2020 Vol. 26, No. 5
Article Contents

LAI Shaocong, ZHU Yu. 2020. Petrogenesis and geodynamic implications of Neoproterozoic typical intermediate-felsic magmatism in the western margin of the Yangtze Block, South China. Journal of Geomechanics, 26(5): 759-790. doi: 10.12090/j.issn.1006-6616.2020.26.05.062
Citation: LAI Shaocong, ZHU Yu. 2020. Petrogenesis and geodynamic implications of Neoproterozoic typical intermediate-felsic magmatism in the western margin of the Yangtze Block, South China. Journal of Geomechanics, 26(5): 759-790. doi: 10.12090/j.issn.1006-6616.2020.26.05.062

Petrogenesis and geodynamic implications of Neoproterozoic typical intermediate-felsic magmatism in the western margin of the Yangtze Block, South China

  • The South China Block preserves voluminous Neoproterozoic magmatism, it is thus an ideal site for understanding the mantle nature, crustal evolution, and crust-mantle interaction during the assembly and breakup of the Rodinia supercontinent. Although the previous studies have paid more attention to the mafic and felsic rocks, the systematic deep dynamics of intermediate-felsic intrusive rocks is unsubstantial. Based on the recent studies on the Neoproterozoic typical granitoid magmatism, this study provides a systematic insight on the magmatic response of different depth under subduction setting. The new study reveals that the western margin of the Yangtze Block was located at the subduction setting. Apart from the subduction fluids- and slab melts-related mantle metasomatism, the newly recognized ca.850~835 Ma high-Mg# diorites suggest that there existed the subducted sediment melts-related mantle metasomatism. In addition, the identification of ca.840~835 Ma peraluminous granites indicates that the western margin of the Yangtze Block underwent not only the melting of the juvenile mafic lower crust but also the reworking of the mature continental crust during the Neoproterozoic. Moreover, the ca.780 Ma Ⅰ-type granodiorites-granites stand for the magmatic response of different crustal depth induced by the upwelling of asthenosphere mantle. The occurrence from ca.800 Ma thickened lower crust-derived adakitic granites to ca.750 Ma felsic crust-derived A-type granites suggest the geodynamic transition from regionally crustal thickening to extensional thinning under subduction background.

  • 加载中
  • ALTHERR R, HOLL A, HEGNER E, et al., 2000. High-potassium, calc-alkaline Ⅰ-type plutonism in the European Variscides:northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 50(1-3):51-73. doi: 10.1016/S0024-4937(99)00052-3

    CrossRef Google Scholar

    BAU M, 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J]. Chemical Geology, 93(3-4):219-230. doi: 10.1016/0009-2541(91)90115-8

    CrossRef Google Scholar

    CAI K D, SUN M, YUAN C, et al., 2011. Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China[J]. Lithos, 127(1-2):261-281. doi: 10.1016/j.lithos.2011.09.001

    CrossRef Google Scholar

    CASTRO A, 2013. Tonalite-granodiorite suites as cotectic systems:a review of experimental studies with applications to granitoid petrogenesis[J]. Earth-Science Reviews, 124:68-95. doi: 10.1016/j.earscirev.2013.05.006

    CrossRef Google Scholar

    CASTRO A, 2014. The off-crust origin of granite batholiths[J]. Geoscience Frontiers, 5(1):63-75.

    Google Scholar

    CAWOOD P A, HAWKESWORTH C J, 2019. Continental crustal volume, thickness and area, and their geodynamic implications[J]. Gondwana Research, 66:116-125. doi: 10.1016/j.gr.2018.11.001

    CrossRef Google Scholar

    CAWOOD P A, STRACHAN R A, PISAREVSKY S A, et al., 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup:implications for models of supercontinent cycles[J]. Earth and Planetary Science Letters, 449:118-126. doi: 10.1016/j.epsl.2016.05.049

    CrossRef Google Scholar

    CHAPPELL B W, 1999. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 46(3):535-551. doi: 10.1016/S0024-4937(98)00086-3

    CrossRef Google Scholar

    CHAPPELL B W, BRYANT C J, WYBORN D, 2012. Peraluminous Ⅰ-type granites[J]. Lithos, 153:142-153. doi: 10.1016/j.lithos.2012.07.008

    CrossRef Google Scholar

    CHAPPELL B W, WHITE A J R, 1992. I-and S-type granites in the Lachlan fold belt[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1-2):1-26. doi: 10.1017/S0263593300007720

    CrossRef Google Scholar

    CHEN W T, SUN W H, WANG W, et al., 2014a. "Grenvillian" intra-plate mafic magmatism in the southwestern Yangtze Block, SW China[J]. Precambrian Research, 242:138-153. doi: 10.1016/j.precamres.2013.12.019

    CrossRef Google Scholar

    CHEN W T, SUN W H, ZHOU M F, et al., 2018. Ca. 1050 Ma intra-continental rift-related A-type felsic rocks in the southwestern Yangtze Block, South China[J]. Precambrian Research, 309:22-44. doi: 10.1016/j.precamres.2017.02.011

    CrossRef Google Scholar

    CHEN W T, ZHOU M F, ZHAO X F, 2013. Late Paleoproterozoic sedimentary and mafic rocks in the Hekou area, SW China:implication for the reconstruction of the Yangtze Block in Columbia[J]. Precambrian Research, 231:61-77. doi: 10.1016/j.precamres.2013.03.011

    CrossRef Google Scholar

    CHEN Y X, SONG S G, NIU Y L, et al., 2014b. Melting of continental crust during subduction initiation:a case study from the Chaidanuo peraluminous granite in the north Qilian suture zone[J]. Geochimica et Cosmochimica Acta, 132:311-336. doi: 10.1016/j.gca.2014.02.011

    CrossRef Google Scholar

    CLEMENS J D, 2003. S-type granitic magmas-petrogenetic issues, models and evidence[J]. Earth-Science Reviews, 61(1-2):1-18. doi: 10.1016/S0012-8252(02)00107-1

    CrossRef Google Scholar

    CLEMENS J D, 2018. Granitic magmas with Ⅰ-type affinities, from mainly metasedimentary sources:the Harcourt batholith of southeastern Australia[J]. Contributions to Mineralogy and Petrology, 173(11):93. doi: 10.1007/s00410-018-1520-z

    CrossRef Google Scholar

    CLEMENS J D, ELBURG M A, HARRIS C, 2017. Origins of igneous microgranular enclaves in granites:the example of central victoria, Australia[J]. Contributions to Mineralogy and Petrology, 172(10):88. doi: 10.1007/s00410-017-1409-2

    CrossRef Google Scholar

    CLEMENS J D, HELPS P A, STEVENS G, 2009. Chemical structure in granitic magmas-a signal from the source?[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100(1-2):159-172. doi: 10.1017/S1755691009016053

    CrossRef Google Scholar

    CLEMENS J D, REGMI K, NICHOLLS I A, et al., 2016. The Tynong pluton, its mafic synplutonic sheets and igneous microgranular enclaves:the nature of the mantle connection in Ⅰ-type granitic magmas[J]. Contributions to Mineralogy and Petrology, 171(4):35. doi: 10.1007/s00410-016-1251-y

    CrossRef Google Scholar

    CLEMENS J D, STEVENS G, 2012. What controls chemical variation in granitic magmas?[J]. Lithos, 134-135:317-329. doi: 10.1016/j.lithos.2012.01.001

    CrossRef Google Scholar

    CLEMENS J D, STEVENS G, FARINA F, 2011. The enigmatic sources of Ⅰ-type granites:the peritectic connexion[J]. Lithos, 126(3-4):174-181. doi: 10.1016/j.lithos.2011.07.004

    CrossRef Google Scholar

    COLLINS W J, 1996. Lachlan fold belt granitoids:products of three-component mixing[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2):171-181. doi: 10.1017/S0263593300006581

    CrossRef Google Scholar

    COLLINS W J, 2002. Hot orogens, tectonic switching, and creation of continental crust[J]. Geology, 30(6):535-538. doi: 10.1130/0091-7613(2002)030<0535:HOTSAC>2.0.CO;2

    CrossRef Google Scholar

    COLLINS W J, RICHARDS S W, 2008. Geodynamic significance of S-type granites in circum-Pacific orogens[J]. Geology, 36(7):559-562. doi: 10.1130/G24658A.1

    CrossRef Google Scholar

    CRAWFORD A J, 1989. Boninites and related rocks[M]. London:Unwin Hyman.

    Google Scholar

    DEFANT M J, DRUMMOND M S, 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 347(6294):662-665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    DU L L, GUO J H, NUTMAN A P, et al., 2014. Implications for Rodinia reconstructions for the initiation of Neoproterozoic subduction at~860 Ma on the western margin of the Yangtze Block:evidence from the Guandaoshan Pluton[J]. Lithos, 196-197:67-82.

    Google Scholar

    EBY G N, 1992. Chemical subdivision of the A-type granitoids:granitoids:petrogenetic and tectonic implications[J]. Geology, 20(7):641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    FLOWERDEW M J, MILLAR I L, VAUGHAN A P M, et al., 2006. The source of granitic gneisses and migmatites in the Antarctic Peninsula:a combined U-Pb SHRIMP and laser ablation Hf isotope study of complex zircons[J]. Contributions to Mineralogy and Petrology, 151(6):751-768. doi: 10.1007/s00410-006-0091-6

    CrossRef Google Scholar

    FROST B R, BARNES C G, COLLINS W J, et al., 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11):2033-2048. doi: 10.1093/petrology/42.11.2033

    CrossRef Google Scholar

    GAO R, CHEN C, WANG H Y, et al., 2016. SINOPROBE deep reflection profile reveals a Neo-proterozoic subduction zone beneath Sichuan basin[J]. Earth and Planetary Science Letters, 454:86-91. doi: 10.1016/j.epsl.2016.08.030

    CrossRef Google Scholar

    GAO S, LING W L, QIU Y M, et al., 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton:evidence for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta, 63(13-14):2071-2088. doi: 10.1016/S0016-7037(99)00153-2

    CrossRef Google Scholar

    GAO S, YANG J, ZHOU L, et al., 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses[J]. American Journal of Science, 311(2):153-182.

    Google Scholar

    GERYA T, 2011. Future directions in subduction modeling[J]. Journal of Geodynamics, 52(5):344-378. doi: 10.1016/j.jog.2011.06.005

    CrossRef Google Scholar

    GERYA T V, MEILICK F I, 2011. Geodynamic regimes of subduction under an active margin:effects of rheological weakening by fluids and melts[J]. Journal of Metamorphic Geology, 29(1):7-31. doi: 10.1111/j.1525-1314.2010.00904.x

    CrossRef Google Scholar

    GREENTREE M R, LI Z X, LI X H, et al., 2006. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western south China and relationship to the assembly of rodinia[J]. Precambrian Research, 151(1-2):79-100. doi: 10.1016/j.precamres.2006.08.002

    CrossRef Google Scholar

    GRIMES C B, WOODEN J L, CHEADLE M J, et al., 2015. "Fingerprinting" tectono-magmatic provenance using trace elements in igneous zircon[J]. Contributions to Mineralogy and Petrology, 170(5-6):46. doi: 10.1007/s00410-015-1199-3

    CrossRef Google Scholar

    GROVE T, PARMAN S, BOWRING S, et al., 2002. The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California[J]. Contributions to Mineralogy and Petrology, 142(4):375-396. doi: 10.1007/s004100100299

    CrossRef Google Scholar

    GUO C L, WANG D H, CHEN Y C, et al., 2007. SHRIMP U-Pb zircon ages and major element, trace element and Nd-Sr isotope geochemical studies of a Neoproterozoic granitic complex in western Sichuan:petrogenesis and tectonic significance[J]. Acta Petrologica Sinica, 23(10):2457-2470. (in Chinese with English abstract)

    Google Scholar

    GUO F, LI H X, FAN W M, et al., 2015. Early Jurassic subduction of the Paleo-Pacific Ocean in NE China:petrologic and geochemical evidence from the Tumen mafic intrusive complex[J]. Lithos, 224-225:46-60. doi: 10.1016/j.lithos.2015.02.014

    CrossRef Google Scholar

    GUO J L, GAO S, WU Y B, et al., 2014.3.45 Ga granitic gneisses from the Yangtze Craton, South China:implications for Early Archean crustal growth[J]. Precambrian Research, 242:82-95. doi: 10.1016/j.precamres.2013.12.018

    CrossRef Google Scholar

    HANYU T, TATSUMI Y, NAKAI S, et al., 2006. Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr:constraints from geochemistry[J]. Geochemistry, Geophysics, Geosystems, 7(8):Q08002.

    Google Scholar

    HAWKESWORTH C J, KEMP A I S, 2006. The differentiation and rates of generation of the continental crust[J]. Chemical Geology, 226(3-4):134-143. doi: 10.1016/j.chemgeo.2005.09.017

    CrossRef Google Scholar

    HAWKESWORTH C J, TURNER S P, MCDERMOTT F, et al., 1997. U-Th isotopes in arc magmas:implications for element transfer from the subducted crust[J]. Science, 276(5312):551-555. doi: 10.1126/science.276.5312.551

    CrossRef Google Scholar

    HUANG X L, XU Y G, LAN J B, et al., 2009. Neoproterozoic adakitic rocks from Mopanshan in the Western Yangtze craton:partial melts of a thickened lower crust[J]. Lithos, 112(3-4):367-381. doi: 10.1016/j.lithos.2009.03.028

    CrossRef Google Scholar

    HUANG X L, XU Y G, LI X H, et al., 2008. Petrogenesis and tectonic implications of Neoproterozoic, highly fractionated A-type granites from Mianning, South China[J]. Precambrian Research, 165(3-4):190-204. doi: 10.1016/j.precamres.2008.06.010

    CrossRef Google Scholar

    JIANG Y D, SUN M, ZHAO G C, et al., 2010. The 390 Ma high-T metamorphism in the Chinese Altai:consequence of ridgesubduction?[J] American Journal of Science, 310 (10):1421-1452. doi: 10.2475/10.2010.08

    CrossRef Google Scholar

    JIANG Y H, ZHU S Q, 2017. Petrogenesis of the Late Jurassic peraluminous biotite granites and muscovite-bearing granites in SE China:geochronological, elemental and Sr-Nd-O-Hf isotopic constraints[J]. Contributions to Mineralogy and Petrology, 172(11-12):101. doi: 10.1007/s00410-017-1422-5

    CrossRef Google Scholar

    JOHNSON M C, PLANK T, 2000. Dehydration and melting experiments constrain the fate of subducted sediments[J]. Geochemistry, Geophysics, Geosystems, 1(12):1007.

    Google Scholar

    KAMEI A, OWADA M, NAGAO T, et al., 2004. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc:evidence from clinopyroxene and whole rock compositions[J]. Lithos, 75(3-4):359-371. doi: 10.1016/j.lithos.2004.03.006

    CrossRef Google Scholar

    KARSLI O, CHEN B, AYDIN F, et al., 2007. Geochemical and Sr-Nd-Pb isotopic compositions of the Eocene Dölek and Sariçiçek Plutons, Eastern Turkey:implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting[J]. Lithos, 98(1-4):67-96. doi: 10.1016/j.lithos.2007.03.005

    CrossRef Google Scholar

    KARSLI O, DOKUZ A, KANDEMIR R, 2017. Zircon Lu-Hf isotope systematics and U-Pb geochronology, whole-rock Sr-Nd isotopes and geochemistry of the early Jurassic Gokcedere pluton, Sakarya zone-NE Turkey:a magmatic response to roll-back of the Paleo-Tethyan oceanic lithosphere[J]. Contributions to Mineralogy and Petrology, 172(5):31. doi: 10.1007/s00410-017-1346-0

    CrossRef Google Scholar

    KELEMEN P B, HANGHØJ K, GREENE A R, 2007. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust[J]. Treatise on Geochemistry, 3:1-70.

    Google Scholar

    KELEMEN P B, YOGODZINSKI G M, SCHOLL D W, 2004. Along-strike variation in the Aleutian Island arc: genesis of high Mg# andesite and implications for continental crust[M]//EILER J. Inside the Subduction Factory. Washington, DC: American Geophysical Union, 223-276.

    Google Scholar

    KEMP A I S, HAWKESWORTH C J, 2014. Growth and differentiation of the continental crust from isotope studies of accessory minerals[J]. Treatise on Geochemistry, 4:379-421.

    Google Scholar

    KEMP A I S, HAWKESWORTH C J, FOSTER G L, et al., 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon[J]. Science, 315(5814):980-983. doi: 10.1126/science.1136154

    CrossRef Google Scholar

    KEPEZHINSKAS P, MCDERMOTT F, DEFANT M J, et al., 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis[J]. Geochimica et Cosmochimica Acta, 61(3):577-600. doi: 10.1016/S0016-7037(96)00349-3

    CrossRef Google Scholar

    KONG X Y, ZHANG C, LIU D D, et al., 2019. Disequilibrium partial melting of metasediments in subduction zones:evidence from O-Nd-Hf isotopes and trace elements in S-type granites of the Chinese Altai[J]. Lithosphere, 11(1):149-168. doi: 10.1130/L1039.1

    CrossRef Google Scholar

    KOU C H, LIU Y X, HUANG H, et al., 2018. The Neoproterozoic arc-type and OIB-type mafic-ultramafic rocks in the western Jiangnan Orogen:implications for tectonic settings[J]. Lithos, 312-313:38-56. doi: 10.1016/j.lithos.2018.05.004

    CrossRef Google Scholar

    LAI S C, QIN J F, ZHU R Z, et al., 2015a. Neoproterozoic quartz monzodiorite-granodiorite association from the Luding-Kangding area:implications for the interpretation of an active continental margin along the Yangtze Block (South China Block)[J]. Precambrian Research, 267:196-208. doi: 10.1016/j.precamres.2015.06.016

    CrossRef Google Scholar

    LAI S C, QIN J F, ZHU R Z, et al., 2015b. Petrogenesis and tectonic implication of the Neoproterozoic peraluminous granitoids from the Tianquan area, western Yangtze Block, South China[J]. Acta Petrologica Sinica, 31(8):2245-2258. (in Chinese with English abstract).

    Google Scholar

    LI H K, ZHANG C L, YAO C Y, et al., 2013. U-Pb zircon age and Hf isotope compositions of Mesoproterozoic sedimentary strata on the western margin of the Yangtze massif[J]. Science China Earth Sciences, 56(4):628-639. doi: 10.1007/s11430-013-4590-9

    CrossRef Google Scholar

    LI Q W, 2018. Petrogenesis and tectonic implications of the Neoproterozoic mafic dikes in the Yangtze Block, South China[D]. Wuhan: China University of Geosciences. (in Chinese)

    Google Scholar

    LI Q W, ZHAO J H, 2018. The Neoproterozoic high-Mg dioritic dikes in south China formed by high pressures fractional crystallization of hydrous basaltic melts[J]. Precambrian Research, 309:198-211. doi: 10.1016/j.precamres.2017.04.009

    CrossRef Google Scholar

    LI X H, LI W X, HE B, 2012. Building of the South China Block and its relevance to assembly and breakup of Rodinia supercontinent:observations, interpretations and tests[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6):543-559. (in Chinese with English abstract)

    Google Scholar

    LI X H, LI W X, LI Z X, et al., 2008b. 850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China:a major episode of continental rift magmatism during the breakup of Rodinia[J]. Lithos, 102(1-2):341-357. doi: 10.1016/j.lithos.2007.04.007

    CrossRef Google Scholar

    LI X H, LI Z X, GE W C, et al., 2003. Neoproterozoic granitoids in South China:crustal melting above a mantle plume at ca. 825 Ma?[J]. Precambrian Research, 122(1-4):45-83. doi: 10.1016/S0301-9268(02)00207-3

    CrossRef Google Scholar

    LI X H, LI Z X, SINCLAIR J A, et al., 2006. Revisiting the "Yanbian Terrane":implications for Neoproterozoic tectonic evolution of the western Yangtze block, South China[J]. Precambrian Research, 151(1-2):14-30. doi: 10.1016/j.precamres.2006.07.009

    CrossRef Google Scholar

    LI X H, LI Z X, ZHOU H W, et al., 2002. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China:implications for the initial rifting of Rodinia[J]. Precambrian Research, 113(1-2):135-154. doi: 10.1016/S0301-9268(01)00207-8

    CrossRef Google Scholar

    LI Z X, BOGDANOVA S V, COLLINS A S, et al., 2008a. Assembly, configuration, and break-up history of Rodinia:a synthesis[J]. Precambrian Research, 160(1-2):179-210. doi: 10.1016/j.precamres.2007.04.021

    CrossRef Google Scholar

    LI Z X, LI X H, KINNY P D, et al., 1999. The breakup of Rodinia:did it start with a mantle plume beneath South China?[J]. Earth and Planetary Science Letters, 173(3):171-181. doi: 10.1016/S0012-821X(99)00240-X

    CrossRef Google Scholar

    LI Z X, ZHANG L H, POWELL C M, 1995. South China in Rodinia:part of the missing link between Australia-East Antarctica and Laurentia?[J]. Geology, 23(5):407-410. doi: 10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2

    CrossRef Google Scholar

    LIN G C, 2006. SHRIMP U-Pb zircon geochronology, geochemistry and Nd-Hf isotope of Neoproterozoic magmatic rocks in western Sichuan: petrogenesis and tectonic significance[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. (in Chinese with English abstract)

    Google Scholar

    LING W L, GAO S, ZHANG B R, et al., 2003. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China:implications for amalgamation and break-up of the Rodinia Supercontinent[J]. Precambrian Research, 122(1-4):111-140. doi: 10.1016/S0301-9268(02)00222-X

    CrossRef Google Scholar

    LIU H, ZHAO J H, 2018. Neoproterozoic peraluminous granitoids in the Jiangnan Fold Belt:implications for lithospheric differentiation and crustal growth[J]. Precambrian Research, 309:152-165. doi: 10.1016/j.precamres.2017.05.001

    CrossRef Google Scholar

    LIU J H, XIE C M, LI C, et al., 2018. Early Carboniferous adakite-like and Ⅰ-type granites in central Qiangtang, northern Tibet:implications for intra-oceanic subduction and back-arc basin formation within the Paleo-Tethys Ocean[J]. Lithos, 296-299:265-280. doi: 10.1016/j.lithos.2017.11.005

    CrossRef Google Scholar

    LU Y H, ZHAO Z F, ZHENG Y F, 2016. Geochemical constraints on the source nature and melting conditions of Triassic granites from South Qinling in central China[J]. Lithos, 264:141-157. doi: 10.1016/j.lithos.2016.08.018

    CrossRef Google Scholar

    LU Y H, ZHAO Z F, ZHENG Y F, 2017. Geochemical constraints on the nature of magma sources for Triassic granitoids from South Qinling in central China[J]. Lithos, 284-285:30-49. doi: 10.1016/j.lithos.2017.03.028

    CrossRef Google Scholar

    MARTIN H, SMITHIES R H, RAPP R, et al., 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:relationships and some implications for crustal evolution[J]. Lithos, 79(1-2):1-24. doi: 10.1016/j.lithos.2004.04.048

    CrossRef Google Scholar

    MENG E, LIU F L, DU L L, et al., 2015. Petrogenesis and tectonic significance of the Baoxing granitic and mafic intrusions, southwestern China:evidence from zircon U-Pb dating and Lu-Hf isotopes, and whole-rock geochemistry[J]. Gondwana Research, 28(2):800-815. doi: 10.1016/j.gr.2014.07.003

    CrossRef Google Scholar

    MIDDLEMOST E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4):215-224. doi: 10.1016/0012-8252(94)90029-9

    CrossRef Google Scholar

    MOYEN J F, MARTIN H, 2012. Forty years of TTG research[J]. Lithos, 148:312-336. doi: 10.1016/j.lithos.2012.06.010

    CrossRef Google Scholar

    MUNTEANU M, WILSON A, YAO Y, et al., 2010. The Tongde dioritic pluton (Sichuan, SW China) and its geotectonic setting:regional implications of a local-scale study[J]. Gondwana Research, 18(2-3):455-465. doi: 10.1016/j.gr.2010.01.005

    CrossRef Google Scholar

    NIU Y L, O'HARA M J, PEARCE J A, 2003. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere:a petrological perspective[J]. Journal of Petrology, 44(5):851-866. doi: 10.1093/petrology/44.5.851

    CrossRef Google Scholar

    PATIÑO DOUCE A E, 1995. Experimental generation of hybrid silicic melts by reaction of high-Al basalt with metamorphic rocks[J]. Journal of Geophysical Research, 100(B8):15623-15639. doi: 10.1029/94JB03376

    CrossRef Google Scholar

    PATIÑO DOUCE A E, 1996. Effects of pressure and H2O content on the compositions of primary crustal melts[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2):11-21. doi: 10.1017/S026359330000643X

    CrossRef Google Scholar

    PATIÑO DOUCE A E, 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 25(8):743-746. doi: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2

    CrossRef Google Scholar

    PATIÑO DOUCE A E, 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?[J]. Geological Society, London, Special Publications, 168(1):55-75. doi: 10.1144/GSL.SP.1999.168.01.05

    CrossRef Google Scholar

    PEARCE J A, 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 100(1-4):14-48. doi: 10.1016/j.lithos.2007.06.016

    CrossRef Google Scholar

    PENG M, WU Y B, GAO S, et al., 2012. Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block:constraints on petrogenesis and geologic implications[J]. Gondwana Research, 22(1):140-151. doi: 10.1016/j.gr.2011.08.012

    CrossRef Google Scholar

    PLANK T, LANGMUIR C H, 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 145(3-4):325-394. doi: 10.1016/S0009-2541(97)00150-2

    CrossRef Google Scholar

    QIAN Q, HERMANN J, 2010. Formation of high-mg diorites through assimilation of peridotite by monzodiorite magma at crustal depths[J]. Journal of Petrology, 51(7):1381-1416. doi: 10.1093/petrology/egq023

    CrossRef Google Scholar

    RAPP R P, SHIMIZU N, NORMAN M D, et al., 1999. Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constraints at 3.8 GPa[J]. Chemical Geology, 160(4):335-356. doi: 10.1016/S0009-2541(99)00106-0

    CrossRef Google Scholar

    RAPP R P, WATSON E B, 1995. Dehydration melting of metabasalt at 8-32 kbar:implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 36(4):891-931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    ROBERTS M P, CLEMENS J D, 1993. Origin of high-potassium, calc-alkaline, Ⅰ-type granitoids[J]. Geology, 21(9):825-828. doi: 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2

    CrossRef Google Scholar

    ROSSI J N, TOSELLI A J, SAAVEDRA J, et al., 2002. Common crustal source for contrasting peraluminous facies in the early Paleozoic Capillitas Batholith, NW Argentina[J]. Gondwana Research, 5(2):325-337. doi: 10.1016/S1342-937X(05)70726-7

    CrossRef Google Scholar

    RUDNICK R L, FOUNTAIN D M, 1995. Nature and composition of the continental crust:a lower crustal perspective[J]. Reviews of Geophysics, 33(3):267-309. doi: 10.1029/95RG01302

    CrossRef Google Scholar

    RUDNICK R L, GAO S, 2014. Composition of the continental crust[J]. Treatise on Geochemistry, 4:1-51.

    Google Scholar

    SAMI M, NTAFLOS T, FARAHAT E S, et al., 2018. Petrogenesis and geodynamic implications of Ediacaran highly fractionated A-type granitoids in the north Arabian-Nubian shield (Egypt):constraints from whole-rock geochemistry and Sr-Nd isotopes[J]. Lithos, 304-307:329-346. doi: 10.1016/j.lithos.2018.02.015

    CrossRef Google Scholar

    SHELLNUTT J G, 2014. The Emeishan large igneous province:a synthesis[J]. Geoscience Frontiers, 5(3):369-394. doi: 10.1016/j.gsf.2013.07.003

    CrossRef Google Scholar

    SHIMODA G, TATSUMI Y, MORISHITA Y, 2003. Behavior of subducting sediments beneath an arc under a high geothermal gradient:constraints from the Miocene SW Japan arc[J]. Geochemical Journal, 37(4):503-518. doi: 10.2343/geochemj.37.503

    CrossRef Google Scholar

    SHIMODA G, TATSUMI Y, NOHDA S, et al., 1998. Setouchi high-Mg andesites revisited:geochemical evidence for melting of subducting sediments[J]. Earth and Planetary Science Letters, 160(3-4):479-492. doi: 10.1016/S0012-821X(98)00105-8

    CrossRef Google Scholar

    SISSON T W, RATAJESKI K, HANKINS W B, et al., 2005. Voluminous granitic magmas from common basaltic sources[J]. Contributions to Mineralogy and Petrology, 148(6):635-661. doi: 10.1007/s00410-004-0632-9

    CrossRef Google Scholar

    SMITH D J, PETTERSON M G, SAUNDERS A D, et al., 2009. The petrogenesis of sodic island arc magmas at Savo volcano, Solomon islands[J]. Contributions to Mineralogy and Petrology, 158(6):785-801. doi: 10.1007/s00410-009-0410-9

    CrossRef Google Scholar

    SMITHIES R H, CHAMPION D C, 2000. The Archaean high-Mg diorite suite:links to tonalite-trondhjemite-granodiorite magmatism and implications for Early Archaean crustal growth[J]. Journal of Petrology, 41(12):1653-1671. doi: 10.1093/petrology/41.12.1653

    CrossRef Google Scholar

    STERN C R, KILIAN R, 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone[J]. Contributions to Mineralogy and Petrology, 123(3):263-281. doi: 10.1007/s004100050155

    CrossRef Google Scholar

    SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[M]//SAUNDERS A D, NORRY M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345.

    Google Scholar

    SUN W H, ZHOU M F, ZHAO J.H. 2007. Geochemistry and tectonic significance of basaltic lavas in the neoproterozoic yanbian group, southern Sichuan Province, Southwest China[J]. International Geology Review, 49 (6):554-571. doi: 10.2747/0020-6814.49.6.554

    CrossRef Google Scholar

    SUN W H, ZHOU M F, 2008. The~860-Ma, cordilleran-type Guandaoshan dioritic pluton in the Yangtze Block, SW China:implications for the origin of Neoproterozoic magmatism[J]. The Journal of Geology, 116(3):238-253. doi: 10.1086/587881

    CrossRef Google Scholar

    SUN W H, ZHOU M F, GAO J F, et al., 2009. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China[J]. Precambrian Research, 172(1-2):99-126. doi: 10.1016/j.precamres.2009.03.010

    CrossRef Google Scholar

    SUN W H, ZHOU M F, YAN D P, et al., 2008. Provenance and tectonic setting of the Neoproterozoic Yanbian group, western Yangtze Block (SW China)[J]. Precambrian Research, 167(1-2):213-236. doi: 10.1016/j.precamres.2008.08.001

    CrossRef Google Scholar

    SYLVESTER P J, 1998. Post-collisional strongly peraluminous granites[J]. Lithos, 45(1-4):29-44. doi: 10.1016/S0024-4937(98)00024-3

    CrossRef Google Scholar

    TANG J, XU W L, NIU Y L, et al., 2016. Geochronology and geochemistry of Late Cretaceous-Paleocene granitoids in the Sikhote-Alin Orogenic Belt:petrogenesis and implications for the oblique subduction of the paleo-Pacific plate[J]. Lithos, 266-267:202-212. doi: 10.1016/j.lithos.2016.09.034

    CrossRef Google Scholar

    TANG M, WANG X L, SHU X J, et al., 2014. Hafnium isotopic heterogeneity in zircons from granitic rocks:geochemical evaluation and modeling of "zircon effect" in crustal anatexis[J]. Earth and Planetary Science Letters, 389:188-199. doi: 10.1016/j.epsl.2013.12.036

    CrossRef Google Scholar

    TATSUMI Y, 2006. High-Mg andesites in the Setouchi volcanic belt, southwestern Japan:analogy to Archean magmatism and continental crust formation?[J]. Annual Review of Earth and Planetary Sciences, 34:467-499. doi: 10.1146/annurev.earth.34.031405.125014

    CrossRef Google Scholar

    TATSUMI Y, 2008. Making continental crust:the sanukitoid connection[J]. Chinese Science Bulletin, 53(11):1620-1633.

    Google Scholar

    VERNON R H, 1984. Microgranitoid enclaves in granites-globules of hybrid magma quenched in a plutonic environment[J]. Nature, 309(5967):438-439. doi: 10.1038/309438a0

    CrossRef Google Scholar

    WANG D, WANG X L, CAI Y, et al., 2018. Do Hf isotopes in magmatic zircons represent those of their host rocks?[J]. Journal of Asian Earth Sciences, 154:202-212. doi: 10.1016/j.jseaes.2017.12.025

    CrossRef Google Scholar

    WANG Q, LI X H, JIA X H, et al., 2012. Late Early Cretaceous adakitic granitoids and associated magnesian and potassium-rich mafic enclaves and dikes in the Tunchang-Fengmu area, Hainan Province (South China):partial melting of lower crust and mantle, and magma hybridization[J]. Chemical Geology, 328:222-243. doi: 10.1016/j.chemgeo.2012.04.029

    CrossRef Google Scholar

    WANG Q, XU J F, JIAN P, et al., 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China:implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 47(1):119-144. doi: 10.1093/petrology/egi070

    CrossRef Google Scholar

    WANG T, GUO L, LI S, et al., 2019. Some important issues in the study of granite tectonics[J]. Journal of Geomechanics, 25(5):899-919. (in Chinese with English abstract)

    Google Scholar

    WANG W, ZHOU M F, ZHAO X F, et al., 2014b. Late paleoproterozoic to mesoproterozoic rift successions in SW China:implication for the Yangtze Block-North Australia-Northwest Laurentia connection in the Columbia supercontinent[J]. Sedimentary Geology, 309:33-47. doi: 10.1016/j.sedgeo.2014.05.004

    CrossRef Google Scholar

    WANG X C, LI X H, LI W X, et al., 2008. The Bikou basalts in the northwestern Yangtze block, South China:remnants of 820-810 Ma continental flood basalts?[J]. GSA Bulletin, 120(11-12):1478-1492. doi: 10.1130/B26310.1

    CrossRef Google Scholar

    WANG X C, LI Z X, LI X H, et al., 2011. Nonglacial origin for low-δ18O Neoproterozoic magmas in the south china block:evidence from new in-situ oxygen isotope analyses using SIMS[J]. Geology, 39(8):735-738. doi: 10.1130/G31991.1

    CrossRef Google Scholar

    WANG X L, 2017. Some new research progresses and main scientific problems of granitic rocks[J]. Acta Petrologica Sinica, 33(5):1445-1458. (in Chinese with English abstract)

    Google Scholar

    WANG X L, ZHOU J C, GRIFFIN W L, et al., 2014a. Geochemical zonation across a Neoproterozoic orogenic belt:isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China[J]. Precambrian Research, 242:154-171. doi: 10.1016/j.precamres.2013.12.023

    CrossRef Google Scholar

    WANG X L, ZHOU J C, WAN Y S, et al., 2013. Magmatic evolution and crustal recycling for Neoproterozoic strongly peraluminous granitoids from southern China:hf and O isotopes in zircon[J]. Earth and Planetary Science Letters, 366:71-82. doi: 10.1016/j.epsl.2013.02.011

    CrossRef Google Scholar

    WANG Y J, ZHU W G, HUANG H Q, et al., 2019. Ca. 1.04 Ga hot Grenville granites in the western Yangtze block, Southwest China[J]. Precambrian Research, 328:217-234. doi: 10.1016/j.precamres.2019.04.024

    CrossRef Google Scholar

    WEIDENDORFER D, MATTSSON H B, ULMER P, 2014. Dynamics of magma mixing in partially crystallized magma chambers:textural and petrological constraints from the basal complex of the austurhorn intrusion (SE Iceland)[J]. Journal of Petrology, 55(9):1865-1903. doi: 10.1093/petrology/egu044

    CrossRef Google Scholar

    WHALEN J B, CURRIE K L, CHAPPELL B W, 1987. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4):407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    WILSON, M., 1989. Igneous Petrogenesis. Boston Sydney Wellington, Unwin Hyman, London.

    Google Scholar

    WOODHEAD J D, HERGT J M, DAVIDSON J P, et al., 2001. Hafnium isotope evidence for 'conservative' element mobility during subduction zone processes[J]. Earth and Planetary Science Letters, 192(3):331-346. doi: 10.1016/S0012-821X(01)00453-8

    CrossRef Google Scholar

    WU T, WANG X C, LI W X, et al., 2019. Petrogenesis of the ca. 820-810 Ma felsic volcanic rocks in the Bikou Group:implications for the tectonic setting of the western margin of the Yangtze Block[J]. Precambrian Research, 331:105370. doi: 10.1016/j.precamres.2019.105370

    CrossRef Google Scholar

    XIONG Q, ZHENG J P, YU C M, et al., 2009. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang:signification for the Yangtze continental cratonization in Paleoproterozoic[J]. Chinese Science Bulletin, 54(3):436-446.

    Google Scholar

    XU Y G, ZHONG Y T, WEI X, et al., 2017. Permian mantle plumes and Earth's surface system evolution[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(3):358-373. (in Chinese with English abstract)

    Google Scholar

    YANG H, LIU F L, DU L L, et al., 2012. Zircon U-Pb dating for metavolcanites in the Laochanghe Formation of the Dahongshan Group in southwestern Yangtze Block, and its geological significance[J]. Acta Petrologica Sinica, 28(9):2994-3014. (in Chinese with English abstract)

    Google Scholar

    ZHANG B, GUO F, ZHANG X B, et al., 2019. Early Cretaceous subduction of Paleo-Pacific Ocean in the coastal region of SE China:petrological and geochemical constraints from the mafic intrusions[J]. Lithos, 334-335:8-24. doi: 10.1016/j.lithos.2019.03.010

    CrossRef Google Scholar

    ZHANG S B, ZHENG Y F, ZHAO Z F, 2010. Temperature effect over garnet effect on uptake of trace elements in zircon of TTG-like rocks[J]. Chemical Geology, 274(1-2):108-125. doi: 10.1016/j.chemgeo.2010.04.002

    CrossRef Google Scholar

    ZHANG W, 2017. Study on the rock mass deformation and geological significance of the Southwest margin of Yangtze platform Neoproterozoic magmatic complex structure[D]. Beijing: China University of Geosciences (Beijing).

    Google Scholar

    ZHANG W X, ZHU L Q, WANG H, et al., 2018. Generation of post-collisional normal calc-alkaline and adakitic granites in the Tongbai orogen, central China[J]. Lithos, 296-299:513-531. doi: 10.1016/j.lithos.2017.11.033

    CrossRef Google Scholar

    ZHAO G C, CAWOOD P A, 2012. Precambrian geology of China[J]. Precambrian Research, 222-223:13-54. doi: 10.1016/j.precamres.2012.09.017

    CrossRef Google Scholar

    ZHAO J H, ASIMOW P D, ZHOU M F, et al., 2017. An Andean-type arc system in Rodinia constrained by the Neoproterozoic Shimian ophiolite in South China[J]. Precambrian Research, 296:93-111. doi: 10.1016/j.precamres.2017.04.017

    CrossRef Google Scholar

    ZHAO J H, LI Q W, LIU H, et al., 2018. Neoproterozoic magmatism in the western and northern margins of the Yangtze Block (South China) controlled by slab subduction and subduction-transform-edge-propagator[J]. Earth-Science Reviews, 187:1-18. doi: 10.1016/j.earscirev.2018.10.004

    CrossRef Google Scholar

    ZHAO J H, ZHOU M F, 2007a. Neoproterozoic adakitic plutons and arc Magmatism along the western margin of the Yangtze Block, South China[J]. The Journal of Geology, 115(6):675-689. doi: 10.1086/521610

    CrossRef Google Scholar

    ZHAO J H, ZHOU M F, 2007b. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China):implications for subduction-related metasomatism in the upper mantle[J]. Precambrian Research, 152(1-2):27-47. doi: 10.1016/j.precamres.2006.09.002

    CrossRef Google Scholar

    ZHAO J H, ZHOU M F, WU Y B, et al., 2019. Coupled evolution of Neoproterozoic arc mafic magmatism and mantle wedge in the western margin of the South China Craton[J]. Contributions to Mineralogy and Petrology, 174(4):36. doi: 10.1007/s00410-019-1573-7

    CrossRef Google Scholar

    ZHAO J H, ZHOU M F, YAN D P, et al., 2008a, Zircon Lu-Hf isotopic constraints on Neoproterozoic subduction-related crustal growth along the western margin of the Yangtze Block, South China[J]. Precambrian Research, 163 (3-4):189-209. doi: 10.1016/j.precamres.2007.11.003

    CrossRef Google Scholar

    ZHAO J H, ZHOU M F, YAN D P, et al., 2011. Reappraisal of the ages of Neoproterozoic strata in South China:no connection with the Grenvillian orogeny[J]. Geology, 39(4):299-302. doi: 10.1130/G31701.1

    CrossRef Google Scholar

    ZHAO J H, ZHOU M F, ZHENG J P, et al., 2013. Neoproterozoic tonalite and trondhjemite in the Huangling complex, South China:crustal growth and reworking in a continental arc environment[J]. American Journal of Science, 313(6):540-583. doi: 10.2475/06.2013.02

    CrossRef Google Scholar

    ZHAO X F, ZHOU M F, LI J W, et al., 2008b. Association of Neoproterozoic A-and Ⅰ-type granites in south china:implications for generation of A-type granites in a subduction-related environment[J]. Chemical Geology, 257(1-2):1-15. doi: 10.1016/j.chemgeo.2008.07.018

    CrossRef Google Scholar

    ZHAO X F, ZHOU M F, LI J W, et al., 2010. Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China:implications for tectonic evolution of the Yangtze Block[J]. Precambrian Research, 182(1-2):57-69. doi: 10.1016/j.precamres.2010.06.021

    CrossRef Google Scholar

    ZHAO Z F, GAO P, Zheng Y F, 2015. The source of Mesozoic granitoids in South China:integrated geochemical constraints from the Taoshan batholith in the Nanling range[J]. Chemical Geology, 395:11-26. doi: 10.1016/j.chemgeo.2014.11.028

    CrossRef Google Scholar

    ZHENG Y F, 2003. Neoproterozoic magmatic activity and global change[J]. Chinese Science Bulletin, 48(16):1639-1656. doi: 10.1360/03wd0342

    CrossRef Google Scholar

    ZHENG Y F, WU R X, WU Y B, et al., 2008. Rift melting of juvenile arc-derived crust:geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan orogen, South China[J]. Precambrian Research, 163(3-4):351-383. doi: 10.1016/j.precamres.2008.01.004

    CrossRef Google Scholar

    ZHENG Y F, WU Y B, CHEN F K, et al., 2004. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic[J]. Geochimica et Cosmochimica Acta, 68(20):4145-4165. doi: 10.1016/j.gca.2004.01.007

    CrossRef Google Scholar

    ZHENG Y F, XIAO W J, ZHAO G C, 2013. Introduction to tectonics of China[J]. Gondwana Research, 23(4):1189-1206. doi: 10.1016/j.gr.2012.10.001

    CrossRef Google Scholar

    ZHENG Y F, ZHANG S B, ZHAO Z F, et al., 2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:implications for growth and reworking of continental crust[J]. Lithos, 96(1-2):127-150. doi: 10.1016/j.lithos.2006.10.003

    CrossRef Google Scholar

    ZHOU M F, MA Y X, YAN D P, et al., 2006a. The Yanbian Terrane (Southern Sichuan Province, SW China):a Neoproterozoic arc assemblage in the western margin of the Yangtze Block[J]. Precambrian Research, 144(1-2):19-38. doi: 10.1016/j.precamres.2005.11.002

    CrossRef Google Scholar

    ZHOU M F, YAN D P, KENNEDY A K, et al., 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 196(1-2):51-67. doi: 10.1016/S0012-821X(01)00595-7

    CrossRef Google Scholar

    ZHOU M F, YAN D P, WANG C L, et al., 2006b. Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China):implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China[J]. Earth and Planetary Science Letters, 248(1-2):286-300. doi: 10.1016/j.epsl.2006.05.032

    CrossRef Google Scholar

    ZHU G Z, GERYA T V, YUEN D A, et al., 2009. Three-dimensional dynamics of hydrous thermal-chemical plumes in oceanic subduction zones[J]. Geochemistry, Geophysics, Geosystems, 10(11):Q11006.

    Google Scholar

    ZHU W G, 2004. Geochemical characteristics and tectonic setting of Neoproterozoic mafic-ultramafic rocks in western margin of the Yangtze Craton: Exampled by the Gaojiacun complex and Lengshuiqing No. 101 complex[D]. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences. (in Chinese with English abstract)

    Google Scholar

    ZHU W G, ZHONG H, LI X H, et al., 2008. SHRIMP zircon U-Pb geochronology, elemental, and Nd isotopic geochemistry of the Neoproterozoic mafic dykes in the Yanbian area, SW China[J]. Precambrian Research, 164(1-2):66-85. doi: 10.1016/j.precamres.2008.03.006

    CrossRef Google Scholar

    ZHU W G, ZHONG H, LI Z X, et al., 2016. SIMS zircon U-Pb ages, geochemistry and Nd-Hf isotopes of ca. 1.0 Ga mafic dykes and volcanic rocks in the Huili area, SW China:origin and tectonic significance[J]. Precambrian Research, 273:67-89. doi: 10.1016/j.precamres.2015.12.011

    CrossRef Google Scholar

    ZHU Y, LAI S C, QIN J F, et al., 2019a. Geochemistry and zircon U-Pb-Hf isotopes of the 780 Ma Ⅰ-type granites in the western Yangtze Block:petrogenesis and crustal evolution[J]. International Geology Review, 61(10):1222-1243. doi: 10.1080/00206814.2018.1504330

    CrossRef Google Scholar

    ZHU Y, LAI S C, QIN J F, et al., 2019b. Petrogenesis and geodynamic implications of Neoproterozoic gabbro-diorites, adakitic granites, and A-type granites in the southwestern margin of the Yangtze Block, South China[J]. Journal of Asian Earth Sciences, 183:103977. doi: 10.1016/j.jseaes.2019.103977

    CrossRef Google Scholar

    ZHU Y, LAI S C, QIN J F, et al., 2019c. Neoproterozoic peraluminous granites in the western margin of the Yangtze Block, South China:implications for the reworking of mature continental crust[J]. Precambrian Research, 333:105443. doi: 10.1016/j.precamres.2019.105443

    CrossRef Google Scholar

    ZHU Y, LAI S C, QIN J F, et al., 2020a. Genesis of ca. 850-835 Ma high-Mg# diorites in the western Yangtze Block, South China:implications for mantle metasomatism under the subduction process[J]. Precambrian Research, 343:105738. doi: 10.1016/j.precamres.2020.105738

    CrossRef Google Scholar

    ZHU Y, LAI S C, QIN J F, et al., 2020b. Petrogenesis and geochemical diversity of late Mesoproterozoic S-type granites in the western Yangtze Block, South China:co-entrainment of peritectic selective phases and accessory minerals[J]. Lithos, 352-353:105326. doi: 10.1016/j.lithos.2019.105326

    CrossRef Google Scholar

    ZHU Y, LAI S C, ZHAO S W, et al., 2017. Geochemical characteristics and geological significance of the Neoproterozoic K-feldspar granites from the Anshunchang, Shimian area, Western Yangtze Block[J]. Geological Review, 63(5):1193-1208. (in Chinese with English abstract)

    Google Scholar

    郭春丽, 王登红, 陈毓川, 等, 2007.川西新元古代花岗质杂岩体的锆石SHRIMP U-Pb年龄、元素和Nd-Sr同位素地球化学研究:岩石成因与构造意义[J].岩石学报, 23(10):2457-2470.

    Google Scholar

    赖绍聪, 秦江锋, 朱韧之, 等, 2015.扬子地块西缘天全新元古代过铝质花岗岩类成因机制及其构造动力学背景[J].岩石学报, 31(8):2245-2258.

    Google Scholar

    李奇维, 2018.扬子板块新元古代基性脉岩成因及地质意义[D].武汉: 中国地质大学.

    Google Scholar

    李献华, 李武显, 何斌, 2012.华南陆块的形成与Rodinia超大陆聚合-裂解:观察、解释与检验[J].矿物岩石地球化学通报, 31(6):543-559.

    Google Scholar

    林广春, 2006.川西新元古代岩浆岩的SHRIMP锆石U-Pb年代学、元素和Nd-Hf同位素地球化学: 岩石成因与构造意义[D].广州: 中国科学院研究生院(广州地球化学研究所).

    Google Scholar

    王涛, 郭磊, 李舢, 等, 2019.花岗岩大地构造研究的若干重要问题[J].地质力学学报, 25(5):899-919.

    Google Scholar

    王孝磊. 2017.花岗岩研究的若干新进展与主要科学问题[J].岩石学报, 33(5):1445-1458.

    Google Scholar

    徐义刚, 钟玉婷, 位荀, 等, 2017.二叠纪地幔柱与地表系统演变[J].矿物岩石地球化学通报, 36(3):358-373.

    Google Scholar

    杨红, 刘福来, 杜利林, 等, 2012.扬子地块西南缘大红山群老厂河组变质火山岩的锆石U-Pb定年及其地质意义[J].岩石学报, 28(9):2994-3014.

    Google Scholar

    张慰, 2017.扬子地台西南缘新元古代岩浆杂岩体的构造变形与地质意义[D].北京: 中国地质大学(北京).

    Google Scholar

    郑永飞, 2003.新元古代岩浆活动与全球变化[J].科学通报, 48(16):1705-1720.

    Google Scholar

    朱维光, 2004.扬子地块西缘新元古代镁铁质-超镁铁质岩的地球化学特征及其地质背景: 以盐边高家村杂岩体和冷水箐101号杂岩体为例[D].贵阳: 中国科学院研究生院(地球化学研究所).

    Google Scholar

    朱毓, 赖绍聪, 赵少伟, 等, 2017.扬子板块西缘石棉安顺场新元古代钾长花岗岩地球化学特征及其地质意义[J].地质论评, 63(5):1193-1208.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(19)

Article Metrics

Article views(2489) PDF downloads(76) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint