2021 Vol. 27, No. 3
Article Contents

DENG Jun, ZHAN Mingguo, ZHOU Weijin, WU Songle, HUANG Ning, ZHANG Runqiu, XIE Shuyun. 2021. Quantitative prediction of mineral resources in typical gold deposits in Guangxi, China using a fuzzy weights of evidence method. Journal of Geomechanics, 27(3): 374-390. doi: 10.12090/j.issn.1006-6616.2021.27.03.034
Citation: DENG Jun, ZHAN Mingguo, ZHOU Weijin, WU Songle, HUANG Ning, ZHANG Runqiu, XIE Shuyun. 2021. Quantitative prediction of mineral resources in typical gold deposits in Guangxi, China using a fuzzy weights of evidence method. Journal of Geomechanics, 27(3): 374-390. doi: 10.12090/j.issn.1006-6616.2021.27.03.034

Quantitative prediction of mineral resources in typical gold deposits in Guangxi, China using a fuzzy weights of evidence method

    Fund Project: This research is financially supported by Talent Highland Project of Key Mineral Resources Deep Exploration in Guangxi (Notification of Organization Department in Guangxi, No.[2019]85, 2019-2023), Provincial Entrusted Project under China Geological Survey (Grant No.DD20190379-19), and Preliminary Work Project of Bureau of Geological and Mineral Exploration and Development in Guangxi Institute of Geological Survey (Comprehensive study of geology and mineral resources in Guangxi, No.[2019]06)
More Information
  • Quantitative prediction of mineral resources based on multi-information fusion is the leading topic of resource potential prediction, in which the deep mining of different geological background information and geochemical data is the key problem and still challenging. In this study, we analyzed the spatial distribution characteristics of main metallogenic and associated elements such as Au, Ag, Mn, Cu, Pb, Zn, Sn and Sb in 60767 geochemical samples on the platforms like ArcGIS and GeoDAS, by summerzing the geological background information and metallogenic controlling factors of each tectonic unit in Guangxi. Based on the GeoDAS paltform, through IDW interpolation, S-A anomaly decomposition, principal component analysis and other technologies, the data from the layers with geochemical component element anomaly, gravity and aeromagnetic anomaly and the buffers at the intersection of magmatic rock and fault were used as the training points for the utilization of the fuzzy weights of evidence. A posteriori probability map was drawn up to delineate the favorable metallogenic areas for Carlin-type gold deposit and fracture zone altered gold deposit. This study is of great significance to the application of new metallogenic theories and evaluation techniques in the evaluation or zoning of mineral resources potential.

  • 加载中
  • AGTERBERG F P, 1989. Computer programs for mineral exploration[J]. Science, 245(4913): 76-81. doi: 10.1126/science.245.4913.76

    CrossRef Google Scholar

    AGTERBERG F P, CHENG Q M, 2002. Conditional independence test for weights-of-evidence modeling[J]. Natural Resources Research, 11(4): 249-255. doi: 10.1023/A:1021193827501

    CrossRef Google Scholar

    AGTERBERG F P, 2011. Modified weights-of-evidence method for regional mineral Resource estimation[J]. Natural Resources Research, 20(2): 95-101. doi: 10.1007/s11053-011-9138-0

    CrossRef Google Scholar

    BONHAM CARTER G, 1994. Geographic information systems for geoscientists: modelling with GIS[M]. New York: Pergamon Press: 398.

    Google Scholar

    BONHAM CARTER G, CHENG Q M, 2001. Spatially weighted principal component analysis[J]. Presented at IAMG 2001 Meeting. Cancún Mexico September 6-12.

    Google Scholar

    CARRANZA E J M, 2008. Handbook of exploration and environmental geochemistry[M]. Amsterdam: Elsevier: 1-368.

    Google Scholar

    CHEN M, 2016. Analysis of the Guangxi gold deposit ore-controlling tectonic characteristics and prospecting prospect[J]. World Nonferrous Metals(12): 119-120. (in Chinese with English abstract)

    Google Scholar

    CHEN Y Q, XIA Q L, HUANG J N, et al., 2007. Application of the weights-of-evidence method in mineral resource assessments in the southern segment of the "Sanjiang metallogenic zone" southwestern China[J]. Geology in China, 34(1): 132-141. (in Chinese with English abstract)

    Google Scholar

    CHENG Q M, 1999. Multifractality and spatial statistics[J]. Computers and Geosciences, 25: 949-961. doi: 10.1016/S0098-3004(99)00060-6

    CrossRef Google Scholar

    CHENG Q M, AGTERBERG F P, BALLANTYNE S B, 1994. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 51(2): 109-130. doi: 10.1016/0375-6742(94)90013-2

    CrossRef Google Scholar

    CHENG Q M, ZHANG S Y, 2002. Fuzzy weights of evidence method implemented in GeoDAS GIS for information extraction and integration for prediction of point events. In: Proceedings of IEEE international conference of geosciences and remote sensing (IGARSS02), Toronto, Canada, Jun 3, 24-28.

    Google Scholar

    CHENG Q M, AGTERBERG F P, 1999. Fuzzy weights of evidence method and its application in mineral potential mapping[J]. Natural Resources Research, 8(1): 27-35. doi: 10.1023/A:1021677510649

    CrossRef Google Scholar

    CHENG Q M, CHEN Z J, KHALED A, et al., 2007. Application of fuzzy weights of evidence method in mineral resource assessment for gold in Zhenyuan District, Yunnan Province, China[J]. Earth Science-Journal of China University of Geosciences, 32(2): 175-184. (in Chinese with English abstract)

    Google Scholar

    CHENG Q M, 2012. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas[J]. Journal of Geochemical Exploration, 122: 55-70. doi: 10.1016/j.gexplo.2012.07.007

    CrossRef Google Scholar

    DAYA A A, 2015. Comparative study of C-A, C-P, and N-S fractal methods for separating geochemical anomalies from background: A case study of Kamoshgaran region, northwest of Iran[J]. Journal of Geochemical Exploration, 150: 52-63. doi: 10.1016/j.gexplo.2014.12.015

    CrossRef Google Scholar

    DENG M F, 2010. Binary pattern recognition in the presence of correlated multiple dependent variables[J]. Natural Resources Research, 19(4): 269-278. doi: 10.1007/s11053-010-9128-7

    CrossRef Google Scholar

    GONG H S, HAN R S, LI Z T, et al, 2020. Element association anomaly of tectonites and prediction of concealed deposit in the Xiaozhuqing exploration area on the periphery of Huize lead-zinc mine area, northeastern Yunnan Province[J]. Journal of Geomechanics, 26(3): 419-431, doi:10.12090/j.issn.1006-6616.2020.26.03.036.

    CrossRef Google Scholar

    HE Q L, ZHANG H C, SONG P, et al., 2013. Geological Characteristics and Prospecting Criteria of Paoli Carlin-Type Gold Deposits in Guangxi Province[J]. Gold Science and Technology, 21(6): 48-52. (in Chinese with English abstract)

    Google Scholar

    HONG H Y, TSANGARATOS P, ILIA I, et al., 2018. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China[J]. Science of the Total Environment, 625: 575-588. doi: 10.1016/j.scitotenv.2017.12.256

    CrossRef Google Scholar

    LI B B, LIU B L, GUO K, et al., 2019. Application of a maximum entropy model for mineral prospectivity maps[J]. Minerals, 9(9): 556. doi: 10.3390/min9090556

    CrossRef Google Scholar

    LI C M, 2010. Distribution regularity and metallogenic characteristics of gold deposits in Guangxi[J]. Mineral Deposits, 29(S1): 951-952. (in Chinese)

    Google Scholar

    LIN J H, LUO Y Y, SHU G., et al., 2015. Regionalore-forming regularity and division of minerogeneticseriesin Guangxi[J]. Mineral Deposits, 34(6): 1270-1294. (in Chinese with English abstract)

    Google Scholar

    LIU S F, 2017. Fractal analysis on geochemical distribution and anomaly separation in the Guangxi Zhuang Autonomous Region[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)

    Google Scholar

    LIU Y P, ZHU L X, ZHOU Y Z, et al., 2020. Experimental research on big data mining and intelligent prediction of prospecting target area: application of convolutional neural network model[J]. Geotectonica et Metallogenia, 44(2): 192-202, doi:10.16539/j.ddgzyckx.2020.02.003. (in Chinese with abstract).

    CrossRef Google Scholar

    SHI J, ZHU W W, WANG X, et al., 2017. Bibliometrics analysis on the trend of international earth sciences in recent 5 Years[J]. Acta Geologica Sinica, 91(12): 2881-2888. (in Chinese with English abstract)

    Google Scholar

    SUN T, LI H L, WU K X, et al., 2020. Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: a case study from southern Jiangxi province, China[J]. Minerals, 10(2): 102. doi: 10.3390/min10020102

    CrossRef Google Scholar

    WANG Z W, WANG L, HUANG G W, et al, 2020. Research on multi-source heterogeneous data fusion algorithm of landslide monitoring based on BP neural network[J]. Journal of Geomechanics, 26(4): 575-582, doi:10.12090/j.issn.1006-6616.2020.26.04.050. (in Chinese with English abstract)

    CrossRef Google Scholar

    WILLIAMS N D, ELLIOTT B A, KYLE J R, 2020. A predictive geospatial exploration model for mississippi valley type Pb-Zn mineralization in the southeast missouri lead district[J]. Natural Resources Research, 29(1): 285-310. doi: 10.1007/s11053-020-09618-2

    CrossRef Google Scholar

    WU R H, PANG B C, TAN J, et al., 2012. Preliminary analysis of distribution regularity and prospecting direction of gold deposits in Guangxi[J]. Mineral Resources and Geology, 26(4): 291-298. (in Chinese with English abstract)

    Google Scholar

    XIAO K Y, DING J H, LOU D B, 2009a. Quantitative assessment of porphyry copper in eastren Tianshan[J]. Geology and Exploration, 45(6): 637-644. (in Chinese with English abstract)

    Google Scholar

    XIAO K Y, DING J H, LOU D B, 2009b. A tentative discussion on theory of minerogenetic series and mineral resource assessment[J]. Mineral Deposits, 28(3): 357-365. (in Chinese with English abstract)

    Google Scholar

    YANG B, PENG S L, LI S R, et al., 2007. Metallogenic Series and Metallogenic Belt of Nonferrous Metals in Guangxi[J]. Mineral Resources and Geology, 21(1): 8-11. (in Chinese with English abstract)

    Google Scholar

    ZHAI Y S, DENG J, WANG J P, et al., 2004. Researches on deep ore prospecting[J]. Mineral Deposits, 23(2): 142-149. (in Chinese with English abstract)

    Google Scholar

    ZHANG S Y, CHENG Q M, ZHANG S P, et al., 2012. Improvement of weighted weights of evidence and its applications in Sn-Cu mineral potential mapping in Gejiu, Yunnan province, China[J]. Earth Science-Journal of China University of Geosciences, 37(6): 1175-1182. (in Chinese with English abstract)

    Google Scholar

    ZHAO P D, 2007. Quantitative mineral prediction and deep mineral exploration[J]. Earth Science Frontiers, 14(5): 1-10. (in Chinese with English abstract)

    Google Scholar

    ZHOU Y Z, WANG J, ZUO R G, et al., 2018. Machine learning, deep learning and Python language in field of geology[J]. Acta Petrologica Sinica, 34(11): 3173-3178. (in Chinese with English abstract)

    Google Scholar

    ZHOU Y Z, CHEN C, ZHANG Q, et al., 2020. Introduction of tools for geological big data mining and their applications[J]. Geotectonica et Metallogenia, 44(2): 173-182. (in Chinese with English abstract)

    Google Scholar

    ZHOU Z C, WU Z, 2016. Distribution law and prospecting direction of gold deposit in Guangxi[J]. World Nonferrous Metals(18): 84-85. (in Chinese with English abstract)

    Google Scholar

    ZHU G Q, LI H L, WEN R X, et al., 2010. The report of Guangxi concealed rockmass and deep ore prospecting[R]. Guangxi Geophysical Investigation Institute. (in Chinese)

    Google Scholar

    ZUO R G, WANG J, XIONG Y H, et al., 2021. Progresses of researches on geochemical exploration data processing during 2011-2020[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 40(1): 81-92. (in Chinese with English abstract)

    Google Scholar

    陈敏, 2016. 分析广西金矿床控矿构造特征及找矿前景[J]. 世界有色金属(12): 119-120.

    Google Scholar

    陈永清, 夏庆霖, 黄静宁, 等, 2007. "证据权"法在西南"三江"南段矿产资源评价中的应用[J]. 中国地质, 34(1): 132-141. doi: 10.3969/j.issn.1000-3657.2007.01.019

    CrossRef Google Scholar

    成秋明, 陈志军, KHALED A, 等, 2007. 模糊证据权方法在镇沅(老王寨)地区金矿资源评价中的应用[J]. 地球科学-中国地质大学学报, 32(2): 175-184. doi: 10.3321/j.issn:1000-2383.2007.02.004

    CrossRef Google Scholar

    贺秋利, 张红晨, 宋鹏等, 2013. 广西袍里卡林型金矿床地质特征及找矿标志[J]. 黄金科学技术, 21(6): 48-52. doi: 10.3969/j.issn.1005-2518.2013.06.014

    CrossRef Google Scholar

    龚红胜, 韩润生, 李孜腾, 等, 2020. 滇东北会泽铅锌矿区外围小竹箐勘查区构造岩元素组合异常及隐伏矿预测[J]. 地质力学学报, 26(3): 419-431, doi:10.12090/j.issn.1006-6616.2020.26.03.036.

    CrossRef Google Scholar

    李昌明, 2010. 广西金矿床分布规律及成矿特点[J]. 矿床地质, 29(S1): 951-952.

    Google Scholar

    林建辉, 罗允义, 树皋, 等, 2015. 广西区域成矿规律综述及成矿系列划分[J]. 矿床地质, 34(6): 1270-1294.

    Google Scholar

    刘舒飞, 2017. 广西地球化学区带规律与异常分布分形解析[D]. 北京: 中国地质大学(北京).

    Google Scholar

    刘艳鹏, 朱立新, 周永章, 等, 2020. 大数据挖掘与智能预测找矿靶区实验研究: 卷积神经网络模型的应用[J]. 大地构造与成矿学, 44(2): 192-202, doi:10.16539/j.ddgzyckx.2020.02.003.

    CrossRef Google Scholar

    王智伟, 王利, 黄观文, 等, 2020. 基于BP神经网络的滑坡监测多源异构数据融合算法研究[J]. 地质力学学报, 26(4): 575-582, doi:10.12090/j.issn.1006-6616.2020.26.04.050.

    CrossRef Google Scholar

    吴荣华, 庞保成, 谭杰, 等, 2012. 广西金矿床的分布规律及找矿方向浅析[J]. 矿产与地质, 26(4): 291-298. doi: 10.3969/j.issn.1001-5663.2012.04.005

    CrossRef Google Scholar

    肖克炎, 丁建华, 娄德波, 2009a. 东天山斑岩铜矿资源潜力评价[J]. 地质与勘探, 45(6): 637-644.

    Google Scholar

    肖克炎, 丁建华, 娄德波, 2009b. 试论成矿系列与矿产资源评价[J]. 矿床地质, 28(3): 357-365.

    Google Scholar

    杨斌, 彭省临, 李水如, 等, 2007. 广西有色金属成矿系列与成矿区带[J]. 矿产与地质, 21(1): 8-11. doi: 10.3969/j.issn.1001-5663.2007.01.002

    CrossRef Google Scholar

    翟裕生, 邓军, 王建平, 等, 2004. 深部找矿研究问题[J]. 矿床地质, 23(2): 142-149. doi: 10.3969/j.issn.0258-7106.2004.02.003

    CrossRef Google Scholar

    张生元, 成秋明, 张素萍, 等, 2012. 改进的加权证据权模型及其在个旧锡铜矿产资源预测中的应用[J]. 地球科学-中国地质大学学报, 37(6): 1175-1182.

    Google Scholar

    赵鹏大, 2007. 成矿定量预测与深部找矿[J]. 地学前缘, 14(5): 1-10. doi: 10.3321/j.issn:1005-2321.2007.05.001

    CrossRef Google Scholar

    周永章, 王俊, 左仁广, 等, 2018. 地质领域机器学习、深度学习及实现语言[J]. 岩石学报, 34(11): 3173-3178.

    Google Scholar

    周永章, 陈川, 张旗, 等, 2020. 地质大数据分析的若干工具与应用[J]. 大地构造与成矿学, 44(2): 173-182.

    Google Scholar

    周泽昌, 吴钊, 2016. 广西金矿床的分布规律以及找矿方向[J]. 世界有色金属(18): 84-85.

    Google Scholar

    朱国器, 黎海龙, 温融湘, 等, 2010. 广西隐伏岩体与深部找矿研究报告[R]. 广西地球物理勘察院内部科研报告.

    Google Scholar

    左仁广, 王健, 熊义辉, 等, 2021. 2011-2020年勘查地球化学数据处理研究进展[J]. 矿物岩石地球化学通报, 40(1): 81-92.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Article Metrics

Article views(2331) PDF downloads(58) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint