2021 Vol. 27, No. 1
Article Contents

JIA Suogang, WAN Youyu, WANG Qian, LIU Shiduo, LIU Youming, WANG Zhicheng, YE Yu, QI Chunyan. 2021. Research on the micro-scale method for testing the mechanical anisotropy of shale. Journal of Geomechanics, 27(1): 10-18. doi: 10.12090/j.issn.1006-6616.2021.27.01.002
Citation: JIA Suogang, WAN Youyu, WANG Qian, LIU Shiduo, LIU Youming, WANG Zhicheng, YE Yu, QI Chunyan. 2021. Research on the micro-scale method for testing the mechanical anisotropy of shale. Journal of Geomechanics, 27(1): 10-18. doi: 10.12090/j.issn.1006-6616.2021.27.01.002

Research on the micro-scale method for testing the mechanical anisotropy of shale

More Information
  • The mechanical anisotropy of shale is an important basic parameter for the study of in-situ stress, sidewall stability and hydraulic fracture propagation. In view of the limitations and low success rate for sample preparation in macro-scale tests, we chose clastic rocks and fragmentized blocks which were easily found as the subjects for micro-scale tests, and used continuous stiffness measurements to carry out the nano-indentation tests on the shale samples with horizontal bedding and vertical bedding. The test data were analyzed on three main mineral matrices which were identified by the classification rule of hardness. And the hardness and young's modulus of the shale clay matrix were calculated by contact stiffness measurements and the fracture toughness by energy method. The test results proved the reasonability and convenience of the classification rule of hardness in processing nano-indentation data. Shale clay matrix is anisotropic at the nano-scale while the mechanical parameters at the nano-scale are related to the bedding direction. The anisotropy of each mechanical parameter varies in intensity. The anisotropy of young's modulus is weak, while that of fracture toughness is strong. The fracture toughness with horizontal bedding is 80% of that with vertical bedding.

  • 加载中
  • AI C, QIU D Z, ZHANG J, et al., 2017. Measurements of mechanical parameters and brittleness anisotropy of shale[J]. Fault-Block Oil and Gas Field, 24(5): 647-651. (in Chinese with English abstract)

    Google Scholar

    BORNERT M, VALÈS F, GHARBI H, et al., 2010. Multiscale full-field strain measurements for micromechanical investigations of the hydromechanical behaviour of clayey rocks[J]. Strain, 46(1): 33-46. doi: 10.1111/j.1475-1305.2008.00590.x

    CrossRef Google Scholar

    CHEN P, HAN Q, MA T S, et al., 2015. Study of mechanical properties of shale based on micro-indentation test[J]. Petroleum Exploration and Development, 42(5): 662-670. (in Chinese with English abstract)

    Google Scholar

    CHO J W, KIM H, JEON S, et al., 2012. Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist[J]. International Journal of Rock Mechanics and Mining Sciences, 50: 158-169. doi: 10.1016/j.ijrmms.2011.12.004

    CrossRef Google Scholar

    GAO C Y, XU J, LI Z H, et al., 2011. Experimental study of anisotropically mechanical characteristics of sandy slate in Xuefeng mountain tunnel[J]. Rock and Soil Mechanics, 32(5): 1360-1364. (in Chinese with English abstract)

    Google Scholar

    GUO L, JIANG Z X, GUO F, 2015. Mineral components of shales from Longmaxi Formation in southeastern Chongqing and their implications for shale gas[J]. Journal of Central South University (Science and Technology), 46(11): 4146-4154. (in Chinese with English abstract)

    Google Scholar

    GUO T K, ZHANG S C, GE H K, 2013. A new method for evaluating ability of forming fracture network in shale reservoir[J]. Rock and Soil Mechanics, 34(4): 947-953. (in Chinese with English abstract)

    Google Scholar

    HAN Q, CHEN P, MA T S, 2015. Influencing factor analysis of shale micro-indentation measurement[J]. Journal of Natural Gas Science and Engineering, 27: 641-650. doi: 10.1016/j.jngse.2015.09.010

    CrossRef Google Scholar

    HE Y D, REN L, ZHAO J Z, et al., 2017. Finite element numerical simulation of shale gas production of hydraulically fractured horizontal well with stimulated reservoir volume[J]. Fault-Block Oil and Gas Field, 24(4): 550-556. (in Chinese with English abstract)

    Google Scholar

    HENG S, YANG C H, GUO Y T, et al., 2015a. Influence of bedding planes on hydraulic fracture propagation in shale formations[J]. Chinese Journal of Rock Mechanics and Engineering, 34(2): 228-237. (in Chinese with English abstract)

    Google Scholar

    HENG S, YANG C H, ZHANG B P, et al., 2015b. Experimental research on anisotropic properties of shale[J]. Rock and Soil Mechanics, 36(3): 609-616. (in Chinese with English abstract)

    Google Scholar

    JIA L C, SUN B F, LIAN T W, 2017. Experimental study on anisotropic mechanical properties of organic-rich shale[J]. Drilling & Production Technology, 40(2): 20-23. (in Chinese with English abstract)

    Google Scholar

    KUILA U, DEWHURST D N, SIGGINS A F, et al., 2011. Stress anisotropy and velocity anisotropy in low porosity shale[J]. Tectonophysics, 503(1-3): 34-44.

    Google Scholar

    LI Z, JIA C G, YANG C H, et al., 2015. Propagation of hydraulic fissures and bedding planes in hydraulic fracturing of shale[J]. Chinese Journal of Rock Mechanics and Engineering, 34(1): 12-20. (in Chinese with English abstract)

    Google Scholar

    LU B P, BAO H Z, 2005. Advances in calculation methods for rock mechanics parameters[J]. Petroleum Drilling Techniques, 33(5): 44-47. (in Chinese with English abstract)

    Google Scholar

    NASSERI M H B, RAO K S, RAMAMURTHY T, 2003. Anisotropic strength and deformational behavior of Himalayan schists[J]. International Journal of Rock Mechanics and Mining Sciences, 40(1): 3-23. doi: 10.1016/S1365-1609(02)00103-X

    CrossRef Google Scholar

    NIANDOU H, SHAO J F, HENRY J P, et al., 1997. Laboratory investigation of the mechanical behaviour of Tournemire shale[J]. International Journal of Rock Mechanics and Mining Sciences, 34(1): 3-16. doi: 10.1016/S1365-1609(97)80029-9

    CrossRef Google Scholar

    SCOTT T E JR, ABOUSLEIMAN Y, 2005. Acoustic measurements of the anisotropy of dynamic elastic and poromechanics moduli under three stress/strain pathways[J]. Journal of Engineering Mechanics, 131(9): 937-946. doi: 10.1061/(ASCE)0733-9399(2005)131:9(937)

    CrossRef Google Scholar

    SIERRA R, TRAN M H, ABOUSLEIMAN Y N, et al., 2010. Woodford shale mechanical properties and the impacts of lithofacies[C]//The 44th U.S. Rock Mechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium. Salt Lake City, UT: ARMA, 27-30.

    Google Scholar

    SONG L T, LIU Z H, LI C L, et al., 2015. Geostress logging evaluation method of tight sandstone based on transversely isotropic model[J]. Acta Petrolei Sinica, 36(6): 707-714. (in Chinese with English abstract)

    Google Scholar

    TIAN H, ZENG L B, SHU Z G, et al., 2019. Method for determining elastic parameters for the prediction model of shale transversely isotropic geostress[J]. Journal of Geomechanics, 25(2): 166-176. (in Chinese with English abstract)

    Google Scholar

    TIEN Y M, KUO M C, 2001. A failure criterion for transversely isotropic rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 38(3): 399-412. doi: 10.1016/S1365-1609(01)00007-7

    CrossRef Google Scholar

    ULM F J, DELAFARGUE A, CONSTANTINIDES G, 2005. Experimental microporomechanics[M]//DORMIEUX L, ULM F J. Applied Micromechanics of Porous Materials. Vienna: Springer, 207-288.

    Google Scholar

    ULM F J, VANDAMME M, BOBKO C, et al., 2007. Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale[J]. Journal of the American Ceramic Society, 90(9): 2677-2692. doi: 10.1111/j.1551-2916.2007.02012.x

    CrossRef Google Scholar

    WANG H, WANG B, JING A Y, et al., 2007. An algorithm for extracting shear-wave anisotropy parameter γ from stoneley-wave inversion and its case study[J]. Well Logging Technology, 31(3): 241-244. (in Chinese with English abstract)

    Google Scholar

    WANG H, GUO Y T, WANG L, et al., 2017. An experimental study on mechanical anisotropy of shale reservoirs at different depths[J]. Rock and Soil Mechanics, 38(9): 2496-2506.

    Google Scholar

    WANG Q, WANG P, XIANG D G, et al., 2012. Anistropic property of mechanical parameters of shales[J]. Natural Gas Industry, 32(12): 62-65. (in Chinese)

    Google Scholar

    WANG Y P, LIU X J, LIANG L X, 2018. The effect of hydration on mechanical characteristics in carbonaceous[C]//The ISRM International Symposium-10th Asian Rock Mechanics Symposium, Singapore: ISRM International Symposium.

    Google Scholar

    WENG J Q, ZENG L B, LYU W Y, et al., 2020. Width of stress disturbed zone near fault and its influencing factors[J]. Journal of Geomechanics, 26(1): 39-47. (in Chinese with English abstract)

    Google Scholar

    YUAN J L, DENG J G, ZHANG D Y, et al., 2013. Fracability evaluation of shale-gas reservoirs[J]. Acta Petrolei Sinica, 34(3): 523-527. (in Chinese with English abstract)

    Google Scholar

    ZHANG J C, JIN Z J, YUAN M S, 2004. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 24(7): 15-18. (in Chinese with English abstract)

    Google Scholar

    ZOU X J, Chen Y L, 2018. Geostress logging evaluation method of Longmaxi Formation shale in Fuling area based on transversely isotropic model, Sichuan Basin[J]. Natural Gas Geoscience, 28(12): 1775-1780. (in Chinese with English abstract)

    Google Scholar

    艾池, 仇德智, 张军, 等, 2017. 页岩力学参数测试及脆性各向异性研究[J]. 断块油气田, 24(5): 647-651.

    Google Scholar

    陈平, 韩强, 马天寿, 等, 2015. 基于微米压痕实验研究页岩力学特性[J]. 石油勘探与开发, 42(5): 662-670.

    Google Scholar

    高春玉, 徐进, 李忠洪, 等, 2011. 雪峰山隧道砂板岩各向异性力学特性的试验研究[J]. 岩土力学, 32(5): 1360-1364.

    Google Scholar

    郭岭, 姜在兴, 郭峰, 2015. 渝东南龙马溪组黑色页岩矿物组成及其页岩气意义[J]. 中南大学学报(自然科学版), 46(11): 4146-4154.

    Google Scholar

    郭天魁, 张士诚, 葛洪魁, 2013. 评价页岩压裂形成缝网能力的新方法[J]. 岩土力学, 34(4): 947-953.

    Google Scholar

    何易东, 任岚, 赵金洲, 等, 2017. 页岩气藏体积压裂水平井产能有限元数值模拟[J]. 断块油气田, 24(4): 550-556.

    Google Scholar

    衡帅, 杨春和, 郭印同, 等, 2015a. 层理对页岩水力裂缝扩展的影响研究[J]. 岩石力学与工程学报, 34(2): 228-237.

    Google Scholar

    衡帅, 杨春和, 张保平, 等, 2015b. 页岩各向异性特征的试验研究[J]. 岩土力学, 36(3): 609-616.

    Google Scholar

    贾利春, 孙本法, 连太炜, 2017. 富有机质页岩各向异性力学特性试验研究[J]. 钻采工艺, 40(2): 20-23.

    Google Scholar

    李芷, 贾长贵, 杨春和, 等, 2015. 页岩水力压裂水力裂缝与层理面扩展规律研究[J]. 岩石力学与工程学报, 34(1): 12-20.

    Google Scholar

    路保平, 鲍洪志, 2005. 岩石力学参数求取方法进展[J]. 石油钻探技术, 33(5): 44-47.

    Google Scholar

    宋连腾, 刘忠华, 李潮流, 等, 2015. 基于横向各向同性模型的致密砂岩地应力测井评价方法[J]. 石油学报, 36(6): 707-714.

    Google Scholar

    田鹤, 曾联波, 舒志国, 等, 2019. 页岩横向各向同性地应力预测模型中弹性参数的确定方法[J]. 地质力学学报, 25(2): 166-176.

    Google Scholar

    汪虎, 郭印同, 王磊, 等, 2017. 不同深度页岩储层力学各向异性的试验研究[J]. 岩土力学, 38(9): 2496-2506.

    Google Scholar

    王华, 王兵, 景安语, 等, 2007. 斯通利波反演求取横波各向异性参数的方法及实例[J]. 测井技术, 2007, 31(3): 241-244.

    Google Scholar

    王倩, 王鹏, 项德贵, 等, 2012. 页岩力学参数各向异性研究[J]. 天然气工业, 32(12): 62-65.

    Google Scholar

    翁剑桥, 曾联波, 吕文雅, 等, 2020. 断层附近地应力扰动带宽度及其影响因素[J]. 地质力学学报, 26(1): 39-47.

    Google Scholar

    袁俊亮, 邓金根, 张定宇, 等, 2013. 页岩气储层可压裂性评价技术[J]. 石油学报, 34(3): 523-527.

    Google Scholar

    张金川, 金之钧, 袁明生, 2004. 页岩气成藏机理及分布[J]. 天然气工业, 24(7): 15-18.

    Google Scholar

    邹贤军, 陈亚琳, 2018. 四川盆地涪陵地区龙马溪组页岩横向各向同性地应力测井评价方法[J]. 天然气地球科学, 28(12): 1775-1780.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(2287) PDF downloads(74) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint