2021 Vol. 27, No. 5
Article Contents

LIU Xiaochun, ZHAO Yue, WANG Wei, CHEN Longyao, ZHENG Guanggao, LIU Jian, WANG Yafei, REN Liudong. 2021. Ancient cratonic nuclei in East Antarctica: Research status, problems and prospects. Journal of Geomechanics, 27(5): 691-704. doi: 10.12090/j.issn.1006-6616.2021.27.05.057
Citation: LIU Xiaochun, ZHAO Yue, WANG Wei, CHEN Longyao, ZHENG Guanggao, LIU Jian, WANG Yafei, REN Liudong. 2021. Ancient cratonic nuclei in East Antarctica: Research status, problems and prospects. Journal of Geomechanics, 27(5): 691-704. doi: 10.12090/j.issn.1006-6616.2021.27.05.057

Ancient cratonic nuclei in East Antarctica: Research status, problems and prospects

    Fund Project: This research is financially supported by the National Natural Sciences Foundation of China (Grant No.41941004)
  • The Archean cratonic nuclei in the East Antarctic Shield (Craton) occur mainly in the Napier Mountains, southern Prince Charles Mountains, Rauer Group and Vestfold Hills in the Indian Ocean sector, and are sporadically exposed in the Australian, African and Pacific sectors. These ancient nuclei with diverse earlier crustal histories and later reworking processes are separated by the Paleoproterozoic-Early Paleozoic (Pan-African-aged) orogens. The nuclei in different sectors have a close affinity with the adjacent Gondwana continental blocks. Integrated bedrock and subglacial geological investigations and petrological and chemical studies will ascertain the temporal and spatial distributions, petrogenesis, source regions, tectonic affinities and multiple metamorphic records of the Archean rocks (materials) in East Antarctica.This can help to reveal the major history from nucleation to assembly of the East Antarctica continent, and thus to contribute to a better understanding of the early history of the Earth from an Antarctic perspective.

  • 加载中
  • AN M J, WIENS D A, ZHAO Y, et al., 2015. S-velocity model and inferred Moho topography beneath the Antarctic Plate from Rayleigh waves[J]. Journal of Geophysical Research: Solid Earth, 120(1): 359-383. doi: 10.1002/2014JB011332

    CrossRef Google Scholar

    BARTON J M, KLEMD R, ALLSOPP H L, et al., 1987. The geology and geochronology of the Annandagstoppane granite, Western Dronning Maud Land, Antarctica[J]. Contributions to Mineralogy and Petrology, 97(4): 488-496. doi: 10.1007/BF00375326

    CrossRef Google Scholar

    BELYATSKY B V, RODIONOV N V, ANTONOV A V, et al., 2011. The 3.98~3.63 Ga zircons as indicators of major processes operating in the ancient continental crust of the east Antarctic shield (Enderby Land)[J]. Doklady Earth Sciences, 438(2): 770-774. doi: 10.1134/S1028334X11060031

    CrossRef Google Scholar

    BLACK L P, JAMES P R, HARLEY S L, 1983a. Geochronology and geological evolution of metamorphic rocks in the Field Islands area, East Antarctica[J]. Journal of Metamorphic Geology, 1(4): 277-303. doi: 10.1111/j.1525-1314.1983.tb00276.x

    CrossRef Google Scholar

    BLACK L P, JAMES P R, HARLEY S L, 1983b. The geochronology, structure and metamorphism of early Archaean rocks at Fyfe Hills, Enderby Land, Antarctica[J]. Precambrian Research, 21(3-4): 197-222. doi: 10.1016/0301-9268(83)90041-4

    CrossRef Google Scholar

    BLACK L P, WILLIAMS I S, COMPSTON W, 1986. Four zircon ages from one rock: the history of a 3930 Ma-old granulite from Mount Sones, Enderby Land, Antarctica[J]. Contributions to Mineralogy and Petrology, 94(4): 427-437. doi: 10.1007/BF00376336

    CrossRef Google Scholar

    BLACK L P, MCCULLOCH M T, 1987. Evidence for isotopic equilibration of Sm-Nd whole-rock systems in early Archaean crust of Enderby Land, Antarctica[J]. Earth and Planetary Science Letters, 82(1-2): 15-24. doi: 10.1016/0012-821X(87)90103-8

    CrossRef Google Scholar

    BLACK L P, KINNY P D, SHERATON J W, et al., 1991. Rapid production and evolution of late Archaean felsic crust in the Vestfold Block of East Antarctica[J]. Precambrian Research, 50(3-4): 283-310. doi: 10.1016/0301-9268(91)90026-7

    CrossRef Google Scholar

    BLACK L P, SHERATON J W, TINGEY R J, et al., 1992. New U-Pb zircon ages from the Denman Glacier area, East Antarctica, and their significance for Gondwana reconstruction[J]. Antarctic Science, 4(4): 447-460. doi: 10.1017/S095410209200066X

    CrossRef Google Scholar

    BOGER S D, WILSON C J L, FANNING C M, 2001. Early Paleozoic tectonism within the East Antarctic craton: the final suture between east and west Gondwana?[J]. Geology, 29(5): 463-466. doi: 10.1130/0091-7613(2001)029<0463:EPTWTE>2.0.CO;2

    CrossRef Google Scholar

    BOGER S D, WILSON C J L, FANNING C M, 2006. An Archaean province in the southern Prince Charles Mountains, East Antarctica: U-Pb zircon evidence for c. 3170 Ma granite plutonism and c. 2780 Ma partial melting and orogenesis[J]. Precambrian Research, 145(3-4): 207-228. doi: 10.1016/j.precamres.2005.12.003

    CrossRef Google Scholar

    BOGER S D, MAAS R, FANNING C M, 2008. Isotopic and geochemical constraints on the age and origin of granitoids from the central Mawson Escarpment, southern Prince Charles Mountains, East Antarctica[J]. Contributions to Mineralogy and Petrology, 155(3): 379-400. doi: 10.1007/s00410-007-0249-x

    CrossRef Google Scholar

    BOGER S D, 2011. Antarctica-before and after Gondwana[J]. Gondwana Research, 19(2): 335-371. doi: 10.1016/j.gr.2010.09.003

    CrossRef Google Scholar

    BYERLY G R, LOWE D R, HEUBECK C, 2019. Geologic evolution of the Barberton Greenstone Belt-a unique record of crustal development, surface processes, and early life 3.55~3.20 Ga[M]//VAN KRANENDONK M J, BENNETT V C, HOFFMANN J E. Earth's Oldest Rocks. 2nd ed. Amsterdam: Elsevier: 569-613.

    Google Scholar

    CARSON C J, AGUE J J, COATH C D, 2002a. U-Pb geochronology from Tonagh Island, East Antarctica: implications for the timing of ultra-high temperature metamorphism of the Napier Complex[J]. Precambrian Research, 116(3-4): 237-263. doi: 10.1016/S0301-9268(02)00023-2

    CrossRef Google Scholar

    CARSON C J, AGUE J J, GROVE M, et al., 2002b. U-Pb isotopic behaviour of zircon during upper-amphibolite facies fluid infiltration in the Napier Complex, east Antarctica[J]. Earth and Planetary Science Letters, 199(3-4): 287-310. doi: 10.1016/S0012-821X(02)00565-4

    CrossRef Google Scholar

    CAWOOD P A, HAWKESWORTH C J, PISAREVSKY S A, et al., 2018. Geological archive of the onset of plate tectonics[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2132): 20170405. doi: 10.1098/rsta.2017.0405

    CrossRef Google Scholar

    CHOI S H, MUKASA S B, ANDRONIKOV A V, et al., 2006. Lu-Hf systematics of the ultra-high temperature Napier Metamorphic Complex in Antarctica: Evidence for the early Archean differentiation of Earth's mantle[J]. Earth and Planetary Science Letters, 246(3-4): 305-316. doi: 10.1016/j.epsl.2006.04.012

    CrossRef Google Scholar

    CLARK C, KINNY P D, HARLEY S L, 2012. Sedimentary provenance and age of metamorphism of the Vestfold Hills, East Antarctica: evidence for a piece of Chinese Antarctica?[J]. Precambrian Research, 196-197: 23-45. doi: 10.1016/j.precamres.2011.11.001

    CrossRef Google Scholar

    CORVINO A F, WILSON C J L, BOGER S D, 2011. The structural and tectonic evolution of a Rodinian continental fragment in the Mawson Escarpment, Prince Charles Mountains, Antarctica[J]. Precambrian Research, 184(1-4): 70-92. doi: 10.1016/j.precamres.2010.11.001

    CrossRef Google Scholar

    CROWE W A, OSANAI Y, TOYOSHIMA T, et al., 2002. SHRIMP geochronology of a mylonite zone on Tonagh Island: characterisation of the last high-grade tectonothermal event in the Napier Complex, East Antarctica[J]. Polar Geoscience, 15: 17-36.

    Google Scholar

    ERNST D M, BAU M, 2021. Banded iron formation from Antarctica: The 2.5 Ga old Mt. Ruker BIF and the antiquity of lanthanide tetrad effect and super-chondritic Y/Ho ratio in seawater[J]. Gondwana Research, 91: 97-111. doi: 10.1016/j.gr.2020.11.011

    CrossRef Google Scholar

    FITZSIMONS I C W, 2003. Proterozoic basement provinces of southern and southwestern Australia, and their correlation with Antarctica[M]//YOSHIDA M, WINDLEY B, DASGUPTA S. Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publications, 206(1): 93-130.

    Google Scholar

    FLOWERDEW M J, TYRRELL S, BOGER S D, et al., 2013. Pb isotopic domains from the Indian Ocean sector of Antarctica: implications for past Antarctica-India connections[M]//HARLEY S L, FITZSIMONS I C W, ZHAO Y. Antarctica and Supercontinent Evolution. Geological Society, London, Special Publications, 383(1): 59-72.

    Google Scholar

    FREI R, POLAT A, 2007. Source heterogeneity for the major components of~3.7 Ga Banded Iron Formations (Isua Greenstone Belt, Western Greenland): Tracing the nature of interacting water masses in BIF formation[J]. Earth and Planetary Science Letters, 253(1-2): 266-281. doi: 10.1016/j.epsl.2006.10.033

    CrossRef Google Scholar

    GOLYNSKY A V, MASOLOV V N, VOLNUKHIN V S, et al., 2006a. Crustal provinces of the Prince Charles Mountains region and surrounding areas in the light of aeromagnetic data[M]//FVTTERER D K, DAMASKE D, KLEINSCHMIDT G, et al. Antarctica: Contributions to Global Earth Sciences. Berlin, Heidelberg: Springer-Verlag: 83-94.

    Google Scholar

    GOLYNSKY A V, GOLYNSKY D A, MASOLOV V N, et al., 2006b. Magnetic anomalies of the Grove Mountains region and their geological significance[M]//FVTTERER D K, DAMASKE D, KLEINSCHMIDT G, et al. Antarctica: Contributions to Global Earth Sciences. Berlin, Heidelberg: Springer-Verlag: 95-105.

    Google Scholar

    GOLYNSKY A V, FERRACCIOLI F, HONG J K, et al., 2018. New magnetic anomaly map of the Antarctic[J]. Geophysical Research Letters, 45(13): 6437-6449. doi: 10.1029/2018GL078153

    CrossRef Google Scholar

    GOODGE J W, FANNING C M, 2002. Precambrian crustal history of the Nimrod Group, central Transantarctic Mountains[M]//GAMBLE J A, SKINNER D N B, HENRYS S. Antarctica at the Close of a Millennium]. Royal Society of New Zraland Bulletin, 35: 43-50.

    Google Scholar

    GREW E S, MANTON W I, 1979. Archean rocks in Antarctica: 2.5 billion year uranium-lead ages of pegmatites in Enderby Land[J]. Science, 206(4417): 443-445. doi: 10.1126/science.206.4417.443

    CrossRef Google Scholar

    HALPIN J A, GERAKITEYS C L, CLARKE G L, et al., 2005. In-situ U-Pb geochronology and Hf isotope analyses of the Rayner Complex, east Antarctica[J]. Contributions to Mineralogy and Petrology, 148(6): 689-706. doi: 10.1007/s00410-004-0627-6

    CrossRef Google Scholar

    HALPIN J A, WHITE R W, CLARKE G L, et al., 2007. The proterozoic P-T-t evolution of the Kemp Land coast, East Antarctica: constraints from Si-saturated and Si-undersaturated Metapelites[J]. Journal of Petrology, 48(7): 1321-1349. doi: 10.1093/petrology/egm020

    CrossRef Google Scholar

    HARLEY S L, FITZSIMONS I C W, 1991. Pressure-temperature evolution of metapelitic granulites in a polymetamorphic terrane: the Rauer Group, East Antarctica[J]. Journal of Metamorphic Geology, 9(3): 231-243. doi: 10.1111/j.1525-1314.1991.tb00519.x

    CrossRef Google Scholar

    HARLEY S L, SNAPE I, FITZSIMONS I C W, 1995. Regional correlations and terrane assembly in East Prydz Bay: Evidence from the rauer group and vestfold hills[J]. Terra Antartica, 2: 49-60.

    Google Scholar

    HARLEY S L, BLACK L P, 1997. A revised Archaean chronology for the Napier complex, Enderby Land, from SHRIMP ion-microprobe studies[J]. Antarctic Science, 9(1): 74-91. doi: 10.1017/S0954102097000102

    CrossRef Google Scholar

    HARLEY S L, 1998. On the occurrence and characterization of ultrahigh-temperature crustal metamorphism[M]//TRELOAR P J, O'BRIEN P. What Drives Metamorphism and Metamorphic Reactions? Geological Society, London, Special Publications, 138(1): 81-107.

    Google Scholar

    HARLEY S L, SNAPE I, BLACK L P, 1998. The evolution of a layered metaigneous complex in the Rauer Group, East Antarctica: evidence for a distinct Archaean terrane[J]. Precambrian Research, 89(3-4): 175-205. doi: 10.1016/S0301-9268(98)00031-X

    CrossRef Google Scholar

    HARLEY S L, 2003. Archaean-Cambrian crustal development of East Antarctica: metamorphic characteristics and tectonic implications[M]//YOSHIDA M, WINDLEY B, DASGUPTA S. Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publications, 206(1): 203-230.

    Google Scholar

    HARLEY S L, KELLY N M, KUSIAK M A, 2019. Ancient Antarctica: the Archean of the East Antarctic Shield[M]//VAN KRANENDONK M J, BENNETT V C, HOFFMANN J E. Earth's Oldest Rocks(Second Edition). Elsevier (Amsterdam): 865-897.

    Google Scholar

    HARLEY S L, FITZSIMONS I C W, ZHAO Y, 2013. Antarctica and supercontinent evolution: historical perspectives, recent advances and unresolved issues[M]//HARLEY S L, FITZSIMONS I C W, ZHAO Y. Antarctica and Supercontinent Evolution. Geological Society, London, Special Publications, 283(1): 1-34.

    Google Scholar

    HARLEY S L, 2016. A matter of time: the importance of the duration of UHT metamorphism[J]. Journal of Mineralogical and Petrological Sciences, 111(2): 50-72. doi: 10.2465/jmps.160128

    CrossRef Google Scholar

    HIESS J, BENNETT V C, 2016. Chondritic Lu/Hf in the early crust-mantle system as recorded by zircon populations from the oldest Eoarchean rocks of Yilgarn Craton, West Australia and Enderby Land, Antarctica[J]. Chemical Geology, 427: 125-143. doi: 10.1016/j.chemgeo.2016.02.011

    CrossRef Google Scholar

    HOFFMANN J E, KRÖNER A, 2019. Early Archean crustal evolution in southern Africa-An updated record of the ancient gneiss complex of Swaziland[M]//VAN KRANENDONK M J, BENNETT V C, HOFFMANN J E. Earth's Oldest Rocks. 2nd ed. Amsterdam: Elsevier: 553-567.

    Google Scholar

    HOKADA T, MISAWA K, SHIRAISHI K, et al., 2003. Mid to late Archaean (3.3~2.5 Ga) tonalitic crustal formation and high-grade metamorphism at Mt. Riiser-Larsen, Napier Complex, East Antarctica[J]. Precambrian Research, 127(1-3): 215-228. doi: 10.1016/S0301-9268(03)00188-8

    CrossRef Google Scholar

    HOKADA T, HARLEY S L, DUNKLEY D J, et al., 2016. Peak and post-peak development of UHT metamorphism at Mather Peninsula, Rauer Islands: zircon and monazite U-Th-Pb and REE chemistry constraints[J]. Journal of Mineralogical and Petrological Sciences, 111(2): 89-103. doi: 10.2465/jmps.150829

    CrossRef Google Scholar

    HORIE K, HOKADA T, HIROI Y, et al., 2012. Contrasting Archaean crustal records in western part of the Napier Complex, East Antarctica: new constraints from SHRIMP geochronology[J]. Gondwana Research, 21(4): 829-837. doi: 10.1016/j.gr.2011.08.013

    CrossRef Google Scholar

    JAMES P R, BLACK L P, 1981. A review of the structural evolution and geochronology of the Archaean Napier complex of Enderby land, Australian Antarctic Territory[M]//GLOVER J E, GROVES D I. Archaean Geology. Geological Society of Australia, Special Publications, 7: 71-83.

    Google Scholar

    KELLY N M, CLARKE G L, FANNING C M, 2002. A two-stage evolution of the Neoproterozoic Rayner Structural Episode: new U-Pb sensitive high resolution ion microprobe constraints from the Oygarden Group, Kemp Land, East Antarctica[J]. Precambrian Research, 116(3-4): 307-330. doi: 10.1016/S0301-9268(02)00028-1

    CrossRef Google Scholar

    KELLY N M, CLARKE G L, FANNING C M, 2004. Archaean crust in the Rayner Complex of East Antarctica: Oygarden Group of islands, Kemp Land[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(3-4): 491-510. doi: 10.1017/S0263593300001176

    CrossRef Google Scholar

    KELLY N M, HARLEY S L, 2005. An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antarctica[J]. Contributions to Mineralogy and Petrology, 149(1): 57-84. doi: 10.1007/s00410-004-0635-6

    CrossRef Google Scholar

    KELSEY D E, WHITE R W, POWELL R, et al., 2003. New constraints on metamorphism in the Rauer Group, Prydz Bay, east Antarctica[J]. Journal of Metamorphic Geology, 21(8): 739-759. doi: 10.1046/j.1525-1314.2003.00476.x

    CrossRef Google Scholar

    KELSEY D E, HAND M, CLARK C, et al., 2007. On the application of in situ monazite chemical geochronology to constraining P-T-t histories in high-temperature (>850℃) polymetamorphic granulites from Prydz Bay, East Antarctica[J]. Journal of the Geological Society, 164(3): 667-683. doi: 10.1144/0016-76492006-013

    CrossRef Google Scholar

    KINNY P D, BLACK L P, SHERATON J W, 1993. Zircon ages and the distribution of Archaean and Proterozoic rocks in the Rauer Islands[J]. Antarctic Science, 5(2): 193-206. doi: 10.1017/S0954102093000252

    CrossRef Google Scholar

    KUSIAK M A, WHITEHOUSE M J, WILDE S A, et al., 2013a. Mobilization of radiogenic Pb in zircon revealed by ion imaging: implications for early Earth geochronology[J]. Geology, 41(3): 291-294. doi: 10.1130/G33920.1

    CrossRef Google Scholar

    KUSIAK M A, WHITEHOUSE M J, WILDE S A, et al., 2013b. Changes in zircon chemistry during Archean UHT metamorphism in the Napier Complex, Antarctica[J]. American Journal of Science, 313(9): 933-967. doi: 10.2475/09.2013.05

    CrossRef Google Scholar

    LANYON R, BLACK L P, SEITZ HM, 1993. U-Pb zircon dating of mafic dykes and its application to the Proterozoic geological history of the Vestfold Hills, East Antarctica[J]. Contributions to Mineralogy and Petrology, 115(2): 184-203. doi: 10.1007/BF00321219

    CrossRef Google Scholar

    LIU J, ZHAO Y, LIU X C, et al., 2011. LA-ICP-MS U-Pb ages and its significance of detritalzircon come from gravel of sedimentary rock in moraine nearby Vestfold Hills, East Antarctica[J]. Acta Geologica Sinica, 85(10): 1585-1612. (in Chinese with English abstract)

    Google Scholar

    LIU X C, ZHAO Y, HU J M, 2013. The c. 1000~900 Ma and c. 550~500 Ma tectonothermal events in the Prince Charles Mountains-Prydz Bay region, East Antarctica, and their relations to supercontinent evolution[M]//HARLEY S L, FITZSIMONS I C W, ZHAO Y. Antarctica and Supercontinent Evolution. Geological Society, London, Special Publications, 283(1): 95-112.

    Google Scholar

    LIU X C, WANG W, ZHAO Y, et al., 2014. Early Neoproterozoic granulite facies metamorphism of mafic dykes from the Vestfold Block, east Antarctica[J]. Journal of Metamorphic Geology, 32(9): 1041-1062. doi: 10.1111/jmg.12106

    CrossRef Google Scholar

    LIU X C, CHEN L Y, WANG W, et al., 2021. Deciphering early Neoproterozoic and Cambrian high-grade metamorphic events in the Archean/Mesoproterozoic Rauer Group, East Antarctica[J]. Precambrian Research, in revision365: 106392.

    Google Scholar

    MARSCHALL H R, HAWKESWORTH C J, STOREY C D, et al., 2010. The Annandagstoppane granite, East Antarctica: evidence for Archaean intracrustal recycling in the Kaapvaal-Grunehogna Craton from zircon O and Hf isotopes[J]. Journal of Petrology, 51(11): 2277-2301. doi: 10.1093/petrology/egq057

    CrossRef Google Scholar

    MCCULLOCH M T, BLACK L P, 1984. Sm-Nd isotopic systematics of Enderby Land granulites and evidence for the redistribution of Sm and Nd during metamorphism[J]. Earth and Planetary Science Letters, 71(1): 46-58. doi: 10.1016/0012-821X(84)90051-7

    CrossRef Google Scholar

    MÉNOT RP, PÊCHER A, ROLLAND Y, et al., 2005. Structural setting of the Neoarchean terrains in the Commonwealth Bay area (143~145°E), Terre Adélie craton, East Antarctica[J]. Gondwana Research, 8: 1-9. doi: 10.1016/S1342-937X(05)70258-6

    CrossRef Google Scholar

    MIKHALSKY E V, SHERATON J W, LAIBA A A, et al., 2001. Geology of the Prince Charles Mountains, Antarctica[M]. Australian Geological Survey Organisation, Canberra, Geoscience Australia Bulletin 247.

    Google Scholar

    MIKHALSKY E V, BELIATSKY B V, SHERATON J W, et al., 2006a. Two distinct Precambrian terranes in the southern Prince Charles mountains, east Antarctica: SHRIMP dating and geochemical constraints[J]. Gondwana Research, 9(3): 291-309. doi: 10.1016/j.gr.2005.10.002

    CrossRef Google Scholar

    MIKHALSKY E V, LAIBA A A, BELIATSKY B V, 2006b. Tectonic subdivision of the Prince Charles Mountains: a review of geologic and isotopic data[M]//FUTTERER D K, DAMASKE D, KLEINSCHMIDT G, et al. Antarctica: Contributions to Global Earth Sciences. Berlin, Heidelberg: Springer: 69-81.

    Google Scholar

    MIKHALSKY E V, HENJES-KUNST F, BELYATSKY B V, et al., 2010. New Sm-Nd, Rb-Sr, U-Pb and Hf isotope systematics for the southern Prince Charles Mountains (East Antarctica) and its tectonic implications[J]. Precambrian Research, 182(1-2): 101-123. doi: 10.1016/j.precamres.2010.07.004

    CrossRef Google Scholar

    MITCHELL R J, HARLEY S L, 2017. Zr-in-rutile resetting in aluminosilicate bearing ultra-high temperature granulites: Refining the record of cooling and hydration in the Napier Complex, Antarctica[J]. Lithos, 272-273: 128-146. doi: 10.1016/j.lithos.2016.11.027

    CrossRef Google Scholar

    OLIVER R L, JAMES P R, COLLERSON K D, et al., 1982. Precambrian geologic relationships in the Vestfold Hills, Antarctica[M]//CRADDOCK C. Antarctic Geoscience. Madison: University of Wisconsin Press: 435-444.

    Google Scholar

    PEACOCK J R, SELWAY K, 2016. Magnetotelluric investigation of the vestfold hills and rauer group, east antarctica[J]. Journal of Geophysical Research: Solid Earth, 121(4): 2258-2273. doi: 10.1002/2015JB012677

    CrossRef Google Scholar

    PEUCAT J J, MÉNOT R P, MONNIER O, et al., 1999. The Terre Adélie basement in the East-Antarctica Shield: geological and isotopic evidence for a major 1.7 Ga thermal event; comparison with the Gawler Craton in South Australia[J]. Precambrian Research, 94(3-4): 205-224. doi: 10.1016/S0301-9268(98)00119-3

    CrossRef Google Scholar

    PHILIPPOT P, MULLER E, ROLLION-BARD C, 2019. Origin of paleoarchean sulfate deposits[M]//VAN KRANENDONK M J, BENNETT V C, HOFFMANN J E. Earth's Oldest Rocks. 2nd ed. Amsterdam: Elsevier: 211-235.

    Google Scholar

    PHILLIPS G, WILSON C J L, CAMPBELL I H, et al., 2006. U-Th-Pb detrital zircon geochronology from the southern Prince Charles mountains, east Antarctic-defining the Archaean to Neoproterozoic Ruker province[J]. Precambrian Research, 148(3-4): 292-306. doi: 10.1016/j.precamres.2006.05.001

    CrossRef Google Scholar

    PHILLIPS G, WILSON C J L, PHILLIPS D, et al., 2007a. Thermochronological (40Ar/39Ar) evidence of Early Palaeozoic basin inversion within the southern Prince Charles Mountains, East Antarctica: implications for East Gondwana[J]. Journal of the Geological Society, 164(4): 771-784. doi: 10.1144/0016-76492006-073

    CrossRef Google Scholar

    PHILLIPS G, WHITE R W, WILSON C J L, 2007b. On the roles of deformation and fluid during rejuvenation of a polymetamorphic terrane: inferences on the geodynamic evolution of the Ruker Province, East Antarctica[J]. Journal of Metamorphic Geology, 25(8): 855-871. doi: 10.1111/j.1525-1314.2007.00732.x

    CrossRef Google Scholar

    RAVICH M G, FEDOROV L V, TARUTIN O A, 1982. Precambrian iron deposits of the Prince Charles Mountains[M]//CRADDOCK C. Antarctic Geoscience. Madison: University of Wisconsin Press: 853-858.

    Google Scholar

    SANDIFORD M, 1985. The origin of retrograde shear zones in the Napier Complex: Implications for the tectonic evolution of Enderby Land, Antarctica[J]. Journal of Structural Geology, 7(3-4): 477-488. doi: 10.1016/0191-8141(85)90050-1

    CrossRef Google Scholar

    SCHEINERT M, FERRACCIOLI F, SCHWABE J, et al., 2016. New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica[J]. Geophysical Research Letters, 43(2): 600-610. doi: 10.1002/2015GL067439

    CrossRef Google Scholar

    SEITZ H M, 1994. Estimation of emplacement pressure for 2350 Ma high-Mg tholeiite dykes, Vestfold Hills, Antarctica[J]. European Journal of Mineralogy, 6(2): 195-208. doi: 10.1127/ejm/6/2/0195

    CrossRef Google Scholar

    SHEN Q H, GENG Y S, SONG H X, 2016. Progress and problems in the Hadean research of the Globe[J]. Acta Geologica Sinica, 90(9): 2083-2099. (in Chinese with English abstract)

    Google Scholar

    SHERATON J W, BLACK L P, MCCULLOCH M T, 1984. Regional geochemical and isotopic characteristics of high-grade metamorphics of the Prydz Bay area: the extent of Proterozoic reworking of Qrchaean continental crust in East Antarctica[J]. Precambrian Research, 26(2): 169-198. doi: 10.1016/0301-9268(84)90043-3

    CrossRef Google Scholar

    SHERATON J W, BLACK L P, TINDLE A G, 1992. Petrogenesis of plutonic rocks in a Proterozoic granulite-facies terrane-the Bunger Hills, East Antarctica[J]. Chemical Geology, 97(3-4): 163-198. doi: 10.1016/0009-2541(92)90075-G

    CrossRef Google Scholar

    SNAPE I, BLACK L P, HARLEY S L, 1997. Refinement of the timing of magmatism, high-grade metamorphism and deformation in the Vestfold Hills, East Antarctica, from new SHRIMP U-Pb zircon geochronology[M]//RICCI C A. The Antarctic Region: Geological Evolution and Processes. Siena: Terra Antarctica Publications: 139-148.

    Google Scholar

    TINGEY R J, 1982. The geologic evolution of the Prince Charles mountains-an Antarctic Archean cratonic block[M]//CRADDOCK C. Antarctic Geoscience. Madison: University of Wisconsin Press: 455-464.

    Google Scholar

    TINGEY R J, 1990. Banded iron formations in east Antarctica[M]//SPLETTSTOESSER J F. Mineral Resources Potential of Antarctica. Washington, DC: American Geophysical Union: 125-131.

    Google Scholar

    TINGEY R J, 1991. The regional geology of Archaean and Proterozoic rocks in Antarctica[M]//TINGEY R J. The Geology of Antarctica. Oxford: Clarendon Press: 1-78.

    Google Scholar

    TONG L X, WILSON C J L, 2006. Tectonothermal evolution of the ultrahigh temperature metapelites in the Rauer Group, east Antarctica[J]. Precambrian Research, 149(1-2): 1-20. doi: 10.1016/j.precamres.2006.04.004

    CrossRef Google Scholar

    TUCKER N M, PAYNE J L, CLARK C, et al., 2017. Proterozoic reworking of Archean (Yilgarn) basement in the Bunger Hills, East Antarctica[J]. Precambrian Research, 298: 16-38. doi: 10.1016/j.precamres.2017.05.013

    CrossRef Google Scholar

    WANG Y B, TONG L X, LIU D Y, 2007. Zircon U-Pb ages from an ultra-high temperature metapelite, Rauer Group, east Antarctica: implications for overprints by Grenvillian and Pan-African events[C]//10th International Symposium on Antarctic Earth Sciences. U.S. Geological Survey and the National Academies.

    Google Scholar

    WILL T M, ZEH A, GERDES A, et al., 2009. Palaeoproterozoic to Palaeozoic magmatic and metamorphic events in the Shackleton Range, East Antarctica: constraints from zircon and monazite dating, and implications for the amalgamation of Gondwana[J]. Precambrian Research, 172(1-2): 25-45. doi: 10.1016/j.precamres.2009.03.008

    CrossRef Google Scholar

    ZHAI M G, 2012. Evolution of the North China Craton and early plate tectonics[J]. Acta Geologica Sinica, 86(9): 1335-1349. (in Chinese with English abstract)

    Google Scholar

    ZHANG L C, ZHAI M G, WAN Y S, et al., 2012. Study of the Precambrian BIF-iron deposits in the North China Craton: Progresses and questions. Acta Petrologica Sinica, 28(11): 3431-3445. (in Chinese with English abstract)

    Google Scholar

    ZHAO Y, ZHANG S H, LIU X C, et al., 2007. Sub-glacial geology of Antarctica: a preliminary investigation and results in the Grove Mountains and the Vestfold Hills, East Antarctica and its tectonic implication[C]//10th International Symposium on Antarctic Sciences. U.S. Geological Survey and the National Academies.

    Google Scholar

    ZHAO Y, LIU X C, WANG W, et al., 2019. The early history and tectonic framework of East Antarctica, knowledge from the subglacial geology: a review[C]//13th International Symposium on Antarctic Earth Science, Incheon.

    Google Scholar

    ZULBATI F, HARLEY S L, 2007. Late Archaean granulite facies metamorphism in the Vestfold Hills, East Antarctica[J]. Lithos, 93(1-2): 39-67. doi: 10.1016/j.lithos.2006.04.004

    CrossRef Google Scholar

    刘健, 赵越, 刘晓春, 等, 2011. 来自东南极西福尔丘陵附近冰碛物中沉积岩砾石的碎屑锆石LA-ICP-MS U-Pb年龄及其意义[J]. 地质学报, 85(10): 1585-1612.

    Google Scholar

    沈其韩, 耿元生, 宋会侠, 2016. 全球冥古宙的研究进展和存在问题[J]. 地质学报, 90(9): 2083-2099. doi: 10.3969/j.issn.0001-5717.2016.09.001

    CrossRef Google Scholar

    翟明国, 2012. 华北克拉通的形成以及早期板块构造[J]. 地质学报, 86(9): 1335-1349. doi: 10.3969/j.issn.0001-5717.2012.09.002

    CrossRef Google Scholar

    张连昌, 翟明国, 万渝生, 等, 2012. 华北克拉通前寒武纪BIF铁矿研究: 进展与问题[J]. 岩石学报, 28(11): 3431-3445.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Article Metrics

Article views(2050) PDF downloads(46) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint