2020 Vol. 26, No. 4
Article Contents

LIU Zheng, LI Bin, HE Kai, GAO Yang, WANG Wenpei. 2020. An analysis of dynamic response characteristics of the Yigong Landslide in Tibet under strong earthquake. Journal of Geomechanics, 26(4): 471-480. doi: 10.12090/j.issn.1006-6616.2020.26.04.040
Citation: LIU Zheng, LI Bin, HE Kai, GAO Yang, WANG Wenpei. 2020. An analysis of dynamic response characteristics of the Yigong Landslide in Tibet under strong earthquake. Journal of Geomechanics, 26(4): 471-480. doi: 10.12090/j.issn.1006-6616.2020.26.04.040

An analysis of dynamic response characteristics of the Yigong Landslide in Tibet under strong earthquake

More Information
  • The Yarlung Zangbo River Grand Canyon area in Tibet is a highly prone area for earthquake-triggered landslides,where several landslides have occurred before. Taking the Yigong Landslide as an example,this article analyzes the frequency response characteristics of the Yigong Mountain by using the FLAC3D finite difference method. Based on the results,the amplification effect of the Yigong Mountain under seismic waves is discussed and the stability of the Yigong Landslide remnant under the condition of near-field strong earthquakes is predicted. Results show that the overall predominant frequency of the Yigong Mountain is at a low value. The predominant frequencies of the mountain top mainly concentrate below 1 Hz,while that of both sides of the mountain top vary from 2~6 Hz. Under the action of seismic waves,the predominant frequencies of the top and both sides of the mountain appear different degrees of amplification,and that in the mountain interior along the height upward shows the change of first increasing then decreasing,and then increasing again. The calculated results are basically identical with the frequency analysis. Stability analysis shows that the Yigong Landslide remnant keeps stable with a safety factor of 1.27 in static condition; however,the results under the earthquake show the occurrence of instability and failure. Finally,it is predicted that the damage of the Yigong Landslide remnant will obviously increase when considering both horizontal and vertical seismic waves. Therefore,it is necessary to strengthen the risk analysis and prediction of mountains under the condition of near-field strong earthquakes.

  • 加载中
  • ASHFORD S A, SITAR N.1997. Analysis of topographic amplification of inclined shear waves in a steep coastal Bluff[J]. Bulletin of the Seismological Society of America, 87(3):692-700.

    Google Scholar

    ASHFORD S A, SITAR N, LYSMER J, et al., 1997. Topographic effects on the seismic response of steep slopes[J]. Bulletin of the Seismological Society of America, 87(3):701-709.

    Google Scholar

    BAI Y J, NI H Y, GE H.2019. Advances in research on the geohazard effect of active faults on the southeastern margin of the Tibetan plateau[J]. Journal of Geomechanics, 25(6):1166-1128. (in Chinese with English abstract)

    Google Scholar

    BOURDEAU C, HAVENITH H B.2008. Site effects modelling applied to the slope affected by the suusamyr earthquake (Kyrgyzstan.1992)[J]. Engineering Geology, 97(3-4):126-145. doi: 10.1016/j.enggeo.2007.12.009

    CrossRef Google Scholar

    CHEN J C, WANG L M, WANG P, et al., 2020. Dynamic response of loess slopes based on the shake table test[J]. China Earthquake Engineering Journal, 42(2):529-535. (in Chinese with English abstract)

    Google Scholar

    DI FIORE V.2010. Seismic site amplification induced by topographic irregularity:results of a numerical analysis on 2D synthetic models[J]. Engineering Geology, 114(3-4):109-115. doi: 10.1016/j.enggeo.2010.05.006

    CrossRef Google Scholar

    HARP E L, JIBSON R W.2002. Anomalous concentrations of seismically triggered rock falls in Pacoima canyon:are they caused by highly susceptible slopes or local amplification of seismic shaking?[J]. Bulletin of the Seismological Society of America, 92(8):3180-3189. doi: 10.1785/0120010171

    CrossRef Google Scholar

    Itasca Consulting Group Inc.2005. FLAC (fast Lagrange analysis of continua) slope user's guide (version 5.0)[R]. Minneapolis, Minnesota.

    Google Scholar

    LI N, WANG B Q, Men Y M, et al., 2018. Study on dynamic response of landslide supported by pressure-type anchor under earthquake[J]. Journal of Geomechanics, 24(4):490-497. (in Chinese with English abstract)

    Google Scholar

    LIU H D, NIU L F, YUAN F Q, et al., 2018. Test research on the influence of seismic wave frequency on the dynamic response of a layered rock slope[J]. Hydrogeology and Engineering Geology, 45(2):77-83.(in Chinese with English abstract)

    Google Scholar

    LIU Z, LI B, HE K, et al., 2020. Research of dynamic response patterns of high steep rock slope under earthquake effects[J]. Journal of Geomechanics, 26(1):116-125. (in Chinese with English abstract)

    Google Scholar

    LUO Y H.2011. Study on complex slopes response law under earthquake action[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)

    Google Scholar

    MEUNIER P, HOVIUS N, HAINES J A.2008. Topographic site effects and the location of earthquake induced landslides[J]. Earth and Planetary Science Letters, 275(3-4):221-232. doi: 10.1016/j.epsl.2008.07.020

    CrossRef Google Scholar

    MITANI Y, WANG F W, OKEKE A C, et al., 2013. Dynamic analysis of earthquake amplification effect of slopes in different topographic and geological conditions by using ABAQUS[M]//WANG F W, MIYAJIMA M, LI T L, et al. Progress of Geo-Disaster Mitigation Technology in Asia. Berlin, Heidelberg:Springer:469-490.

    Google Scholar

    QI S W.2006. Two patterns of dynamic responses of single-free-surface slopes and their threshold height[J]. Chinese Journal of Geophysics, 49(2):518-523. (in Chinese with English abstract)

    Google Scholar

    QI S W, WU F Q, SUN J Z.2003. General regularity of dynamic responses of slopes under dynamic input[J]. Science in China Series E (Technological Sciences), 46(S1):28-40. (in Chinese)

    Google Scholar

    SUN P, YIN Y, CHEN L W.2011. Numerical analysis of the failure mechanism of the Donghekou rockslide in the Wenchuan earthquake region with FLAC[J]. Hydrogeology and Engineering Geology, 38(5):87-91.(in Chinese with English abstract)

    Google Scholar

    SUN Z L, KONG L W, GUO A G, et al., 2019. Experimental and numerical investigations of the seismic response of a rock-soil mixture deposit slope[J]. Environmental Earth Sciences, 78(24):716. doi: 10.1007/s12665-019-8717-y

    CrossRef Google Scholar

    WANG B S, FAN X D, LIU W, et al., 2000. Investigation report of Yigong landslide[R]. Lhasa: Department of Land and Resources of Tibet Autonomous Region. (in Chinese)

    Google Scholar

    WANG H Y, XIE L L.2010. Effects of topography on ground motion in the Xishan park, Zigong city[J]. Chinese Journal of Geophysics, 53(7):1631-1638. (in Chinese with English abstract)

    Google Scholar

    WANG W P, LI B, FENG Z, et al., 2019. Failure mechanism of a high-steep rock slope considering site effect[J]. Rock and Soil Mechanics, 40(1):297-304, 314. (in Chinese with English abstract)

    Google Scholar

    WANG W P, YIN Y P, LI B, et al., 2015. Spectral characteristics of dynamic response of slope with different angles of inclination[J]. Chinese Journal of Rock Mechanics and Engineering, 34(1):121-128. (in Chinese with English abstract)

    Google Scholar

    XIAO W J, LIAO J M, ZHANG L L.2018. Shaking table test on seismic dynamic responses of isolated mountains[J]. Journal of Geomechanics, 40(3):582-590. (in Chinese with English abstract)

    Google Scholar

    YANG G X, WU F Q, DONG J Y, et al., 2012. Study of dynamic response characters and failure mechanism of rock slope under earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 31(4):696-702. (in Chinese with English abstract)

    Google Scholar

    YIN Y P.2000. The study of Yigong tremendous high-speed landslide in Bomi, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 11(2):100. (in Chinese)

    Google Scholar

    YIN Y P.2008. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 16(4):433-444. (in Chinese with English abstract)

    Google Scholar

    YIN Y P, WANG M, LI B, et al., 2012. Dynamic response characteristics of Daguangbao landslide triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 31(10):1969-1982. (in Chinese with English abstract)

    Google Scholar

    ZHANG Y S, LEI W Z, SHI J S, et al., 2008. General characteristics of 5.12 earthquake-induced geohazards in Sichuan[J]. Journal of Geomechanics, 14(2):109-116. (in Chinese with English abstract)

    Google Scholar

    ZHOU X T, HAN J L, SHI F G, et al., 2014. Numerical simulation for amplification effect of topography and geomorphology to seismic waves[J]. Journal of Engineering Geology, 22(6):1211-1220. (in Chinese with English abstract).

    Google Scholar

    ZHU C M, ZHANG C X.2015. Preliminary discussion on treatment of geological hazard in Zhamunong Valley in Tibet[J]. Yangtze River, 46(18):26-28. (in Chinese with English abstract)

    Google Scholar

    白永健, 倪化勇, 葛华.2019.青藏高原东南缘活动断裂地质灾害效应研究现状[J].地质力学学报, 25(6):1166-1128.

    Google Scholar

    陈金昌, 王兰民, 王平, 等.2020.基于振动台试验的纯黄土边坡动力响应研究[J].地震工程学报, 42(2):529-535.

    Google Scholar

    李楠, 汪班桥, 门玉明, 等.2018.压力型锚杆支护滑坡的地震动力响应特性研究[J].地质力学学报, 24(4):490-497.

    Google Scholar

    刘汉东, 牛林峰, 袁富强, 等.2018.地震波频率对层状岩质边坡动力响应影响的试验研究[J].水文地质工程地质, 45(2):77-83. doi: 10.16030/j.cnki.issn.1000-3665.2018.02.12

    CrossRef Google Scholar

    刘铮, 李滨, 贺凯, 等.2020.地震作用下高陡岩质斜坡动力响应规律研究[J].地质力学学报, 26(1):116-125.

    Google Scholar

    罗永红.2011.地震作用下复杂斜坡响应规律研究[D].成都: 成都理工大学.

    Google Scholar

    祁生文, 伍法权, 孙进忠.2003.边坡动力响应规律研究[J].中国科学E辑技术科学, 33(S1):28-40. doi: 10.3321/j.issn:1006-9275.2003.z1.004

    CrossRef Google Scholar

    祁生文.2006.单面边坡的两种动力反应形式及其临界高度[J].地球物理学报, 49(2):518-523. doi: 10.3321/j.issn:0001-5733.2006.02.026

    CrossRef Google Scholar

    孙萍, 殷跃平, 陈立伟.2011.汶川地震区东河口滑坡破坏机制FLAC模拟分析[J].水文地质工程地质, 38(5):87-91.

    Google Scholar

    王保生, 范相德, 刘伟, 等.2000.易贡巨型山体崩塌滑坡调查研究报告[R].拉萨: 西藏自治区国土资源厅.

    Google Scholar

    王海云, 谢礼立.2010.自贡市西山公园地形对地震动的影响[J].地球物理学报, 53(7):1631-1638.

    Google Scholar

    王文沛, 殷跃平, 李滨, 等.2015.不同坡角斜坡动力响应频谱特征研究[J].岩石力学与工程学报, 34(1):121-128. doi: 10.13722/j.cnki.jrme.2015.01.013

    CrossRef Google Scholar

    王文沛, 李滨, 冯振, 等.2019.考虑场地效应的高陡岩质斜坡地震失稳机制[J].岩土力学, 40(1):297-304, 314. doi: 10.16285/j.rsm.2017.1163

    CrossRef Google Scholar

    肖文静, 廖佳名, 张亮亮.2018.孤立山体地震动力响应的振动台试验研究[J].地震工程学报, 40(3):582-590. doi: 10.3969/j.issn.1000-0844.2018.03.582

    CrossRef Google Scholar

    杨国香, 伍法权, 董金玉, 等.2012.地震作用下岩质边坡动力响应特性及变形破坏机制研究[J].岩石力学与工程学报, 31(4):696-702. doi: 10.3969/j.issn.1000-6915.2012.04.007

    CrossRef Google Scholar

    殷跃平.2000.西藏波密易贡高速巨型滑坡概况[J].中国地质灾害与防治学报, 11(2):100. doi: 10.3969/j.issn.1003-8035.2000.02.024

    CrossRef Google Scholar

    殷跃平.2008.汶川八级地震地质灾害研究[J].工程地质学报, 16(4):433-444.

    Google Scholar

    殷跃平, 王猛, 李滨, 等.2012.汶川地震大光包滑坡动力响应特征研究[J].岩石力学与工程学报, 31(10):1969-1982. doi: 10.3969/j.issn.1000-6915.2012.10.003

    CrossRef Google Scholar

    张永双, 雷伟志, 石菊松, 等.2008.四川5.12地震次生地质灾害的基本特征初析[J].地质力学学报, 14(2):109-116.

    Google Scholar

    周兴涛, 韩金良, 施凤根, 等.2014.地形地貌对地震波放大效应数值模拟研究[J].工程地质学报, 22(6):1211-1220. doi: 10.13544/j.cnki.jeg.2014.06.027

    CrossRef Google Scholar

    朱成明, 张彩霞.2015.西藏扎木弄沟地质灾害治理初步探讨[J].人民长江, 46(18):26-28. doi: 10.16232/j.cnki.1001-4179.2015.18.007

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(2)

Article Metrics

Article views(1926) PDF downloads(56) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint