2021 Vol. 27, No. 2
Article Contents

ZHANG Yipeng, ZHENG Wenjun, YUAN Daoyang, WANG Weitao, ZHANG Peizhen. 2021. Geometrical imagery and kinematic dissipation of the late Cenozoic active faults in the West Qinling Belt: Implications for the growth of the Tibetan Plateau. Journal of Geomechanics, 27(2): 159-177. doi: 10.12090/j.issn.1006-6616.2021.27.02.017
Citation: ZHANG Yipeng, ZHENG Wenjun, YUAN Daoyang, WANG Weitao, ZHANG Peizhen. 2021. Geometrical imagery and kinematic dissipation of the late Cenozoic active faults in the West Qinling Belt: Implications for the growth of the Tibetan Plateau. Journal of Geomechanics, 27(2): 159-177. doi: 10.12090/j.issn.1006-6616.2021.27.02.017

Geometrical imagery and kinematic dissipation of the late Cenozoic active faults in the West Qinling Belt: Implications for the growth of the Tibetan Plateau

    Fund Project: This research is financially supported by the National Key Research and Development Program of China (Grant No.2017YFC1500101), and the Second Tibetan Plateau Scientific Expedition and Research Program (Grant No.SQ2019QZKK2801)
  • The West Qinling Belt (WQB) situated in the central China continent, is an enormous structure on the crustal scale, which is not controlled only by the Tethyan tectonic domain but is more complex, involving additional tectonic domains. The composite WQB as the coordinate system, which underwent five major episodes of accretion and collision between discrete continental blocks, has distinct geological and geophysical structure, geomorphology and environment, characterized by complex structures, complex forming processes and mixed materials. Moderate-strong earthquakes occurred frequently in the WQB in recent years, attesting its tectonic activity. Numerous results from the studies related to active fault geological and geodesic observations gave us new insights into present-day crustal deformation characteristics and its dynamic mechanism and helped us in exploring the control effect of active tectonic system on significant earthquake events in the WQB. Two groups of faults striking in different direction (NWW-trending and NEE-trending) within the WQB have played significant roles in the tectonic deformation and the transference slip along the east end of the east Kunlun fault since the Quaternary. Recent results suggest that the < 2 mm/a slip rate at the tip of the east Kunlun fault is absorbed by low slip rate faults, crustal shortening, basin formation, mountain uplift and block rotation in the WQB. Whereas deformation in the shallow brittle crust does not occur on a major fault, deformation of a continuous medium at depth best describes the present-day tectonics of the WQB. Regionally, mantle magmatism, geophysical and geological data show that the actively deforming WQB crust is dominated by main mountain building contraction shortening strain in the upper crust, decoupled plastic deformation in the lower crust and extrusion of the mantle lithosphere below to the high-strain domains in the crust above, and such a transition zone (high and low velocity/resistivity anomalies) is relatively easy to accumulate stress, leading to occurrence of major earthquake in this area.

  • 加载中
  • BAO X W, SONG X D, LI J T, 2015. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography[J]. Earth and Planetary Science Letters, 417: 132-141. doi: 10.1016/j.epsl.2015.02.024

    CrossRef Google Scholar

    CHEN P, SHI W, YANG J X, et al., 2016. Late cenozoic tectonic evolution of Tianshui Basin: implications for the northeast growth of Tibetan Plateau[J]. Geotectonica et Metallogenia, 40(2): 308-322. (in Chinese with English abstract)

    Google Scholar

    CHEN P, LIN A M, 2019. Tectonic topography and Late Pleistocene activity of the West Qinling Fault, northeastern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 176: 68-78. doi: 10.1016/j.jseaes.2019.02.007

    CrossRef Google Scholar

    CLARK M K, ROYDEN L H, 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28(8): 703-706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2

    CrossRef Google Scholar

    CLARK M K, HOUSE M A, ROYDEN L H, et al., 2005. Late Cenozoic uplift of southeastern Tibet[J]. Geology, 33(6): 525-528. doi: 10.1130/G21265.1

    CrossRef Google Scholar

    CLARK M K, FARLEY K A, ZHENG D W, et al., 2010. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages[J]. Earth and Planetary Science Letters, 296(1-2): 78-88. doi: 10.1016/j.epsl.2010.04.051

    CrossRef Google Scholar

    DONG Y P, ZHANG G W, SUN S S, et al., 2019. The "cross-tectonics" in china continent: formation, evolution, and its significance for continental dynamics[J]. Journal of Geomechanics, 25(5): 769-797. (in Chinese with English abstract)

    Google Scholar

    DUPONT-NIVET G, HORTON B K, BUTLER R F, et al., 2004. Paleogene clockwise tectonic rotation of the Xining-Lanzhou region, northeastern Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 109(B4): B04401.

    Google Scholar

    DUVALL A R, CLARK M K, 2010. Dissipation of fast strike-slip faulting within and beyond northeastern Tibet[J]. Geology, 38(3): 223-226. doi: 10.1130/G30711.1

    CrossRef Google Scholar

    ENGLAND P, MOLNAR P, 1990. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet[J]. Nature, 344(6262): 140-142. doi: 10.1038/344140a0

    CrossRef Google Scholar

    ENGLAND P, MOLNAR P, 1997. Active deformation of Asia: from kinematics to dynamics[J]. Science, 278(5338): 647-650. doi: 10.1126/science.278.5338.647

    CrossRef Google Scholar

    FANG X M, GARZIONE C, VAN DER VOO R, et al., 2003. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China[J]. Earth and Planetary Science Letters, 210(3-4): 545-560. doi: 10.1016/S0012-821X(03)00142-0

    CrossRef Google Scholar

    GAN W J, ZHANG P Z, SHEN Z K, et al., 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 112(B8): B08416.

    Google Scholar

    GAO R, WANG H Y, ZENG L S, et al., 2014. The crust structures and the connection of the Songpan block and West Qinlingorogen revealed by the Hezuo-Tangke deep seismic reflection profiling[J]. Tectonophysics, 634: 227-236. doi: 10.1016/j.tecto.2014.08.014

    CrossRef Google Scholar

    GE W P, MOLNAR P, SHEN Z K, et al., 2015. Present-day crustal thinning in the southern and northern Tibetan Plateau revealed by GPS measurements[J]. Geophysical Research Letters, 42(13): 5227-5235. doi: 10.1002/2015GL064347

    CrossRef Google Scholar

    GUO J J, HAN W F, ZHAO H T, et al., 2015. Late Cretaceous proto-type basin in the western Qinling: Background of Cenozoic uplifting of Tibet Plateau[J]. Chinese Journal of Geology, 50(2): 364-376. (in Chinese with English abstract)

    Google Scholar

    HAN Z J, XIANG H F, RAN Y K, 2001. Activity analysis of Lixian-Luojiapu Fault zone in the East boundary of Tibetan Plateau since the late-Pleistocene[J]. Seismology and Geology, 23(1): 43-48. (in Chinese with English abstract)

    Google Scholar

    HAO M, WANG Q L, SHEN Z K, et al., 2014. Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau[J]. Tectonophysics, 632: 281-292. doi: 10.1016/j.tecto.2014.06.016

    CrossRef Google Scholar

    HAO M, WANG Q L, ZHANG P Z, et al., 2021. "Frame wobbling" causing crustal deformation around the Ordos block[J]. Geophysical Research Letters, 48(1): e2020GL091008.

    Google Scholar

    HORTON B K, DUPONT-NIVET G, ZHOU J, et al., 2004. Mesozoic-Cenozoic evolution of the Xining-Minhe and Dangchang basins, northeastern Tibetan Plateau: Magnetostratigraphic and biostratigraphic results[J]. Journal of Geophysical Research: Solid Earth, 109(B4): B04402.

    Google Scholar

    HOU K M, LEI Z S, WAN F L, et al., 2005. Research on the 1879 Southern Wudu M8.0 earthquake and its coseismic ruptures[J]. Earthquake Research in China, 20(3): 295-310. (in Chinese with English abstract)

    Google Scholar

    KIRBY E, HARKINS N, WANG E Q, et al., 2007. Slip rate gradients along the eastern Kunlun fault[J]. Tectonics, 26(2): TC2010.

    Google Scholar

    LAI S C, QIN J F, KHAN J, 2014. The carbonated source region of Cenozoic mafic and ultra-mafic lavas from western Qinling: Implications for eastern mantle extrusion in the northeastern margin of the Tibetan Plateau[J]. Gondwana Research, 25(4): 1501-1516. doi: 10.1016/j.gr.2013.05.019

    CrossRef Google Scholar

    LEASE R O, BURBANK D W, CLARK M K, et al., 2011. Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau[J]. Geology, 39(4): 359-362. doi: 10.1130/G31356.1

    CrossRef Google Scholar

    LI C X, XU X W, WEN X Z, et al., 2011. Rupture segmentation and slip partitioning of the mid-eastern part of the Kunlun Fault, north Tibetan Plateau[J]. Science China Earth Sciences, 54(11): 1730-1745. doi: 10.1007/s11430-011-4239-5

    CrossRef Google Scholar

    LI C Y, 2005. Quantitative Quantitative studies on major active fault zonesin Northeastern Qinghai-tibet Plateau[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract)

    Google Scholar

    LI H L, ZHANG Y Q, DONG S W, et al., 2020. Neotectonics of the Bailongjiang and Hanan faults: New insights into late Cenozoic deformation along the eastern margin of the Tibetan Plateau[J]. GSA Bulletin, 132(9-10): 1845-1862. doi: 10.1130/B35374.1

    CrossRef Google Scholar

    LI M J, SHEN X Z, ZHANG Y S, et al., 2018. Fine crustal structures of northeast margin of the Tibetan Plateau and structural features of Jiuzhaigou earthquake focal area constrained by the data from a high-density seismic array[J]. Chinese Journal of Geophysics, 61(5): 2075-2087. (in Chinese with English abstract)

    Google Scholar

    LI X N, ZHANG P Z, ZHENG W J, et al., 2018. Kinematics of late quaternary slip along the Qishan-Mazhao fault: implications for tectonic deformation on the southwestern Ordos, China[J]. Tectonics, 37(9): 2983-3000. doi: 10.1029/2018TC005043

    CrossRef Google Scholar

    LIU C, SUN B, WEI L Y, et al., 2020. Application of the integrated electrical method to exploration in the Zhaishang gold deposit, West Qinling[J]. Geology and Exploration, 56(6): 1226-1237. (in Chinese with English abstract)

    Google Scholar

    LIU D, ZHAO Z D, NIU Y L, et al., 2018. Perovskite U-Pb and Sr-Nd isotopic perspectives on melilitite magmatism and outward growth of the Tibetan Plateau[J]. Geology, 46(12): 1027-1030.

    Google Scholar

    LIU J H, ZHANG P Z, LEASE R O, et al., 2013. Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe graben: Insights from apatite fission track thermochronology[J]. Tectonophysics, 584: 281-296. doi: 10.1016/j.tecto.2012.01.025

    CrossRef Google Scholar

    LIU X W, YUAN D Y, SHAO Y X, et al., 2015. Characteristics of late quaternary tectonic activity in the middle-eastern segment of the Southern Branch of Diebu-bailongjiang Fault, Gansu[J]. Journal of Earth Sciences and Environment, 37(6): 111-119. (in Chinese with English abstract)

    Google Scholar

    MA S X, ZHANG Y Q, LI H L, et al., 2013. The tectonic extrusion of NE Tibet in late Neogene time: Evidence from Anhua-Chengxian Basin in West Qinling[J]. Earth Science Frontiers, 20(4): 58-74. (in Chinese with English abstract)

    Google Scholar

    PEI X Z, 2001. Geological evolution and dynamics of the Mianlue-A'nyemaqen tectonic zone, central China[D]. Xi'an: Northwest University. (in Chinese with English abstract)

    Google Scholar

    PEI X Z, DING S P, LI Z C, et al., 2007. LA-ICP-MS zircon U-Pb Dating of the gabbro from the Guanzizhen Ophiolite in the northern margin of the western Qinling and its geological significance[J]. Acta Geologica Sinic, 81(11): 1550-1561. (in Chinese with English abstract)

    Google Scholar

    SHEN X Z, ZHOU Y Z, ZHANG Y S, et al., 2014. Receiver function structures beneath the deep large faults in the northeastern margin of the Tibetan Plateau[J]. Tectonophysics, 610: 63-73. doi: 10.1016/j.tecto.2013.10.011

    CrossRef Google Scholar

    SHI X H, YANG Z, DONG Y P, et al., 2018. Transient geomorphic characteristics of the upper Jialing River Basin, West Qinling, northeastern Tibetan Plateau[J]. Chinese Journal of Geology, 53(3): 819-834. (in Chinese with English abstract)

    Google Scholar

    LEÓN SOTO G L, SANDVOL E, NI J F, et al., 2012. Significant and vertically coherent seismic anisotropy beneath eastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 117(B5): B05308.

    Google Scholar

    TIAN Y T, KOHN B P, ZHU C Q, et al., 2012. Post-orogenic evolution of the Mesozoic Micang Shan Foreland Basin system, central China[J]. Basin Research, 24(1): 70-90. doi: 10.1111/j.1365-2117.2011.00516.x

    CrossRef Google Scholar

    TIAN Y T, KOHN B P, HU S B, et al., 2015. Synchronous fluvial response to surface uplift in the eastern Tibetan Plateau: Implications for crustal dynamics[J]. Geophysical Research Letters, 42(1): 29-35. doi: 10.1002/2014GL062383

    CrossRef Google Scholar

    TIAN Y T, LI R, TANG Y, et al., 2018. Thermochronological constraints on the late cenozoicmorphotectonic evolution of the Min Shan, the eastern margin of the Tibetan Plateau[J]. Tectonics, 37(6): 1733-1749. doi: 10.1029/2017TC004868

    CrossRef Google Scholar

    WANG Q, ZHANG P Z, FREYMUELLER J T, et al., 2001. Present-day crustal deformation in China constrained by global positioning system measurements[J]. Science, 294(5542): 574-577. doi: 10.1126/science.1063647

    CrossRef Google Scholar

    WANG E, KIRBY E, FURLONG K P, et al., 2012a. Two-phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience, 5(9): 640-645. doi: 10.1038/ngeo1538

    CrossRef Google Scholar

    WANG W T, KIRBY E, ZHANG P Z, et al., 2013. Tertiary basin evolution along the northeastern margin of the Tibetan Plateau: Evidence for basin formation during Oligocene transtension[J]. GSA Bulletin, 125(3-4): 377-400. doi: 10.1130/B30611.1

    CrossRef Google Scholar

    WANG W T, ZHANG P Z, LIU CC, et al., 2016. Pulsed growth of the West Qinling at ~30? Ma in northeastern Tibet: Evidence from Lanzhou Basin magnetostratigraphy and provenance[J]. Journal of Geophysical Research: Solid Earth, 121(11): 7754-7774. doi: 10.1002/2016JB013279

    CrossRef Google Scholar

    WANG W T, ZHENG D W, LI C P, et al., 2020. Cenozoic exhumation of the Qilian Shan in the northeastern Tibetan Plateau: Evidence from low-temperature thermochronology[J]. Tectonics, 39(4): e2019TC005705.

    Google Scholar

    WANG XX, ZATTIN M, LI JJ, et al., 2011. Eocene to Pliocene exhumation history of the Tianshui-Huicheng region determined by Apatite fission track thermochronology: Implications for evolution of the northeastern Tibetan Plateau margin[J]. Journal of Asian Earth Sciences, 42(1-2): 97-110. doi: 10.1016/j.jseaes.2011.04.012

    CrossRef Google Scholar

    WANG ZC, ZHANG P Z, GARZIONE C N, et al., 2012b. Magnetostratigraphy and depositional history of the Miocene Wushan basin on the NE Tibetan plateau, China: Implications for middle Miocene tectonics of the West Qinling fault zone[J]. Journal of Asian Earth Sciences, 44: 189-202. doi: 10.1016/j.jseaes.2011.06.009

    CrossRef Google Scholar

    WANG Z G. 1985. The"Long-term activity"of large earthquake areas[J]. ActaSeismologicaSinica, 7(3): 254-266. (in Chinese with English abstract)

    Google Scholar

    WU Z H, 2019. The definition and classification of active faults: history, current status and progress[J]. Acta Geoscientica Sinica, 40(5): 661-697.

    Google Scholar

    XU X, GAO R, DONG S W, et al., 2017. Lateral extrusion of the northern Tibetan Plateau interpreted from seismic images, potential field data, and structural analysis of the eastern Kunlun fault[J]. Tectonophysics, 696-697: 88-98. doi: 10.1016/j.tecto.2016.12.025

    CrossRef Google Scholar

    YAN M D, VANDERVOO R, FANG X M, et al., 2006. Paleomagnetic evidence for a mid-Miocene clockwise rotation of about 25° of the Guide Basin area in NE Tibet[J]. Earth and Planetary Science Letters, 241(1-2): 234-247. doi: 10.1016/j.epsl.2005.10.013

    CrossRef Google Scholar

    YU J X, ZHENG W J, YUAN D Y, et al., 2012. Late quaternary active characteristics and slip-rate of Pingding-Huama Fault, the eastern segment of Guanggaishan-Dieshan Fault zone (West Qinling Mountain)[J]. Quaternary Sciences, 32(5): 957-967. (in Chinese with English abstract)

    Google Scholar

    YU X H, MO X X, FLOWER M, et al., 2001. Cenozoic kamafugite volcanism and tectonic meaning inwest Qinling area, Gansu province[J]. Acta Petrologica Sinica, 17(3): 366-377. (in Chinese with English abstract)

    Google Scholar

    YUAN D Y, ZHANG P Z, LIU B C, et al., 2004. Geometrical imagery and tectonic transformation of late quaternary active tectonics in northeastern margin of Qinghai-Xizang plateau[J]. Acta Geologica Sinic, 78(2): 270-278. (in Chinese with English abstract)

    Google Scholar

    YUAN D Y, LEI Z S, HE W G, et al., 2007. Textual research of Wudu earthquake in186 B. C. in Gansu province, China and discussion on its causative structure[J]. Acta Seismologica Sinica, 29(6): 654-663. (in Chinese with English abstract)

    Google Scholar

    YUAN D Y, LEI Z S, LIU X W, et al., 2014. Textual research of Luqu earthquake in 842 AD in Gansu Province and analysis of its causative structure[J]. Seismology and Geology, 36(3): 609-624. (in Chinese with English abstract)

    Google Scholar

    ZHAN Y, ZHAO G Z, WANG L F, et al., 2014. Deep electric structure beneath the intersection area of West Qinling Orogenic zone with north-south seismic tectonic zone in China[J]. Chinese Journal of Geophysics, 57(8): 2594-2607. (in Chinese with English abstract)

    Google Scholar

    ZHANG B, WANG A G, YUAN D Y, et al., 2018. Fault geometry defined by multiple remote sensing images interpretation and field verification: a case study from southern Guanggaishan-Dieshan fault, Western Qinling[J]. Seismology and Geology, 40(5): 1018-1039. (in Chinese with English abstract)

    Google Scholar

    ZHANG B, WANG A G, YUAN D Y, et al., 2020. Discovery of new activity of Xiahe fault in Gansu: Discussion on seismogenic structure of the 2019 XiaheMS5.7 earthquake[J]. Acta Seismologica Sinica, 42(5): 629-644. (in Chinese with English abstract)

    Google Scholar

    ZHANG B, WANG A G, YUAN D Y, et al., 2021. Slip rates and paleoearthquakes along the east segment of the Guanggaishan-Dieshan fault zone, West Qinling Range, NW China[J]. International Journal of Earth Sciences, 110(1): 213-232. doi: 10.1007/s00531-020-01947-0

    CrossRef Google Scholar

    ZHANG G W, GUO A L, YAO A P, 2004. Western Qinling-Songpan continental tectonic node in China's continental tectonics[J]. Earth Science Frontiers, 11(3): 23-32. (in Chinese with English abstract)

    Google Scholar

    ZHANG G W, 2015. The Mianlue tectonic zone of the QinlingOrogen and China continental tectonics[M]. Beijing: Science Press. (in Chinese)

    Google Scholar

    ZHANG G W, GUO A L, DONG Y P, et al., 2019. Rethinking of the Qinlingorogen[J]. Journal of Geomechanics, 25(5): 746-768. (in Chinese with English abstract)

    Google Scholar

    ZHANG P Z, SHEN Z K, WANG M, et al., 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812. doi: 10.1130/G20554.1

    CrossRef Google Scholar

    ZHANG P Z, LI C Y, MAO F Y. 2008. Strath terrace formation and strike-slip faulting[J]. Seismology and Geology, 30(1): 44-57. (in Chinese with English abstract)

    Google Scholar

    ZHANG P Z, WEN X Z, XU X X, et al., 2009. Tectonic model of the great Wenchuan earthquake of May 12, 2008, Sichuan, China[J]. Chinese Science Bulletin, 54(7): 944-953. (in Chinese) doi: 10.1360/csb2009-54-7-944

    CrossRef Google Scholar

    ZHANG P Z, DENG Q D, ZHANG Z Q, et al., 2013. Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Scientia Sinica Terrae, 43(10): 1607-1620. (in Chinese with English abstract) doi: 10.1360/zd-2013-43-10-1607

    CrossRef Google Scholar

    ZHANG Y P, ZHENG W J, ZHANG D L, et al., 2019. Late Pleistocene left-lateral slip rates of the Gulang Fault and its tectonic implications in eastern Qilian Shan (NE Tibetan Plateau), China[J]. Tectonophysics, 756: 97-111. doi: 10.1016/j.tecto.2019.02.013

    CrossRef Google Scholar

    ZHANG Y P, 2020. Sedimentation and tectonics of the Late Mesozoic-Cenozoic Basins in the West Qinling Orogenic Belt and implications for intracontinental tectonics[D]. Guangzhou: Sun Yat-Sen University. (in Chinese with English abstract)

    Google Scholar

    ZHANG Y P, ZHENG W J, WANG W T, et al., 2020. Rapid eocene exhumation of the west Qinling Belt: implications for the growth of the northeastern Tibetan Plateau[J]. Lithosphere, 2020(1): 8294751. doi: 10.2113/2020/8294751

    CrossRef Google Scholar

    ZHANG Y Q, MA Y S, YANG N, et al., 2005. Late Cenozoic left-slip faulting process of the east Kunlun-Qinling fault system in west Qinling region and its eastward propagation[J]. Acta Geoscientica Sinica, 26(1): 1-8. (in Chinese with English abstract)

    Google Scholar

    ZHAO L Q, ZHAN Y, CHEN X B, et al., 2015. Deep electrical structure of the central West Qinling orogenic belt and blocks on its either side[J]. Chinese Journal of Geophysics, 58(7): 2460-2472. (in Chinese with English abstract)

    Google Scholar

    ZHENG D W, ZHANG P Z, WAN J L, et al., 2006. Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 248(1-2): 198-208. doi: 10.1016/j.epsl.2006.05.023

    CrossRef Google Scholar

    ZHENG W J, LIU X W, YU J X, et al., 2016. Geometry and late Pleistocene slip rates of the Liangdang-Jiangluo fault in the western Qinling mountains, NW China[J]. Tectonophysics, 687: 1-13. doi: 10.1016/j.tecto.2016.08.021

    CrossRef Google Scholar

    ZUZA A V, YIN A, 2016. Continental deformation accommodated by non-rigid passive bookshelf faulting: An example from the Cenozoic tectonic development of northern Tibet[J]. Tectonophysics, 677-678: 227-240. doi: 10.1016/j.tecto.2016.04.007

    CrossRef Google Scholar

    ZHENG W J, YUAN D Y, HE W G, et al., 2013. Geometric pattern and active tectonics in Southeastern Gansu province: Discussion on seismogenic mechanism of the Minxian-ZhangxianMS6.6 earthquake on July 22, 2013[J]. Chinese Journal of Geophysics, 56(12): 4058-4071. (in Chinese with English abstract)

    Google Scholar

    ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2019. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 25(5): 699-721. (in Chinese with English abstract)

    Google Scholar

    陈鹏, 施炜, 杨家喜, 等, 2016. 天水盆地晚新生代构造演化: 对青藏高原北东向扩展的指示意义[J]. 大地构造与成矿学, 40(2): 308-322.

    Google Scholar

    董云鹏, 张国伟, 孙圣思, 等, 2019. 中国大陆"十字构造"形成演化及其大陆动力学意义[J]. 地质力学学报, 25(5): 769-797.

    Google Scholar

    郭进京, 韩文峰, 赵海涛, 等, 2015. 西秦岭晚白垩世原型盆地: 新生代青藏高原隆起的背景[J]. 地质科学, 50(2): 364-376. doi: 10.3969/j.issn.0563-5020.2015.02.002

    CrossRef Google Scholar

    韩竹军, 向宏发, 冉勇康, 2001. 青藏高原东缘礼县-罗家堡断裂带晚更新世以来的活动性分析[J]. 地震地质, 23(1): 43-48.

    Google Scholar

    侯康明, 雷中生, 万夫岭, 等, 2005. 1879年武都南8级大地震及其同震破裂研究[J]. 中国地震, 20(3): 295-310. doi: 10.3969/j.issn.1001-4683.2005.03.001

    CrossRef Google Scholar

    李传友, 2005. 青藏高原东北部几条主要断裂带的定量研究[D]. 北京: 中国地震局地质研究所.

    Google Scholar

    李敏娟, 沈旭章, 张元生, 等, 2018. 基于密集台阵的青藏高原东北缘地壳精细结构及九寨沟地震震源区结构特征分析[J]. 地球物理学报, 61(5): 2075-2087.

    Google Scholar

    刘诚, 孙彪, 魏立勇, 等, 2020. 综合电法勘探在西秦岭寨上金矿的应用研究[J]. 地质与勘探, 56(6): 1226-1237.

    Google Scholar

    刘兴旺, 袁道阳, 邵延秀, 等, 2015. 甘肃迭部-白龙江南支断裂中东段晚第四纪构造活动特征[J]. 地球科学与环境学报, 37(6): 111-119. doi: 10.3969/j.issn.1672-6561.2015.06.010

    CrossRef Google Scholar

    马收先, 张岳桥, 李海龙, 等, 2013. 青藏高原东北缘新近纪晚期构造挤出: 来自西秦岭地区安化-成县盆地的证据[J]. 地学前缘, 20(4): 58-74.

    Google Scholar

    裴先治, 2001. 勉略-阿尼玛卿构造带的形成演化与动力学特征[D]. 西安: 西北大学.

    Google Scholar

    裴先治, 丁仨平, 李佐臣, 等, 2007. 西秦岭北缘关子镇蛇绿岩的形成时代: 来自辉长岩中LA-ICP-MS锆石U-Pb年龄的证据[J]. 地质学报, 81(11): 1550-1561. doi: 10.3321/j.issn:0001-5717.2007.11.010

    CrossRef Google Scholar

    史小辉, 杨钊, 董云鹏, 等, 2018. 西秦岭嘉陵江上游瞬时地貌发育特征[J]. 地质科学, 53(3): 819-834.

    Google Scholar

    王泽皋, 1985. 大震区的"长期活动"[J]. 地震学报, 7(3): 254-266.

    Google Scholar

    吴中海, 2019. 活断层的定义与分类: 历史、现状和进展[J]. 地球学报, 40(5): 661-697.

    Google Scholar

    俞晶星, 郑文俊, 袁道阳, 等, 2012. 西秦岭西段光盖山-迭山断裂带坪定-化马断裂的新活动性与滑动速率[J]. 第四纪研究, 32(5): 957-967. doi: 10.3969/j.issn.1001-7410.2012.05.13

    CrossRef Google Scholar

    喻学惠, 莫宣学, FLOWER M, 等, 2001. 甘肃西秦岭新生代钾霞橄黄长岩火山作用及其构造含义[J]. 岩石学报, 17(3): 366-377.

    Google Scholar

    袁道阳, 张培震, 刘百篪, 等, 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报, 78(2): 270-278. doi: 10.3321/j.issn:0001-5717.2004.02.017

    CrossRef Google Scholar

    袁道阳, 雷中生, 何文贵, 等, 2007. 公元前186年甘肃武都地震考证与发震构造探讨[J]. 地震学报, 29(6): 654-663. doi: 10.3321/j.issn:0253-3782.2007.06.010

    CrossRef Google Scholar

    袁道阳, 雷中生, 刘兴旺, 等, 2014. 公元842年甘肃碌曲地震考证与发震构造分析[J]. 地震地质, 36(3): 609-624. doi: 10.3969/j.issn.0253-4967.2014.03.006

    CrossRef Google Scholar

    詹艳, 赵国泽, 王立凤, 等, 2014. 西秦岭与南北地震构造带交汇区深部电性结构特征[J]. 地球物理学报, 57(8): 2594-2607.

    Google Scholar

    张波, 王爱国, 袁道阳, 等, 2018. 基于多源遥感解译和野外验证的断裂几何展布: 以西秦岭光盖山-迭山南麓断裂为例[J]. 地震地质, 40(5): 1018-1039.

    Google Scholar

    张波, 王爱国, 袁道阳, 等, 2020. 甘肃夏河断裂新活动的发现: 兼论2019年夏河MS5.7地震的发震构造[J]. 地震学报, 42(5): 629-644.

    Google Scholar

    张国伟, 郭安林, 姚安平, 2004. 中国大陆构造中的西秦岭-松潘大陆构造结[J]. 地学前缘, 11(3): 23-32. doi: 10.3321/j.issn:1005-2321.2004.03.004

    CrossRef Google Scholar

    张国伟, 2015. 秦岭勉略构造带与中国大陆构造[M]. 北京: 科学出版社.

    Google Scholar

    张国伟, 郭安林, 董云鹏, 等, 2019. 关于秦岭造山带[J]. 地质力学学报, 25(5): 746-768.

    Google Scholar

    张培震, 李传友, 毛凤英, 2008. 河流阶地演化与走滑断裂滑动速率[J]. 地震地质, 30(1): 44-57. doi: 10.3969/j.issn.0253-4967.2008.01.004

    CrossRef Google Scholar

    张培震, 闻学泽, 徐锡伟, 等, 2009. 2008年汶川8.0级特大地震孕育和发生的多单元组合模式[J]. 科学通报, 54(7): 944-953.

    Google Scholar

    张培震, 邓起东, 张竹琪, 等, 2013. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学: 地球科学, 43(10): 1607-1620.

    Google Scholar

    张逸鹏, 2020. 西秦岭晚中生代-新生代盆-山时空演化及其大地构造意义[D]. 广州: 中山大学.

    Google Scholar

    张岳桥, 马寅生, 杨农, 等, 2005. 西秦岭地区东昆仑-秦岭断裂系晚新生代左旋走滑历史及其向东扩展[J]. 地球学报, 26(1): 1-8. doi: 10.3321/j.issn:1006-3021.2005.01.001

    CrossRef Google Scholar

    赵凌强, 詹艳, 陈小斌, 等, 2015. 西秦岭造山带(中段)及其两侧地块深部电性结构特征[J]. 地球物理学报, 58(7): 2460-2472.

    Google Scholar

    郑文俊, 袁道阳, 何文贵, 等, 2013. 甘肃东南地区构造活动与2013年岷县-漳县MS6.6级地震孕震机制[J]. 地球物理学报, 56(12): 4058-4071. doi: 10.6038/cjg20131211

    CrossRef Google Scholar

    郑文俊, 张培震, 袁道阳, 等, 2019. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 25(5): 699-721.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(2565) PDF downloads(123) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint