2020 Vol. 26, No. 1
Article Contents

Haolin REN, Chenglin LIU, Wenping LIU, Xiya YANG, Wenyan LI. 2020. Stress field simulation and fracture development prediction of the Wufeng Formation-Longmaxi Formation in the Fushun-Yongchuan Block, Sichuan Basin. Journal of Geomechanics, 26(1): 74-83. doi: 10.12090/j.issn.1006-6616.2020.26.01.008
Citation: Haolin REN, Chenglin LIU, Wenping LIU, Xiya YANG, Wenyan LI. 2020. Stress field simulation and fracture development prediction of the Wufeng Formation-Longmaxi Formation in the Fushun-Yongchuan Block, Sichuan Basin. Journal of Geomechanics, 26(1): 74-83. doi: 10.12090/j.issn.1006-6616.2020.26.01.008

Stress field simulation and fracture development prediction of the Wufeng Formation-Longmaxi Formation in the Fushun-Yongchuan Block, Sichuan Basin

More Information
  • The tectonic fractures in rocks are mainly controlled by the regional tectonic stress field where the strata are located. Tectonic stress plays an important role in the migration, accumulation and distribution of oil and gas. The stress field of the Wufeng Formation-Longmaxi Formation in the Fushun-Yongchuan Block of the Sichuan Basin was simulated and analyzed by ANSYS finite element software; The three-point method in the method of structural curvature method was used to predict the development of cracks in the shale, and the comprehensive simulation results and curvature calculation data were used to predict the fracture intensity in the target area. The results proved that the distribution of the high stress value of the Wufeng Formation-Longmaxi Formation in the Fushun-Yongchuan Block is along the anticline, and the anticline stress values in the eastern and southwestern part of the study area are higher than those in other areas; the distribution of high curvature is along the anticline, and the curvature values of the anticline in the east and southwest of the study area are higher than those in other areas; the fracture in the anticline of the study area has a higher level of development, and it's lower in the syncline, at the same time it's higher in the anticline of the eastern and southwestern part of the study area than other areas under the current stress.
  • 加载中
  • AL-RUWAILI S B, CHARDAC O, 2003. 3D model for rock strength & in-situ stresses in the Khuff formation of Ghawar field, methodologies & applications[C]//Middle east oil show. Bahrain: Society of Petroleum Engineers: 206-219.

    Google Scholar

    CAO R R, LIU Z Y, 2008. Application of curvature of face-trend surface fitting method in fracture prediction[J]. Computer Applications of Petroleum, 16(3):12-14. (in Chinese with English abstract)

    Google Scholar

    CHEN Y P, ZHAO C B, LIN G, 2008. Mechanical properties of deep earth rocks and their roles in the investigation of continental deformation processes[J]. Geotectonica et Metallogenia, 32(3):276-284. (in Chinese with English abstract)

    Google Scholar

    CUI F P, HU R L, LIU Z L, et al., 2008. Surfer software platform based complex three-dimensional geological digital models for pre-processing of FLAC3D[J]. Journal of Engineering Geology, 16(5):699-702. (in Chinese with English abstract)

    Google Scholar

    DING W L, ZENG W T, WANG R Y, et al., 2016. Method and application of tectonic stress field simulation and fracture distribution prediction in shale reservoir[J]. Earth Science Frontiers, 23(2):63-74. (in Chinese with English abstract)

    Google Scholar

    DONG D Z, SHI Z S, SUN S S, et al., 2018. Factors controlling microfractures in black shale:a case study of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Shuanghe Profile, Changning area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 45(5):763-774. (in Chinese with English abstract)

    Google Scholar

    DU ROUCHET J, 1981. Stress fields, a key to oil migration[J]. AAPG Bulletin, 65(1):74-85.

    Google Scholar

    FINKBEINER T, BARTON C A, ZOBACK M D, 1997. Relationships among in-situ stress, fractures and faults, and fluid flow:Monterey formation, Santa Maria basin, California[J]. AAPG Bulletin, 81(12):1975-1999.

    Google Scholar

    GUO K, XU Z Y, NI G S, et al., 1998. Research on the main curvature method and its application to cracky oil-gas deposits[J]. Computing Techniques for Geophysical and Geochemical Exploration, 20(4):335-337. (in Chinese with English abstract)

    Google Scholar

    GUO Y H, LI Z F, LI D H, et al., 2004. Lithofacies palaeogeography of the Early Silurian in Sichuan area[J]. Journal of Palaeogeography, 6(1):20-29. (in Chinese with English abstract)

    Google Scholar

    HUANG S W, JIANG M L, 2017. Analysis on structural fracture characteristics in Ansai Yanhewan Area[J]. Liaoning Chemical Industry, 46(10):973-975. (in Chinese with English abstract)

    Google Scholar

    JIANG Y L, ZHANG L, LU X S, et al., 2005. Application of the tectonic stress simulation based on ANSYS in Kelasu region of Kuche depression[J]. Natural Gas Industry, 25(4):42-44. (in Chinese with English abstract)

    Google Scholar

    LIU G F, LU H J, HE S L, 2009. Application of finite element analysis in reservoir in-situ stress research[J]. Science Technology and Engineering, 9(24):7430-7435. (in Chinese with English abstract)

    Google Scholar

    LIU S G, DENG B, ZHONG Y, et al., 2016. Unique geological features of burial and superimposition of the lower Paleozoic shale gas across the Sichuan basin and its periphery[J]. Earth Science Frontiers, 23(1):11-28. (in Chinese with English abstract)

    Google Scholar

    LIU T, YANG F P, 2002. Proficient in ANSYS[M]. Beijing:Tsinghua University Press. (in Chinese)

    Google Scholar

    LIU W P, ZHANG C L, GAO G D, et al., 2017. Controlling factors and evolution laws of shale porosity in Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 38(2):175-184. (in Chinese with English abstract)

    Google Scholar

    MOAVENI S, 2003. Finite element analysis: theory and application with ANSYS[M]. 2nd ed. Publishing House of Electronics Industry.

    Google Scholar

    MOHTARAMI E, BAGHBANAN A, HASHEMOLHOSSEINI H, 2017. Prediction of fracture trajectory in anisotropic rocks using modified maximum tangential stress criterion[J]. Computers and Geotechnics, 92:108-120.

    Google Scholar

    MOU C L, GE X Y, XU X S, et al., 2014. Lithofacies palaeogeography of the Late Ordovician and its petroleum geological significance in Middle-Upper Yangtze Region[J]. Journal of Palaeogeography, 16(4):427-440. (in Chinese with English abstract)

    Google Scholar

    MU L X, 2009. Prediction of reservoir fractures[M]. Beijing:Petroleum Industry Press. (in Chinese)

    Google Scholar

    NELSON P H, 2011. Pore-throat sizes in sandstones, siltstones, and shales:reply[J]. AAPG Bulletin, 95(8):1448-1453.

    Google Scholar

    PETRICCA P, CARAFA M M C, BARBA S, et al., 2013. Local, regional, and plate scale sources for the stress field in the Adriatic and Periadriatic region[J]. Marine and Petroleum Geology, 42:160-181.

    Google Scholar

    RAMANDI H L, MOSTAGHIMI P, ARMSTRONG R T, 2017. Digital rock analysis for accurate prediction of fractured media permeability[J]. Journal of Hydrology, 554:817-826.

    Google Scholar

    SHEN G H, 2008. Application of the finite element numerical simulation method in fracture prediction[J]. Petroleum Geology and Recovery Efficiency, 15(4):24-26, 29. (in Chinese with English abstract).

    Google Scholar

    SONG W, MA X J, LV F L, et al., 2017. The two-dimensional plane model study of tectonic ground fissure stress field in Hejian County of Cangzhou city, Hebei Province[J]. Shanghai Land & Resources, 38(3):83-89. (in Chinese with English abstract)

    Google Scholar

    SONG Y, JIANG L, MA X Z, 2013. Formation and distribution characteristics of unconventional oil and gas reservoirs[J]. Journal of Palaeogeography, 15(5):605-614. (in Chinese with English abstract)

    Google Scholar

    WANG T, YANG K M, XIONG L, et al., 2015. Shale sequence stratigraphy of Wufeng-Longmaxi Formation in southern Sichuan and their control on reservoirs[J]. Acta Petrolei Sinica, 36(8):915-925. (in Chinese with English abstract)

    Google Scholar

    WEI C G, LEI M S, WAN T F, et al., 2006. Numerical simulation of palaeotectonic stress field of Yingcheng Fm in Gulong-Xujiaweizi area:prediction and comparative study of tectoclase development area[J]. Oil & Gas Geology, 27(1):78-84, 105. (in Chinese with English abstract)

    Google Scholar

    WU L Q, LIU C L, LI B, et al., 2014. Numerical simulation of tectonic stress field and prediction of oil-favored areas:a case study of the third member of Qingshankou Formation in Guizijing region of Qian'an area, Songliao Basin[J]. Journal of Geomechanics, 20(4):339-351. (in Chinese with English abstract)

    Google Scholar

    YAN C N, JIN Z J, ZHAO J H, et al., 2016. Comparison of Marcellus shale in United States and Longmaxi formation shale in southern China[J]. Geological Science and Technology Information, 35(6):122-130. (in Chinese with English abstract)

    Google Scholar

    YUE G Y, DU S Q, HUANG J J, et al., 1996. Principle of structural compounding-combine[M]. Chengdu:The Chengdu University of Science and Technology Press. (in Chinese)

    Google Scholar

    ZHANG S R, WAN T F, CHEN J P, 2004. Tectonic stress field modeling and fracture prediction in strata in Xiaoquan-Xinchang area, western Sichuan depression[J]. Oil & Gas Geology, 25(1):70-74, 80. (in Chinese with English abstract)

    Google Scholar

    ZHANG X M, YIN S, SHI C L, 2018. Developmental characteristics and controlling factors of fractures in tight sandstone of Shanxi Formation, southern Qinshui Basin[J]. Marine Origin Petroleum Geology, 23(3):43-52. (in Chinese with English abstract)

    Google Scholar

    ZHAO W T, CHEN X Z, 2009. Foundation of finite element method[M]. Beijing:Science Press. (in Chinese)

    Google Scholar

    ZHOU C C, 2003. Studies on the structure mode of Baigezhuang region and the identification and prediction of structure fracture of reservoirs[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences3. (in Chinese with English abstract)

    Google Scholar

    ZOU C N, DONG D Z, WANG Y M, et al., 2015. Shale gas in China:characteristics, challenges and prospects (I)[J]. Petroleum Exploration and Development, 42(6):689-701. (in Chinese with English abstract)

    Google Scholar

    曹润荣, 刘宗彦, 2008.面曲率法-趋势面拟合法在裂缝预测中的应用[J].石油工业计算机应用, 16(3):12-14.

    Google Scholar

    陈运平, 赵崇斌, 林舸, 2008.深部岩石力学性质及其在大陆构造变形过程研究中的作用[J].大地构造与成矿学, 32(3):276-284.

    Google Scholar

    崔芳鹏, 胡瑞林, 刘照连, 等, 2008.基于Surfer平台的FLAC3D复杂三维地质建模研究[J].工程地质学报, 16(5):699-702.

    Google Scholar

    丁文龙, 曾维特, 王濡岳, 等, 2016.页岩储层构造应力场模拟与裂缝分布预测方法及应用[J].地学前缘, 23(2):63-74.

    Google Scholar

    董大忠, 施振生, 孙莎莎, 等, 2018.黑色页岩微裂缝发育控制因素:以长宁双河剖面五峰组-龙马溪组为例[J].石油勘探与开发, 45(5):763-774.

    Google Scholar

    郭科, 胥泽银, 倪根生, 1998.用主曲率法研究裂缝性油气藏[J].物探化探计算技术, 20(4):335-337.

    Google Scholar

    郭英海, 李壮福, 李大华, 等, 2004.四川地区早志留世岩相古地理[J].古地理学报, 6(1):20-29.

    Google Scholar

    黄生旺, 姜萌蕾, 2017.安塞沿河湾地区构造裂缝特征分析[J].辽宁化工, 46(10):973-975.

    Google Scholar

    蒋有录, 张乐, 鲁雪松, 等, 2005.基于ANSYS的应力场模拟在库车坳陷克拉苏地区的初步应用[J].天然气工业, 25(4):42-44.

    Google Scholar

    刘广峰, 陆红军, 何顺利, 2009.有限元法开展油气储层地应力研究综述[J].科学技术与工程, 9(24):7430-7435.

    Google Scholar

    刘树根, 邓宾, 钟勇, 等, 2016.四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用[J].地学前缘, 23(1):11-28.

    Google Scholar

    刘涛, 杨凤鹏, 2002.精通ANSYS[M].北京:清华大学出版社.

    Google Scholar

    刘文平, 张成林, 高贵冬, 等, 2017.四川盆地龙马溪组页岩孔隙度控制因素及演化规律[J].石油学报, 38(2):175-184.

    Google Scholar

    牟传龙, 葛祥英, 许效松, 等, 2014.中上扬子地区晚奥陶世岩相古地理及其油气地质意义[J].古地理学报, 16(4):427-440.

    Google Scholar

    穆龙新, 2009.储层裂缝预测研究[M].北京:石油工业出版社.

    Google Scholar

    沈国华, 2008.有限元数值模拟方法在构造裂缝预测中的应用[J].油气地质与采收率, 15(4):24-26, 29.

    Google Scholar

    宋伟, 马学军, 吕凤兰, 等, 2017.沧州河间构造地裂缝应力场二维平面模型研究[J].上海国土资源, 38(3):83-89.

    Google Scholar

    宋岩, 姜林, 马行陟, 2013.非常规油气藏的形成及其分布特征[J].古地理学报, 15(5):605-614.

    Google Scholar

    王同, 杨克明, 熊亮, 等, 2015.川南地区五峰组-龙马溪组页岩层序地层及其对储层的控制[J].石油学报, 36(8):915-925.

    Google Scholar

    魏春光, 雷茂盛, 万天丰, 等, 2006.古龙-徐家围子地区营城组古构造应力场数值模拟-构造裂缝发育区带预测及对比研究[J].石油与天然气地质, 27(1):78-84, 105.

    Google Scholar

    吴林强, 刘成林, 李冰, 等, 2014.应力场数值模拟与油藏有利区预测:以松辽盆地乾安地区归字井青三段为例[J].地质力学学报, 20(4):339-351.

    Google Scholar

    颜彩娜, 金之钧, 赵建华, 等, 2016.美国Marcellus页岩与中国南方龙马溪组页岩地质特征对比及启示[J].地质科技情报, 35(6):122-130.

    Google Scholar

    乐光禹, 杜思清, 黄继钧, 等, 1996.构造复合联合原理:川黔构造组合叠加分析[M].成都:成都科技大学出版社.

    Google Scholar

    张守仁, 万天丰, 陈建平, 2004.川西坳陷孝泉-新场地区须家河组二-四段构造应力场模拟及裂缝发育区带预测[J].石油与天然气地质, 25(1):70-74, 80.

    Google Scholar

    张学敏, 尹帅, 史长林, 2018.沁水盆地南部山西组致密砂岩裂缝发育特征及控制因素[J].海相油气地质, 23(3):43-52.

    Google Scholar

    赵维涛, 陈孝珍, 2009.有限元法基础[M].北京:科学出版社.

    Google Scholar

    周灿灿, 2003.柏各庄地区构造样式及储层构造裂缝识别与预测[D].广州: 中国科学院研究生院(广州地球化学研究所).http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y540848

    Google Scholar

    邹才能, 董大忠, 王玉满, 等, 2015.中国页岩气特征、挑战及前景(一)[J].石油勘探与开发, 42(6):689-701.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(2440) PDF downloads(75) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint