUGHLIN J F, 1992. Microstructural and chemical changes associated with cataclasis and frictional melting at shallow crustallevels: the cataclasite-pseudotachylite formation[J]. Tectonophysics, 204(3-4): 243-260. doi: 10.1016/0040-1951(92)90310-3

    CrossRef Google Scholar

    MAGLOUGHLIN J F, SPRAY J G, 1992. Frictional melting processesand products in geological materials: introduction and discussion[J]. Tectonophysics, 204(3-4): 197-206. doi: 10.1016/0040-1951(92)90307-R

    CrossRef Google Scholar

    MÜLLER W, KELLEY S P, VILLA I M, 2002. Dating fault-generated pseudotachylytes: comparison of 40Ar/39Ar stepwise-heating, laser-ablation and Rb-Sr microsampling analyses[J]. Contributions to Mineralogy and Petrology, 144(1): 57-77. doi: 10.1007/s00410-002-0381-6

    CrossRef Google Scholar

    PHILPOTTS A R, 1964. Origin of pseudotachylites[J]. American Journal of Science, 262(8): 1008-1035. doi: 10.2475/ajs.262.8.1008

    CrossRef Google Scholar

    PARK R G, 1961. The pesudoyachylite of the Gairloch district, Ross-Shire, Scotland[J]. American Journal of Science, 259(7): 542-550. doi: 10.2475/ajs.259.7.542

    CrossRef Google Scholar

    REIMOLD W U, JESSBERGER E K, STEPHAN T, 1990. 40Ar-39Ar dating of pseudotachylite from the Vredefort Dome, South Africa: a progress report[J]. Tectonophysics, 171(1-4): 139-152. doi: 10.1016/0040-1951(90)90095-P

    CrossRef Google Scholar

    REIMOLD W U, STEPHAN T, JESSBERGER E K, 1992. Testing younger than 2 Ga 40Ar-39Ar ages for pseudotachylite from the Vredefort structure[J]. South African Journal of Science, 88(11-12): 563-573.

    Google Scholar

    SHAND S J, 1916. The pseudotachylyte of Parijs (Orange Free State), and its relation to 'trap-shotten gneiss' and 'flinty crush-rock'[J]. Quarterly Journal of the Geological Society, 72(1-4): 198-221. doi: 10.1144/GSL.JGS.1916.072.01-04.12

    CrossRef Google Scholar

    SHERLOCK S C, HETZEL R, 2001. A laser-probe 40Ar/39Ar study of pseudotachylite from the Tambach Fault Zone, Kenya: direct isotopic dating of brittle faults[J]. Journal of Structural Geology, 23(1): 33-44. doi: 10.1016/S0191-8141(00)00082-1

    CrossRef Google Scholar

    SIBSON R H, 1975. Generation of pseudotachylyte by ancient seismic faulting[J]. Geophysical Journal International, 43(3): 775-794. doi: 10.1111/j.1365-246X.1975.tb06195.x

    CrossRef Google Scholar

    SNAPE I, BLACK L P, HARLEY S L, 1997. Refinement of the timing of magmatism, high-grade metamorphism and deformation in the Vestfold Hills, East Antarctica, from new SHRIMP U-Pb zircon geochronology[M]//RICCI C A. The Antarctic region: geological evolution and processes. Siena: Terra Antarctica Publications: 139-148.

    Google Scholar

    SPRAY J G, 1995. Pseudotachylyte controversy: fact or friction?[J] Geology, 23(12): 1119-1122. doi: 10.1130/0091-7613(1995)023<1119:PCFOF>2.3.CO;2

    CrossRef Google Scholar

    SPRAY J G, KELLEY S P, REIMOLD W U, 1995. Laser probeargon-40/argon-39 dating of coesite- and stishovite-bearing pseudotachylytes and the age of the Vredefort impact event[J]. Meteoritics, 30(3): 335-343. doi: 10.1111/j.1945-5100.1995.tb01132.x

    CrossRef Google Scholar

    THOST D E, HENSEN B J, MOTOYOSHI Y, 1991. Two-stage decompression in garnet-bearing mafic granulites from Søstrene Island, Prydz Bay, East Antarctica[J]. Journal of Metamorphic Geology, 9(3): 245-256. doi: 10.1111/j.1525-1314.1991.tb00520.x

    CrossRef Google Scholar

    TRIELOFF M, REIMOLD W U, KUNZ J, et al., 1994. 40Ar-39Ar thermochronology of pseudotachylite at the Ventersdorp Contact Reef, Witwatersrand basin[J]. South African Journal of Geology, 97(3): 365-384.

    Google Scholar

    WENK H R, 1978. Are pseudotachylites products of fracture or fusion?[J]. Geology, 6(8): 507-511. doi: 10.1130/0091-7613(1978)6<507:APPOFO>2.0.CO;2

    CrossRef Google Scholar

    WOOD B J, 1974. The solubility of alumina in orthopyroxene co-existing with garnet[J]. Contribution to Mineral and Petrology, 46: 1-15. doi: 10.1007/BF00377989

    CrossRef Google Scholar

    WENK H R, WEISS L E, 1982. Al-richcalcic pyroxene in pseudotaehylite: an indieator of high pressure and high temperature?[J]. Teetonophysies, 84(2-4): 329-341.

    Google Scholar

    ZHAO Y, LIU X H, SONG B, et al., 1995. Constraints on the stratigraphic age of metasedimentary rocks from the Larsemann Hills, East Antarctica: possible implications for Neoproterozoic tectonics[J]. Precambrian Research, 75(3-4): 175-188. doi: 10.1016/0301-9268(95)00038-0

    CrossRef Google Scholar

    陈文, 刘新宇, 张思, 2002. 连续激光阶段升温40Ar/39Ar地质年代测定方法研究[J]. 地质论评, 48(增刊): 127-134.

    Google Scholar

    刘建民, 董树文, 张家声, 等, 2004. 大别造山带东部假玄武玻璃及其围岩的K-Ar和40Ar-39Ar年龄及地质意义[J]. 地质学报, 78(3): 374-379. doi: 10.3321/j.issn:0001-5717.2004.03.011

    CrossRef Google Scholar

    刘建民, 陈柏林, 董树文, 等, 2009. 新疆富蕴可可托海-二台断裂带中假玄武玻璃及其围岩的年代学研究[J]. 地质论评, 55(4): 581-589. doi: 10.3321/j.issn:0371-5736.2009.04.012

    CrossRef Google Scholar

    刘建民, 董树文, 张家声, 等. 2003. 大别造山带东部假玄武玻璃的成因[J]. 地质力学学报, 9 (2): 97-105. doi: 10.3969/j.issn.1006-6616.2003.02.001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(5)

Article Metrics

Article views(1910) PDF downloads(45) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint