Citation: | YANG Jingsui. 2020. Diamond in oceanic peridotites-chromitites and recycled in deep mantle. Journal of Geomechanics, 26(5): 731-741. doi: 10.12090/j.issn.1006-6616.2020.26.05.060 |
Microdiamonds have been recovered from mantle rocks and associated podiform chromitites in many ophiolites across the world and, in particular, in-situ diamonds were found in ophiolitic chromitites in Southern Tibet and Northern Ural. Microdiamonds in ophiolites present a new type occurrence of diamonds on Earth, different from those diamonds occurring in kimberlites and ultrahigh pressure metamorphic belts. The discoveries of pressure-sensitive minerals such as coesites with stishovite pseudomorph, high-pressure facies chromitites and Qingsongites (BN) indicate that ophiolitic chromitite may form at depths of >150~300 km or even deeper in the mantle. The very light C isotope composition (δ13C -18‰ to -28‰) of these ophiolitic diamonds, Mn-bearing mineral inclusions observed in these diamonds and coesite occurring in chromite all indicate the recycling of ancient continental or oceanic materials into the deep mantle (>300 km) or down to the mantle transition zone via subduction. These new observations and data strongly suggest that microdiamonds and their host podiform chromitite may have formed near the transition zone in the deep mantle, and that they were then transported upward into shallow mantle depths by convection processes. Thus, a new model has been proposed for deep subduction and recycling of oceanic crust in deep mantle. The discovery of diamonds and other UHP minerals from peridotites and chromitities in ophiolites doubts the current shallow genesis of ophiolitic chromitites and raises a serious of new scientific questions which leads to a new research direction.
ARAI S, 1997. Origin of podiform chromitites[J]. Journal of Asian Earth Sciences, 15(2-3):303-310. doi: 10.1016/S0743-9547(97)00015-9 |
ARAI S, 2013. Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling:A good inference[J]. Earth and Planetary Science Letters, 379:81-87. doi: 10.1016/j.epsl.2013.08.006 |
BAI W J, ZHOU M F, ROBINSON P T, 1993. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet[J]. Canadian Journal of Earth Sciences, 30(8):1650-1659. doi: 10.1139/e93-143 |
BALLHAUS C, WIRTH R, FONSECA R O C, et al., 2017. Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes[J]. Geochemical Perspectives Letters, 5:42-46. |
BERCOVICI D, KARATO S I, 2003. Whole-mantle convection and the transition-zone water filter[J]. Nature, 425(6953):39-44. doi: 10.1038/nature01918 |
BUSLOV M M, SAPHONOVA Y I, WATANABE T, et al., 2001. Evolution of the paleo-asian ocean (altai-sayan region, central asia) and collision of possible gondwana-derived terranes with the southern marginal part of the siberian continent[J]. Geosciences Journal, 5(3):203-224. |
BUTLER J P, BEAUMONT C, 2017. Subduction zone decoupling/retreat modeling explains south Tibet (Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases[J]. Earth and Planetary Science Letters, 463:101-117. doi: 10.1016/j.epsl.2017.01.025 |
CARTIGNY P, 2005. Stable isotopes and the origin of diamond[J]. Elements, 1(2):79-84. doi: 10.2113/gselements.1.2.79 |
CARTIGNY P, DE CORTE K, SHATSKY V S, et al., 2001. The origin and formation of metamorphic microdiamonds from the Kokchetav massif, Kazakhstan:a nitrogen and carbon isotopic study[J]. Chemical Geology, 176(1-4):265-281. doi: 10.1016/S0009-2541(00)00407-1 |
CHICHEST INC, 1997. There are no primary or residual diamonds in the mantle peridotite of Lobusa or Dongqiao, Tibet[J] Tibet Geology, (1):103-112. (in Chinese) |
COLEMAN R G, 2014. The ophiolite concept evolves[J]. Elements, 10(2):82-84. doi: 10.2113/gselements.10.2.82 |
CONDIE K C, 2018. A planet in transition:The onset of plate tectonics on Earth between 3 and 2 Ga?[J]. Geoscience Frontiers, 9(1):51-60. DOI:10.1016/j.gsf.2016.09.001. |
COURTILLOT V, DAVAILLE A, BESSE J, et al., 2003. Three distinct types of hotspots in the Earth's mantle[J]. Earth and Planetary Science Letters, 205(3-4):295-308. doi: 10.1016/S0012-821X(02)01048-8 |
DAS S, BASU A R, MUKHERJEE B K, 2017. In situ peridotitic diamond in Indus ophiolite sourced from hydrocarbon fluids in the mantle transition zone[J]. Geology, 45(8):755-758. |
DAS S, MUKHERJEE B K, BASU A R, et al., 2015. Peridotitic minerals of the Nidar Ophiolite in the NW Himalaya:sourced from the depth of the mantle transition zone and above[J]. Geological Society, London, Special Publications, 412(1):271-286. doi: 10.1144/SP412.12 |
DE PABLO J F, PROENZA J A, GONZÁLEZ-JIMÉNEZ J M, et al., 2018. A shallow origin for diamonds in ophiolitic chromitites[J]. Geology, 47(1):75-78. |
DENG Z B, CHAUSSIDON M, GUITREAU M, et al., 2019. An oceanic subduction origin for Archaean granitoids revealed by silicon isotopes[J]. Nature Geoscience, 12(9):774-778. doi: 10.1038/s41561-019-0407-6 |
DILEK Y, FURNES H, 2011. Ophiolite genesis and global tectonics:Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin, 123(3-4):387-411. doi: 10.1130/B30446.1 |
DILEK Y, FURNES H, 2014. Ophiolites and their origins[J]. Elements, 10(2):93-100. doi: 10.2113/gselements.10.2.93 |
DOBRZHINETSKAYA L F, WIRTH R, YANG J S, et al., 2009. High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite[J]. Proceedings of the National Academy of Sciences of the United States of America, 106(46):19233-19238. doi: 10.1073/pnas.0905514106 |
DOBRZHINETSKAYA L F, WIRTH R, YANG J S, et al., 2014. Qingsongite, natural cubic boron nitride:the first boron mineral from the Earth's mantle[J]. American Mineralogist, 99(4):764-772. doi: 10.2138/am.2014.4714 |
DRESSER J A, 1913. Preliminary report on the serpentine and associated rocks of southern Quebec[R]. Geological Survey of Canada, 103. DOI: 10.1017/S0016756800153531. |
FURNES H, DE WIT M, STAUDIGEL H, et al., 2007. A vestige of earth's oldest ophiolite[J]. Science, 315(5819):1704-1707. doi: 10.1126/science.1139170 |
GASS I G, 1968. Is the Troodos massif of Cyprus a fragment of Mesozoic ocean floor?[J]. Nature, 220(5162):39-42. doi: 10.1038/220039a0 |
GRAND S P, VAN DER HILST R D, WIDIYANTORO S, 1997. Global Seismic Tomography:A Snapshot of Convection in the Earth[J]. Geological Society of America Today, 7(4):1-7. |
GRIFFIN W L, AFONSO J C, BELOUSOVA E A, et al., 2016. Mantle recycling:transition zone metamorphism of tibetan ophiolitic peridotites and its tectonic implications[J]. Journal of Petrology, 57(4):655-684. doi: 10.1093/petrology/egw011 |
HIROSE K, FEI Y W, MA Y Z, et al., 1999. The fate of subducted basaltic crust in the Earth's lower mantle[J]. Nature, 397(6714):53-56. doi: 10.1038/16225 |
HOWELL D, GRIFFIN W L, YANG J S, et al., 2015. Diamonds in ophiolites:Contamination or a new diamond growth environment?[J]. Earth and Planetary Science Letters, 430:284-295. doi: 10.1016/j.epsl.2015.08.023 |
HUANG Z, YANG J S, ROBINSON P T, et al., 2015. The Discovery of diamonds in chromitites of the hegenshan Ophiolite, inner Mongolia, China[J]. Acta Geologica Sinica (English Edition), 892(2):341-350. |
LAMBERT I B, WYLLIE P J, 1970. Low-velocity zone of the Earth's mantle:incipient melting caused by water[J]. Science, 169(3947):764-766. doi: 10.1126/science.169.3947.764 |
LI S Z, CAO X Z, WANG G Z, et al., 2019. Meso-cenozoic tectonic evolution and plate reconstruction of the pacific plate[J]. Journal of Geomechanics, 25(5):642-677. DOI:10.12090/j.issn.1006-6616.2019.25.05.060.. |
LI Z Y, LI J, LANGE R, et al., 2017. Determination of calcium carbonate and sodium carbonate melting curves up to Earth's transition zone pressures with implications for the deep carbon cycle[J]. Earth and Planetary Science Letters, 457:395-402. doi: 10.1016/j.epsl.2016.10.027 |
LIAN D Y, YANG J S, DILEK Y, et al., 2017. Deep mantle origin and ultra-reducing conditions in podiform chromitite:Diamond, moissanite, and other unusual minerals in podiform chromitites from the Pozanti-Karsanti ophiolite, southern Turkey[J]. American Mineralogist, 102(5):1101-1113. |
LIAN D Y, YANG J S, WIEDENBECK M, et al., 2018. Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti-Karsanti chromitite, Turkey[J]. Contributions to Mineralogy and Petrology, 173:72. doi: 10.1007/s00410-018-1499-5 |
LIAN D Y, YANG J S, LIU F, et al., 2019. Diamond Classification, Compositional Characteristics, and Research Progress:A Review[J]. Earth Science, 044(010):P.3409-3453. |
LIAN D Y, YANG J S. 2019. Ophiolite-Hosted Diamond:A New Window for Probing Carbon Cycling in the Deep Mantle[J]. Engineering, 5(3):351-594. doi: 10.1016/j.eng.2019.05.002 |
LIOU J G, ERNST W G, ZHANG R Y, et al., 2009. Ultrahigh-pressure minerals and metamorphic terranes-The view from China[J]. Journal of Asian Earth Sciences, 35(3-4):199-231. doi: 10.1016/j.jseaes.2008.10.012 |
LIOU J G, TSUJIMORI T, YANG J S, et al., 2014. Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths:a review[J]. Journal of Asian Earth Sciences, 96:386-420. doi: 10.1016/j.jseaes.2014.09.011 |
LITASOV K D, KAGI H, VOROPAEV S A, et al., 2019. Comparison of enigmatic diamonds from the Tolbachik arc volcano (Kamchatka) and Tibetan ophiolites:Assessing the role of contamination by synthetic materials[J]. Gondwana Research, 75:16-27. doi: 10.1016/j.gr.2019.04.007 |
LIU H, SUN W D, ZARTMAN R, et al., 2019. Continuous plate subduction marked by the rise of alkali magmatism 2.1 billion years ago[J]. Nature Communications, 10:3408. doi: 10.1038/s41467-019-11329-z |
LIU J, HU Q Y, KIM D Y, et al., 2017. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones[J]. Nature, 551(7681):494-497. doi: 10.1038/nature24461 |
LU H Z, 2019. Geofluids and across earth sphere structures[J]. Journal of Geomechanics, 25(6):1003-1012.DOI:10.12090/j.issn.1006-6616.2019.25.06.083. |
MAO H K, HU Q Y, YANG L X, et al., 2017. When water meets iron at Earth's core-mantle boundary[J]. National Science Review, 4(6):870-878. doi: 10.1093/nsr/nwx109 |
MOE K S, YANG J S, JOHNSON P, et al., 2018. Spectroscopic analysis of microdiamonds in ophiolitic chromitite and peridotite[J]. Lithosphere, 10(1):133-141. |
NAKAGAWA M, SANTOSH M, MARUYAMA S, 2011. Manganese formations in the accretionary belts of Japan:Implications for subduction-accretion process in an active convergent margin[J]. Journal of Asian Earth Sciences, 42(3):208-222. doi: 10.1016/j.jseaes.2011.04.005 |
NICOLAS A, 1989. Structures of ophiolites and dynamics of oceanic lithosphere[M]. Netherlands:Springer:367. |
NIU X L, YANG J S, NASIR S, et al., 2020. A trip through Oceanic Lithosphere:2019 international workshop and field trip of IGCP 649 in Muscat, Oman[J]. Episodes, 43:1-8. |
ROBINSON P T, BAI W J, MALPAS J, et al., 2004. Ultrahigh-pressure minerals in the Luobusa Ophiolite, Tibet, and their tectonic implications[J]. Geological Society, London, Special Publication, 226(1):247-271. doi: 10.1144/GSL.SP.2004.226.01.14 |
ROBINSON P T, TRUMBULL R B, SCHMITT A, et al., 2015. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites[J]. Gondwana Research, 27(2):486-506. doi: 10.1016/j.gr.2014.06.003 |
ROLLINSON H, 2016. Surprises from the top of the mantle transition zone[J]. Geology Today, 32(2):58-64. |
RUBIE D C, VAN DER HILST R D, 2001. Processes and consequences of deep subduction:introduction[J]. Physics of the Earth and Planetary Interiors, 127(1-4):1-7. doi: 10.1016/S0031-9201(01)00217-5 |
ŞENGöR A M C, 1979. Mid-Mesozoic closure of Permo-Triassic tethys and its implications[J]. Nature, 279(5714):590-593. doi: 10.1038/279590a0 |
SHILO N A, KAMINSKIY F V, PALANDZHYAN S, et al., 1978. First diamond finds in Alpine-type ultrabasic rocks in the Northeastern USSR[J]. Doklady Earth Sciences, 241:179-182. |
SUN W D, HAWKESWORTH C J, YAO C, et al., 2018. Carbonated mantle domains at the base of the Earth's transition zone[J]. Chemical Geology, 478:69-75. doi: 10.1016/j.chemgeo.2017.08.001 |
TANG M, CHEN K, RUDNICK R L, 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics[J]. Science, 351(6271):372-375. doi: 10.1126/science.aad5513 |
TAYLOR W R, MILLEDGE H J, GRIFFIN B J, et al., 1995. Characteristics of microdiamonds from ultramafic massifs in Tibet:authentic ophiolitic diamonds or contamination? Sixth international kimberlite conference; extended abstracts[R]. Proceedings of the International Kimberlite Conference, 6:623-624. |
TIAN Y Z, YANG J S, ROBINSON P T, et al., 2015. Diamond discovered in High-Al chromitites of the sartohay ophiolite, Xinjiang province, China[J]. Acta Geologica Sinica (English Edition), 89(2):332-340. doi: 10.1111/1755-6724.12433 |
TORSVIK T H, BURKE K, STEINBERGER B, et al., 2010. Diamonds sampled by plumes from the core-mantle boundary[J]. Nature, 466(7304):352-355. doi: 10.1038/nature09216 |
TRUMBULL R B, YANG J S, ROBINSON P T, et al., 2009. The carbon isotope composition of natural SiC (moissanite) from the Earth's mantle:New discoveries from ophiolites[J]. Lithos, 113(3-4):612-620. doi: 10.1016/j.lithos.2009.06.033 |
WU W W, YANG J S, MA C Q, et al., 2017. Discovery and significance of diamonds and Moissanites in Chromitite within the Skenderbeu massif of the Mirdita zone Ophiolite, west Albaznia[J]. Acta Geologica Sinica (English Edition), 91(3):882-897. doi: 10.1111/1755-6724.13316 |
WU Y, XU M J, JIN Z M, et al., 2016. Experimental constraints on the formation of the Tibetan podiform chromitites[J]. Lithos, 245:109-117. doi: 10.1016/j.lithos.2015.08.005 |
XIAO W J, HUANG B C, HAN C M, et al., 2010. A review of the western part of the Altaids:A key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 18(2-3):253-273. doi: 10.1016/j.gr.2010.01.007 |
XIONG F H, YANG J S, ROBINSON P T, et al., 2017. Diamonds discovered from High-Cr Podiform chromitites of Bulqiza, eastern Mirdita Ophiolite, Albania[J]. Acta Geologica Sinica (English Edition), 91(2):455-468. doi: 10.1111/1755-6724.13111 |
XU X Z, YANG J S, BA D Z, et al., 2008. Diamond discovered from the Kangjinla chromitite in the Yarlung Zangbo ophiolite belt, Tibet[J]. Acta Petrologica Sinica, 24(7)7:1453-1462. (in Chinese with English abstract) |
XU X Z, YANG J S, CHEN S Y, et al., 2009. Unusual mantle mineral group from chromitite orebody Cr-11 in Luobusa ophiolite of Yarlung-Zangbo suture zone, Tibet[J]. Journal of Earth Sciences, 20(2):284-302. |
XU X Z, YANG J S, ROBINSON P T, et al., 2015. Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet[J]. Gondwana Research, 27(2):686-700. doi: 10.1016/j.gr.2014.05.010 |
YAMAMOTO S, KOMIYA T, HIROSE K, et al., 2009. Coesite and clinopyroxene exsolution lamellae in chromites:In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet[J]. Lithos, 109(3-4):314-322. doi: 10.1016/j.lithos.2008.05.003 |
YANG J S, DILEK Y, ROBINSON P T, 2014a. Diamonds in ophiolites:a little-known diamond occurrence[J]. Elements, 10:123-126. |
YANG J S, DOBRZHINETSKAYA L, BAI W J, et al., 2007. Diamond-and coesite-bearing chromitites from the Luobusa ophiolite, Tibet[J]. Geology, 35(10):875-878. doi: 10.1130/G23766A.1 |
YANG J S, LIAN D Y, ROBINSON P T, et al., 2019a. Comment on "A shallow origin for diamonds in ophiolitic chromitites"[J]. Geology, 47(8):e475-e475. DOI:10.1130/G46446C.1. |
YANG J S, MENG F C, XU X Z, et al., 2015a. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals[J]. Gondwana Research, 27(2):459-485. doi: 10.1016/j.gr.2014.07.004 |
YANG J S, PEARCE J, DILEK Y, 2016. Probing the Troodos ophiolite:IGCP-649 workshop and field excursion held in Agros-Cyprus[J]. Acta Geologica Sinica (English Edition), 90(3):1041-1044. doi: 10.1111/1755-6724.12744 |
YANG J S, QIU T, CASTRO A I L, 2017. Report on the third IGCP-649 international workshop on the mayarí-baracoa ophiolites and chromitites, cuba[J]. Acta Geologica Sinica (English Edition), 91(6):2305-2309. doi: 10.1111/1755-6724.13466 |
YANG J S, ROBINSON P T, DILEK Y, 2015b. Diamond-bearing ophiolites and their geological occurrence[J]. Episodes, 38(4):344-364. doi: 10.18814/epiiugs/2015/v38i4/82430 |
YANG J S, SHEN T T, 2018b. IGCP-649 project held 2018 international workshop and field trip in Brisbane, Australia and New Caledonia[J]. Episodes, 41(4):259-265. doi: 10.18814/epiiugs/2018/v41i4/005 |
YANG J S, SHEN T T, ZHANG C, et al., 2019b. Preface:introduction of IGCP 649 project-diamonds and recycled mantle[J]. Journal of Earth Science, 30(3):429-430. doi: 10.1007/s12583-019-1229-6 |
YANG J S, SIMAKOV S K, MOE K, et al., 2020. Comment on "Comparison of enigmatic diamonds from the Tolbachik arc volcano (Kamchatka) and Tibetan ophiolites:Assessing the role of contamination by synthetic materials" by Litasov et al., 2019[J]. Gondwana Research, 79:301-303. doi: 10.1016/j.gr.2019.09.010 |
YANG J S, TRUMBULL R B, ROBINSON P T, et al., 2018a. Comment on "Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes"[J]. Geochemical Perspectives Letters, 8:6-7. DOI:10.7185/geochemlet.1820. |
YANG J S, XU X Z, BAI W J, et al., 2014b. Features of diamond in ophiolite[J]. Acta Petrologica Sinica, 30(8):2113-2124. (in Chinese with English abstract) |
YANG J S, XU X Z, LI Y, et al., 2011a. Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung-Zangbo suture of Tibet:A proposal for a new type of diamond occurrence[J]. Acta Petrologica Sinica, 27(11):3171-3178. (in Chinese with English abstract) |
YANG J S, XU X Z, LI Y, et al., 2011b. Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung-Zangbo suture of Tibet and its implications[J]. Acta Petrologica Sinica, 27(11):3207-3222. (in Chinese with English abstract) |
YANG J S, XU X Z, ZHANG Z M, et al., 2013. Ophiolite-type diamond and deep genesis of chromitite[J]. Acta Geoscientia Sinica, 34(6):643-653. (in Chinese with English abstract) |
ZHANG R Y, SHAU Y H, YANG J S, et al., 2017a. Discovery of clinoenstatite in the Luobusa ophiolitic mantle peridotite recovered from a drill hole, Tibet[J]. Journal of Asian Earth Sciences, 145:605-612. doi: 10.1016/j.jseaes.2017.07.003 |
ZHANG R Y, YANG J S, ERNST W G, et al., 2016. Discovery of in situ super-reducing, ultrahigh-pressure phases in the Luobusa ophiolitic chromitites, Tibet:New insights into the deep upper mantle and mantle transition zone[J]. American Mineralogist, 101(5-6):1285-1294 |
ZHANG Y F, JIN Z M, GRIFFIN W L, et al., 2017b. High-pressure experiments provide insights into the Mantle Transition Zone history of chromitite in Tibetan ophiolites[J]. Earth and Planetary Science Letters, 463:151-158. doi: 10.1016/j.epsl.2017.01.036 |
ZHAO P D, OHTANI E, 2009. Deep slab subduction and dehydration and their geodynamic consequences:evidence from seismology and mineral physics[J]. Gondwana Research, 16(3-4):401-413. doi: 10.1016/j.gr.2009.01.005 |
ZHOU M F, ROBINSON P T, MALPAS J, et al., 1996. Podiform chromitites in the Luobusa Ophiolite (southern Tibet):implications for melt-rock interaction and chromite segregation in the upper mantle[J]. Journal of Petrology, 37(1):3-21. doi: 10.1093/petrology/37.1.3 |
ZHOU M F, ROBINSON P T, SU B X, et al., 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits:The role of slab contamination of asthenospheric melts in suprasubduction zone environments[J]. Gondwana Research, 26(1):262-283. doi: 10.1016/j.gr.2013.12.011 |
李三忠, 曹现志, 王光增, 等, 2019.太平洋板块中-新生代构造演化及板块重建[J].地质力学学报, 25(5):642-677. DOI:10.12090/j.issn.1006-6616.2019.25.05.060. |
连东洋, 杨经绥, 刘飞, 等. 2019.金刚石分类, 组成特征以及我国金刚石研究展望[J].地球科学, 044(010):P.3409-3453. |
卢焕章, 2019.地球中的流体和穿越层圈构造[J].地质力学学报, 25(6):1003-1012. DOI:10.12090/j.issn.1006-6616.2019.25.06.083. |
切切斯特钻石公司考察团, 1997.西藏罗布莎和东巧地幔橄榄岩中不存在原生或残留的金刚石.西藏地质, (1):103-112. |
徐向珍, 杨经绥, 巴登珠, 等, 2008.雅鲁藏布江蛇绿岩带的康金拉铬铁矿中发现金刚石.岩石学报, 24(7):1453-1462. |
杨经绥, 徐向珍, 李源, 等, 2011a.西藏雅鲁藏布江缝合带的普兰地幔橄榄岩中发现金刚石:蛇绿岩型金刚石分类的提出.岩石学报, 27(11):3171-3178. doi: 10.1016/S1002-0160(11)60127-6 |
杨经绥, 徐向珍, 李源, 等, 2011b.西藏雅鲁藏布江缝合带的普兰地幔橄榄岩中发现金刚石及其意义.岩石学报, 27(11):3207-3222. |
杨经绥, 徐向珍, 张仲明, 等, 2013.蛇绿岩型金刚石和铬铁矿深部成因.地球学报, 34(6):643-653. |
杨经绥, 徐向珍, 白文吉, 等, 2014b.蛇绿岩型金刚石的特征.岩石学报, 30(8):2113-2124. |
Locations of microdiamonds-bearing ophiolites on Earth (Lian et al., 2019)
Microdiamonds discovered from the chromitites in the Luobusa ophiolite, Tibet(Yang et al., 2014b)
Discovery of in-suit diamonds from chromite
Microphotos showing in-situ diamonds and carbon composition mapping (Yang et al., 2014a, 2015a)
Characteristics of carbon isotopes for different types of diamonds in ophiolitic chromite from Tibet and Ural. (Data are cited from Yang et al., 2015a; Cartigny, 2005)
Mineral inclusions in diamonds from ophiolitic chromitites
Microscopic images of TiFe alloy in the Luobusa chromitite
A model to explain the presence of ophiolite-hosted diamonds in chromitites and mantle peridotites in MOR and BAB environments (Yang et al., 2015b)