2021 Vol. 27, No. 3
Article Contents

WANG Jianhua, ZUO Ling, LI Zhizhong, MU Huayi, ZHOU Ping, YANG Jiajia, ZHAO Yingjun, QIN Kai. 2021. A detection method of trace metal elements in black soil based on hyperspectral technology: Geological implications. Journal of Geomechanics, 27(3): 418-429. doi: 10.12090/j.issn.1006-6616.2021.27.03.038
Citation: WANG Jianhua, ZUO Ling, LI Zhizhong, MU Huayi, ZHOU Ping, YANG Jiajia, ZHAO Yingjun, QIN Kai. 2021. A detection method of trace metal elements in black soil based on hyperspectral technology: Geological implications. Journal of Geomechanics, 27(3): 418-429. doi: 10.12090/j.issn.1006-6616.2021.27.03.038

A detection method of trace metal elements in black soil based on hyperspectral technology: Geological implications

    Fund Project: This research is financially supported by the Geological Survey Projects of China Geological Survey (Grant No. DD20190316), and the International Geoscience Program (Grant No. IGCP-665)
More Information
  • In the case of low content of heavy metals in soil, the hyperspectral characteristic response of heavy metals is very weak, so it is difficult to construct an accurate direct hyperspectral inversion model. In order to solve the above problems, according to the physical and chemical properties of soil chemical variables, the enrichment characteristics of heavy metals are transferred to the related major chemical elements, so that the weak information of heavy metals can be indirectly quantitatively inverted. In this paper, the black soil in Hailun was taken as the research object. Through principal component analysis and cluster analysis, it was confirmed that there was an obvious adsorption occurrence relationship between the major element iron oxide (Fe2O3) and trace heavy metals As, Zn, Cd. The best inversion model of iron oxide content in the study area was established by partial least square method (the determination coefficient is 0.704, the root mean square difference is 0.148, and the F-test is 12.732). Based on the occurrence relationship between iron oxide and As, Zn, CD, a nonlinear fitting model between the predicted value of iron oxide and the real value of heavy metals was constructed by neural network. The fitting results show that the fitting degree of As, Zn and Cd is As>Zn>Cd. The overall correlations are 0.796, 0.732, 0.530 respectively. The study results show that the indirect prediction model based on iron oxide content can better quantitatively predict As, Zn and Cd, which provides a new method for the quantitative analysis of trace heavy metal content. This model provides a basis for hyperspectral remote sensing technology to predict soil heavy metal content, enhances the feasibility of soil trace heavy metal inversion, and is helpful to refine the quality monitoring of natural resource. It is of great significance to deepen the comprehensive analysis and evaluation of geoscience system.

  • 加载中
  • ALLOWAY B J, 2013. Sources of heavy metals and metalloids in soils[M]//Heavy metals in soils. Dordrecht: Springer: 11-50.

    Google Scholar

    BAI D K, ZHU X P, WANG Y Y, et al., 2010. Study on adsorption behaviors of As(Ⅲ) by manganese oxide, iron oxide and aluminium oxide[J]. Rock and Mineral Analysis, 29(1): 55-60. (in Chinese with English abstract)

    Google Scholar

    CHEN J Q, GAO Y, QIN J M, et al., 2017. Clay mineral and major element geochemical features and their paleoclimate significance in Nenjiang formation 1st and 2nd members, eastern margin of Songliao Basin[J]. Coal Geology of China, 29(8): 17-24. (in Chinese with English abstract)

    Google Scholar

    CHEN K H, ZHANG N X, ZHANG Q C, et al., 1991. Mineralogy of potassium bearing clay in Qianshan County, Jiangxi Province[J]. Nonmetallic Geology, (4): 9-13, 50. (in Chinese)

    Google Scholar

    COVELO E F, VEGA F A, ANDRADE M L, 2007. Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils: I. Selectivity sequences[J]. Journal of Hazardous Materials, 147(3): 852-861. doi: 10.1016/j.jhazmat.2007.01.123

    CrossRef Google Scholar

    FACCHINELLI A, SACCHI E, MALLEN L, 2001. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils[J]. Environmental Pollution, 114(3): 313-324. doi: 10.1016/S0269-7491(00)00243-8

    CrossRef Google Scholar

    GANNOUNI S, REBAI N, ABDELJAOUED S, 2012. A spectroscopic approach to assess heavy metals contents of the mine waste of Jalta and Bougrine in the North of Tunisia[J]. Journal of Geographic Information System, 4(3): 19597.

    Google Scholar

    GONG S Q, WANG X, SHEN R P, et al., 2010. Study on heavy metal element content in the coastal saline soil by hyperspectral remote sensing[J]. Remote Sensing Technology and Application, 25(2): 169-177. (in Chinese with English abstract)

    Google Scholar

    GUO Y, BI R T, ZHENG C, et al., 2018. Review of hyperspectral remote sensing retrieval of soil heavy metals[J]. Environmental Science and Technology, 31(1): 67-72. (in Chinese with English abstract)

    Google Scholar

    HE J L, ZHANG S Y, ZHA Y, et al., 2015. Review of retrieving soil heavy metal content by hyperspectral remote sensing[J]. Remote Sensing Technology and Application, 30(3): 407-412. (in Chinese with English abstract)

    Google Scholar

    Helen County Soil Survey Office, 1985. Helen soil records[M]. Heilongjiang: Helen County Soil Office. (in Chinese)

    Google Scholar

    HUANG B, 2016. Studies on the adsorption, accumulation, transportation and immobilization of heavy metals in paddy soil[D]. Changsha: Hunan University. (in Chinese with English abstract)

    Google Scholar

    LAN Z Y, LIU Y, 2015. Research on indirect hyperspectral estimating model and the spatial distribution characteristics of heavy metal contents in basin soil of lean river[J]. Geography and Geo-Information Science, 31(3): 26-31. (in Chinese with English abstract)

    Google Scholar

    LI Z Y, MA Z W, VAN DER KUIJP T J, et al., 2014. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment[J]. Science of the Total Environment, 468-469: 843-853. doi: 10.1016/j.scitotenv.2013.08.090

    CrossRef Google Scholar

    LIU W, ZHAO Z, YUAN H F, et al., 2014. An optimal selection method of samples of calibration set and validation set for spectral multivariate analysis[J]. Spectroscopy and Spectral Analysis, (4): 947-951. (in Chinese with English abstract)

    Google Scholar

    LU Q, WANG S J, BAI X Y, et al., 2019. Rapid inversion of heavy metal concentration in karst grain producing areas based on hyperspectral bands associated with soil components[J]. Microchemical Journal, 148: 404-411. doi: 10.1016/j.microc.2019.05.031

    CrossRef Google Scholar

    MA W B, TAN K, LI H D, et al., 2016. Hyperspectral inversion of heavy metals in soil of a mining area using extreme learning machine[J]. Journal of Ecology and Rural Environment, 32(2): 213-218. (in Chinese with English abstract)

    Google Scholar

    MOROS J, DE VALLEJUELO S F O, GREDILLA A, et al., 2009. Use of reflectance infrared spectroscopy for monitoring the metal content of the estuarine sediments of the Nerbioi-Ibaizabal River (Metropolitan Bilbao, Bay of Biscay, Basque Country)[J]. Environmental Science and Technology, 43(24): 9314-9320. doi: 10.1021/es9005898

    CrossRef Google Scholar

    NI S Q, JU Y W, HOU Q L, et al., 2009. Comparison of the role of iron oxides in the migration and weathering of heavy metals and the enrichment of heavy metals in carbonate rocks[J]. Progress in Natural Science, 19(1): 61-68. (in Chinese with English abstract)

    Google Scholar

    PAN C C, 2017. Study on the hyperspectral remote sensing inversion of soil heavy metal concentrations based on random forest model[D]. Xuzhou: China University of Mining and Technology. (in Chinese with English abstract)

    Google Scholar

    QIAO D H, ZHAO Y Y, WANG A, et al., 2017. Geochronology, fluid inclusions, geochemical characteristics of Dibao Cu(Au) deposit, Duolong ore concentration area, Xizang(Tibet), and its genetic type[J]. Acta Geologica Sinica, 91(7): 1542-1564. (in Chinese with English abstract)

    Google Scholar

    QIN Y L, ZHANG F G, PENG M, et al., 2020. Geochemical distribution characteristics and sources of heavy metals in soils of WudingCounty, Yunnan Province[J]. Geology and Exploration, 56(3): 540-550. (in Chinese with English abstract)

    Google Scholar

    SHEN Q, XIA K, ZHANG S W, et al., 2019. Hyperspectral indirect inversion of heavy-metal copper in reclaimed soil of iron ore area[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 222: 117191. doi: 10.1016/j.saa.2019.117191

    CrossRef Google Scholar

    SHEN Q, ZHANG S W, GE C, et al., 2019. Hyperspectral inversion of heavy metal content in soils reconstituted by mining wasteland[J]. Spectroscopy and Spectral Analysis, 39(4): 1214-1221. (in Chinese with English abstract)

    Google Scholar

    SONG H F, WU K N, LI T, et al., 2018. The spatial distribution and influencing factors of farmland heavy metals in the cold black soil region: A case of Hailun county[J]. Chinese Journal of Soil Science, 49(6): 1480-1486. (in Chinese with English abstract)

    Google Scholar

    TIAN H, 2020. Research on water resources simulation and reasonable allocation of Hailun city based on SWAT and Visual Modflow[D]. Changchun: Jilin University. (in Chinese with English abstract)

    Google Scholar

    WANG D M, QIN K, LI Z Z, et al., 2018. Retrieval of organic matter content in black soil based on Airborne Hyperspectral Remote Sensing Data: Taking Jiansanjiang district in Heilongjiang Province as an example[J]. Earth Sciences, 43(6): 2184-2194. (in Chinese with English abstract)

    Google Scholar

    WANG Z W, WANG L, HUANG G W, et al., 2020. Research on multi-source heterogeneous data fusion algorithm of landslide monitoring based on BP neural network[J]. Journal of Geomechanics, 26(4): 575-582. (in Chinese with English abstract)

    Google Scholar

    WEI Z L, LI H, RUI Y K, 2008. Determination of major elements in soil from cancer village by X-ray fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 28(11): 2706-2707. (in Chinese with English abstract)

    Google Scholar

    WHITE W M, 2013. Geochemistry[M]. Chichester: Wiley-Blackwell: 269-271.

    Google Scholar

    XIANG Y, 2015. Studies on Cu and Pb content of paddy soil in Chengdu plain based on the hyper-spectrum estimation model[D]. Ya'an: Sichuan Agricultural University. (in Chinese with English abstract)

    Google Scholar

    XIONG S Q, 2020. Innovation and application of airborne geophysical exploration technology[J]. Journal of Geomechanics, 26(5): 791-818. (in Chinese with English abstract)

    Google Scholar

    YU R, WANG Y, WANG C X, et al., 2017. Survey of heavy metal pollution and source identification of black soil in Zea mays L. cultivated region of Yushu city, China[J]. Ecology and Environmental Sciences, 26(10): 1788-1794. (in Chinese with English abstract)

    Google Scholar

    ZHANG D H, ZHAO Y J, QIN K, et al., 2018. Influence of spectral transformation methods on nutrient content inversion accuracy by hyperspectral remote sensing in black soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 34(20): 141-147. (in Chinese with English abstract)

    Google Scholar

    ZHANG H, MA X P, SUI H J, et al., 2018. Background value and accumulation of heavy metals in soil of Northern Songnen Plain[J]. Chinese Journal of Soil Science, 49(1): 176-183. (in Chinese with English abstract)

    Google Scholar

    ZHANG M Y, ZHANG Q L, WANG L, et al., 2019. Research on chromium retrieval of black soil with hyperspectral imagery in Northeast of China[J]. Remote Sensing Technology and Application, 34(2): 313-322. (in Chinese with English abstract)

    Google Scholar

    ZHAO N B, ZHAO Y J, QIN K, et al., 2018. Retrieval of selenium content in black soil based on airborne hyperspectral data[J]. Spectroscopy and Spectral Analysis, 38(S1): 329-330.

    Google Scholar

    ZHAO X F, YANG L R, SHI Q, et al., 2008. Nitrate pollution in groundwater for drinking and its affecting factors in Hailun, northeast China[J]. Environmental Science, 29(11): 2993-2998. (in Chinese with English abstract)

    Google Scholar

    ZHAO Y M, 2008, China environmental protection standards Book 2007-2008 Volume Ⅱ[M]. China Environmental Science Press, 1612. (in Chinese)

    Google Scholar

    ZHUO L, 2010. The research of estimating heavy metal spatial distribution of soil using hyperspectral data[D]. Wuhan: Wuhan University. (in Chinese with English abstract)

    Google Scholar

    ZUO L, 2020. Research on hyperspectral remote sensing monitoring method of heavy metals in black soil region[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)

    Google Scholar

    白德奎, 朱霞萍, 王艳艳, 等, 2010. 氧化锰、氧化铁、氧化铝对砷(Ⅲ)的吸附行为研究[J]. 岩矿测试, 29(1): 55-60. doi: 10.3969/j.issn.0254-5357.2010.01.013

    CrossRef Google Scholar

    陈积权, 高远, 秦健铭, 等, 2017. 松辽盆地东缘嫩江组一二段黏土矿物和主量元素地球化学特征及其古气候意义[J]. 中国煤炭地质, 29(8): 17-24. doi: 10.3969/j.issn.1674-1803.2017.08.04

    CrossRef Google Scholar

    陈开惠, 张乃娴, 张铨昌, 等, 1991. 江西铅山县含钾粘土矿物学研究[J]. 建材地质, (4): 9-13, 50.

    Google Scholar

    龚绍琦, 王鑫, 沈润平, 等, 2010. 滨海盐土重金属含量高光谱遥感研究[J]. 遥感技术与应用, 25(2): 169-177.

    Google Scholar

    郭颖, 毕如田, 郑超, 等, 2018. 土壤重金属高光谱反演研究综述[J]. 环境科技, 31(1): 67-72. doi: 10.3969/j.issn.1674-4829.2018.01.015

    CrossRef Google Scholar

    海伦县土壤普查办公室, 1985. 海伦土壤志[M]. 黑龙江: 海伦县土壤办公室.

    Google Scholar

    贺军亮, 张淑媛, 查勇, 等, 2015. 高光谱遥感反演土壤重金属含量研究进展[J]. 遥感技术与应用, 30(3): 407-412.

    Google Scholar

    黄斌, 2016. 重金属在稻田土壤中的吸附、富集、迁移特征及稳定化研究[D]. 长沙: 湖南大学.

    Google Scholar

    兰泽英, 刘洋, 2015. 乐安河流域土壤重金属含量高光谱间接反演模型及其空间分布特征研究[J]. 地理与地理信息科学, 31(3): 26-31. doi: 10.3969/j.issn.1672-0504.2015.03.006

    CrossRef Google Scholar

    刘伟, 赵众, 袁洪福, 等, 2014. 光谱多元分析校正集和验证集样本分布优选方法研究[J]. 光谱学与光谱分析, (4): 947-951. doi: 10.3964/j.issn.1000-0593(2014)04-0947-05

    CrossRef Google Scholar

    马伟波, 谭琨, 李海东, 等, 2016. 基于超限学习机的矿区土壤重金属高光谱反演[J]. 生态与农村环境学报, 32(2): 213-218.

    Google Scholar

    倪善芹, 琚宜文, 侯泉林, 等, 2009. 铁氧化物在重金属元素迁移风化过程中的作用对比及碳酸盐岩中重金属元素的富集[J]. 自然科学进展, 19(1): 61-68. doi: 10.3321/j.issn:1002-008X.2009.01.008

    CrossRef Google Scholar

    潘岑岑, 2017. 基于随机森林的土壤重金属高光谱遥感反演研究[D]. 徐州: 中国矿业大学.

    Google Scholar

    乔东海, 赵元艺, 汪傲, 等, 2017. 西藏多龙矿集区地堡铜(金)矿床年代学、流体包裹体、地球化学特征及其成因类型研究[J]. 地质学报, 91(7): 1542-1564. doi: 10.3969/j.issn.0001-5717.2017.07.009

    CrossRef Google Scholar

    秦元礼, 张富贵, 彭敏, 等, 2020. 云南省武定县土壤重金属地球化学分布特征及其来源浅析[J]. 地质与勘探, 56(3): 540-550.

    Google Scholar

    沈强, 张世文, 葛畅, 等, 2019. 矿业废弃地重构土壤重金属含量高光谱反演[J]. 光谱学与光谱分析, 39(4): 1214-1221.

    Google Scholar

    宋恒飞, 吴克宁, 李婷, 等, 2018. 寒地黑土典型县域土壤重金属空间分布及影响因素分析: 以海伦市为例[J]. 土壤通报, 49(6): 1480-1486.

    Google Scholar

    田辉, 2020. 基于SWAT与Visual Modflow的海伦市水资源模拟与合理配置研究[D]. 长春: 吉林大学.

    Google Scholar

    汪大明, 秦凯, 李志忠, 等, 2018. 基于航空高光谱遥感数据的黑土地有机质含量反演: 以黑龙江省建三江地区为例[J]. 地球科学, 43(6): 2184-2194.

    Google Scholar

    王智伟, 王利, 黄观文, 等, 2020. 基于BP神经网络的滑坡监测多源异构数据融合算法研究[J]. 地质力学学报, 26(4): 575-582.

    Google Scholar

    魏振林, 李禾, 芮玉奎, 2008. X射线荧光光谱法分析癌症村土壤主量元素[J]. 光谱学与光谱分析, 28(11): 2706-2707. doi: 10.3964/j.issn.1000-0593(2008)11-2706-02

    CrossRef Google Scholar

    向颖, 2015. 成都平原水稻土重金属铜和铅含量的高光谱反演研究[D]. 雅安: 四川农业大学.

    Google Scholar

    熊盛青, 2020. 航空地球物理勘查科技创新与应用[J]. 地质力学学报, 26(5): 791-818.

    Google Scholar

    于锐, 王洋, 王晨旭, 等, 2017. 榆树市玉米种植区黑土重金属污染状况及来源浅析[J]. 生态环境学报, 26(10): 1788-1794.

    Google Scholar

    张东辉, 赵英俊, 秦凯, 等, 2018. 光谱变换方法对黑土养分含量高光谱遥感反演精度的影响[J]. 农业工程学报, 34(20): 141-147. doi: 10.11975/j.issn.1002-6819.2018.20.018

    CrossRef Google Scholar

    张慧, 马鑫鹏, 隋虹均, 等, 2018. 松嫩平原北部土壤重金属背景值及累积特征研究[J]. 土壤通报, 49(1): 176-183.

    Google Scholar

    张明月, 张奇栎, 王璐, 等, 2019. 东北黑土区土壤铬含量高光谱反演研究[J]. 遥感技术与应用, 34(2): 313-322.

    Google Scholar

    赵宁博, 赵英俊, 秦凯, 等, 2018. 基于航空高光谱的黑土地硒含量反演研究[J]. 光谱学与光谱分析, 38(S1): 329-330.

    Google Scholar

    赵新峰, 杨丽蓉, 施茜, 等, 2008. 东北海伦地区农村地下饮用水硝态氮污染特征及其影响因素分析[J]. 环境科学, 29(11): 2993-2998. doi: 10.3321/j.issn:0250-3301.2008.11.001

    CrossRef Google Scholar

    赵英民, 2008. 中国环境保护标准全书: 2007-2008年[M]. 北京: 中国环境科学出版社, 1612.

    Google Scholar

    卓荦, 2010. 基于高光谱遥感的土壤重金属空间分布研究[D]. 武汉: 武汉大学.

    Google Scholar

    左玲, 2020. 黑土区土壤重金属高光谱遥感监测方法探究[D]. 北京: 中国地质大学(北京).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(6)

Article Metrics

Article views(1540) PDF downloads(13) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint