2020 Vol. 26, No. 1
Article Contents

Zheng LIU, Bin LI, Kai HE, Yang GAO, Chenhui WANG. 2020. Research of dynamic response patterns of high steep rock slope under earthquake effects. Journal of Geomechanics, 26(1): 115-124. doi: 10.12090/j.issn.1006-6616.2020.26.01.012
Citation: Zheng LIU, Bin LI, Kai HE, Yang GAO, Chenhui WANG. 2020. Research of dynamic response patterns of high steep rock slope under earthquake effects. Journal of Geomechanics, 26(1): 115-124. doi: 10.12090/j.issn.1006-6616.2020.26.01.012

Research of dynamic response patterns of high steep rock slope under earthquake effects

More Information
  • Base on the research of single-sided high steep slopes in southwestern China, dynamic responses of double-sided slopes are analysed which include changes of height, angle and width. Results show that predominant frequencies of slopes mainly concentrate in 1~4 Hz when inputting Ricker waves with varying center frequencies and the results alter in different parts of the slope. Dynamic response patterns mainly depend on slope height, contours of amplification coefficients parallel to the bottom of slope at lower heights while distribute as closed regions near surface when height increases. This means numerical value of amplification linearly increase with the height of the slope at a relatively low height but fluctuate at a great height. In addition, slope angle changes the direction of contours and makes amplification factors greater in steep slope, but dynamic patterns of slope are unaffected by those changes. Double-sided slopes show similar dynamic pattern with the single ones, but reflection and refraction of quake waves caused by slope shape make the amplification greater in double-sided slopes, which manifest as intensified contours and multiplied acceleration.
  • 加载中
  • ASHFORD S A, SITA N, LYSMER J, et al., 1997. Topographic Effects on the Seismic Response of Steep Slopes[J]. Bulletin of the Seismological Society of America, 87(3):701-709.

    Google Scholar

    BOORE D M, 1972. A note on the effect of simple topography on seismic SH waves[J]. Bulletin of the Seismological Society of America, 62(1):275-284.

    Google Scholar

    BOURDEAU C, HAVENITH H B, 2008. Site effects modelling applied to the slope affected by the Suusamyr earthquake (Kyrgyzstan, 1992)[J]. Engineering Geology, 97(3-4):126-145.

    Google Scholar

    ÇELEBI M, 1987. Topographical and geological amplifications determined from strong-motion and aftershock records of the 3 March 1985 Chile earthquake[J]. Bulletin of the Seismological Society of America, 77(4):1147-1167.

    Google Scholar

    DI FIORE V. 2010. Seismic site amplification induced by topographic irregularity:results of a numerical analysis on 2D synthetic models[J]. Engineering Geology, 114(3-4):109-115.

    Google Scholar

    GELI L, BARD P Y, JULLIEN B, 1998. The effect of topography on earthquake ground motion:a review and new results[J]. Bulletin of the Seismological Society of America, 78(1):42-63.

    Google Scholar

    GUO X B, XIAO Z X, ZHANG Z C, 2001. Slope effect of blasting vibration[J]. Chinese Journal of Rock Mechanics and Engineering, 20(1):83-87. (in Chinese with English abstract)

    Google Scholar

    HARP E L, JIBSON R W, 2002. Anomalous concentrations of seismically triggered rock falls in Pacoima canyon:are they caused by highly susceptible slopes or local amplification of seismic shaking?[J]. Bulletin of the Seismological Society of America, 92(8):3180-3189.

    Google Scholar

    HE Y L, LU S Y, 1998. A method for calculating the seismic action in rock slope[J]. Chinese Journal of Geotechnical Engineering, 20(2):66-68. (in Chinese with English abstract).

    Google Scholar

    HE Y L, LU S Y, DUAN Y H, 1998. Seismic response analysis of gravity dam[J]. World Information on Earthquake Engineering, 14(3):32-36. (in Chinese with English abstract)

    Google Scholar

    Itasca Consulting Group Inc., 2005. FLAC (fast Lagrange analysis of continua) slope user's guide (Version 5.0)[Z]. Minneapolis, USA: Itasca Consulting Group Inc.

    Google Scholar

    LI N, WANG B Q, MEN Y M, et al., 2018. Study on dynamic response of landslide supported by pressure-type anchor under earthquake[J]. Journal of Geomechanics, 24(4):490-497. (in Chinese with English abstract)

    Google Scholar

    LUO Y H, 2011. Study on complex slopes response law under earthquake action[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)

    Google Scholar

    LYSMER J, KUHLEMEYER R L, 1969. Finite dynamic model for infinite media[J]. Journal of the Engineering Mechanics Division, 95(4):859-878.

    Google Scholar

    MEUNIER P, HOVIUS N, HAINES A J, 2007. Regional patterns of earthquake-triggered landslides and their relation to ground motion[J]. Geophysical Research Letters, 34(20):L20408.

    Google Scholar

    MITANI Y, WANG F W, OKEKE A C, et al., 2013. Dynamic analysis of earthquake amplification effect of slopes in different topographic and geological conditions by using ABAQUS[M]//WANG F W, MIYAJIMA M, LI T D, et al. Progress of Geo-Disaster Mitigation Technology in Asia. Berlin: Springer, 469-489.

    Google Scholar

    PARISE M, JIBSON R W, 2000. A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California earthquake[J]. Engineering Geology, 58(3-4):251-270.

    Google Scholar

    QI S W, 2006. Two patterns of dynamic responses of single-free-surface slopes and their threshold height[J]. Chinese Journal of Geophysics, 49(2):518-523. (in Chinese with English abstract)

    Google Scholar

    QI S W, WU F Q, SUN J Z, 2003. General regularity of dynamic responses of slopes under dynamic input[J]. Science in China Series E Technological Sciences, 33(S1):28-40. (in Chinese)

    Google Scholar

    WANG H Y, XIE L L, 2010. Effects of topography on ground motion in the Xishan park, Zigong city[J]. Chinese Journal of Geophysics, 53(7):1631-1638. (in Chinese with English abstract)

    Google Scholar

    WANG W P, LI B, FENG Z, et al., 2019. Failure mechanism of a high-steep rock slope considering site effect[J]. Rock and Soil Mechanics, 40(1):297-304, 314. (in Chinese with English abstract)

    Google Scholar

    WANG W P, YIN Y P, LI B, et al., 2015. Spectral characteristics of dynamic response of slope with different angles of inclination[J]. Chinese Journal of Rock Mechanics and Engineering, 34(1):121-128. (in Chinese with English abstract)

    Google Scholar

    YANG G X, WU F Q, DONG J Y, et al., 2012. Study of dynamic response characters and failure mechanism of rock slope under earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 31(4):696-702. (in Chinese with English abstract)

    Google Scholar

    YIN Y P, 2008. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 16(4):433-444. (in Chinese with English abstract)

    Google Scholar

    YIN Y P, WANG W P, 2014. Researches on seismic landslide stability analysis[J]. Journal of Engineering Geology, 22(4):586-600. (in Chinese with English abstract)

    Google Scholar

    ZHANG D, WU Z H, LI J C, et al., 2013. An overview on earthquake-induced landslide research[J]. Journal of Geomechanics, 19(3):225-241. (in Chinese with English abstract)

    Google Scholar

    ZHANG Y S, LEI W Z, SHI J S, et al., 2008. General characteristics of 5.12 earthquake-induced geohazards in Sichuan[J]. Journal of Geomechanics, 14(2):109-119. (in Chinese with English abstract)

    Google Scholar

    ZHOU X T, HAN J L, SHI F G, et al., 2014. Numerical simulation for amplification effect of topography and geomorphology to seismic waves[J]. Journal of Engineering Geology, 22(6):1211-1220. (in Chinese with English abstract)

    Google Scholar

    郭学彬, 肖正学, 张志呈. 2001.爆破振动作用的坡面效应[J].岩石力学与工程学报, 20(1):83-87.

    Google Scholar

    何蕴龙, 陆述远, 1998.岩石边坡地震作用近似计算方法[J].岩土工程学报, 20(2):66-68.

    Google Scholar

    何蕴龙, 陆述远, 段亚辉, 1998.重力坝地震动力响应分析[J].世界地震工程, 14(3):32-36.

    Google Scholar

    李楠, 汪班桥, 门玉明, 等, 2018.压力型锚杆支护滑坡的地震动力响应特性研究[J].地质力学学报, 24(4):490-497.

    Google Scholar

    罗永红, 2011.地震作用下复杂斜坡响应规律研究[D].成都: 成都理工大学.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1959647

    Google Scholar

    祁生文, 伍法权, 孙进忠, 2003.边坡动力响应规律研究[J].中国科学E辑技术科学, 33(S1):28-40.

    Google Scholar

    祁生文, 2006.单面边坡的两种动力反应形式及其临界高度[J].地球物理学报, 49(2):518-523.

    Google Scholar

    王海云, 谢礼立, 2010.自贡市西山公园地形对地震动的影响[J].地球物理学报, 53(7):1631-1638.

    Google Scholar

    王文沛, 殷跃平, 李滨, 等, 2015.不同坡角斜坡动力响应频谱特征研究[J].岩石力学与工程学报, 34(1):121-128.

    Google Scholar

    王文沛, 李滨, 冯振, 等, 2019.考虑场地效应的高陡岩质斜坡地震失稳机制[J].岩土力学, 40(1):297-304, 314.

    Google Scholar

    杨国香, 伍法权, 董金玉, 等, 2012.地震作用下岩质边坡动力响应特性及变形破坏机制研究[J].岩石力学与工程学报, 31(4):696-702.

    Google Scholar

    殷跃平, 2008.汶川八级地震地质灾害研究[J].工程地质学报, 16(4):433-444.

    Google Scholar

    殷跃平, 王文沛, 2014.论滑坡地震力[J].工程地质学报, 22(4):586-600.

    Google Scholar

    张铎, 吴中海, 李家存, 等, 2013.国内外地震滑坡研究综述[J].地质力学学报, 19(3):225-241.

    Google Scholar

    张永双, 雷伟志, 石菊松, 等, 2008.四川5.12地震次生地质灾害的基本特征初析[J].地质力学学报, 14(2):109-116.

    Google Scholar

    周兴涛, 韩金良, 施凤根, 等, 2014.地形地貌对地震波放大效应数值模拟研究[J].工程地质学报, 22(6):1211-1220.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(1)

Article Metrics

Article views(1082) PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint