邹才能, 朱如凯, 吴松涛, 等.常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J].石油学报, 2012, 33(2):173-187.
Google Scholar
ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulation:taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2):173-187. (in Chinese with English abstract)
Google Scholar
|
RICKMAN R, MULLEN M J, PETRE J E, et al. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett shale[C]//Proceedings of the SPE Annual Technical Conference and Exhibition. Denver, Colorado, USA: Society of Petroleum Engineers, 2008.
Google Scholar
|
HONDA H, SANADA Y. Hardness of coal[J]. Fuel, 1956, 35(4):451-461.
Google Scholar
|
JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems:the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4):475-499. doi: 10.1306/12190606068
CrossRef Google Scholar
|
周雪晴, 张占松, 张超谟, 等.基于矿物组分和成岩作用的致密砂岩储层脆性评价方法:以鄂尔多斯盆地东北部某区块为例[J].油气地质与采收率, 2017, 24(5):10-16, 26. doi: 10.3969/j.issn.1009-9603.2017.05.002
CrossRef Google Scholar
ZHOU Xueqing, ZHANG Zhansong, ZHANG Chaomo, et al. A new brittleness evaluation method for tight sandstone reservoir based on mineral compositions and diagenesis:a case study of a certain block in the northeastern Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(5):10-16, 26. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-9603.2017.05.002
CrossRef Google Scholar
|
BISHOP A W. Progressive failure with special reference to the mechanism causing it[C]//Proceedings of the Geotechnical Conference on Shear Strength Properties of Natural Soils and Rocks. Oslo: [s.n.], 1967: 142-150.
Google Scholar
|
曾治平, 刘震, 马骥, 等.深层致密砂岩储层可压裂性评价新方法[J].地质力学学报, 2019, 25(2):223-232.
Google Scholar
ZENG Zhiping, LIU Zhen, MA Ji, et al. A new method for fracrability evaluation in deep and tight sandstone reservoirs[J]. Journal of Geomechanics, 2019, 25(2):223-232. (in Chinese with English abstract)
Google Scholar
|
孟召平, 彭苏萍, 张慎河.不同成岩作用程度砂岩物理力学性质三轴试验研究[J].岩土工程学报, 2003, 25(2):140-143. doi: 10.3321/j.issn:1000-4548.2003.02.003
CrossRef Google Scholar
MENG Zhaoping, PENG Suping, ZHANG Shenhe. Triaxial test on physical and mechanical properties of sandstone for different diagenesis degree[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2):140-143. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2003.02.003
CrossRef Google Scholar
|
张军, 艾池, 李玉伟, 等.基于岩石破坏全过程能量演化的脆性评价指数[J].岩石力学与工程学报, 2017, 36(6):1326-1340.
Google Scholar
ZHANG Jun, AI Chi, LI Yuwei, et al. Brittleness evaluation index based on energy variation in the whole process of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6):1326-1340. (in Chinese with English abstract)
Google Scholar
|
张春会, 赵全胜, 黄鹂, 等.考虑围压影响的岩石峰后应变软化力学模型[J].岩土力学, 2010, 31(S2):193-197.
Google Scholar
ZHANG Chunhui, ZHAO Quansheng, HUANG Li, et al. Post-peak strain softening mechanical model of rock considering confining pressure effect[J] Rock and Soil Mechanics, 2010, 31(S2):193-197. (in Chinese with English abstract)
Google Scholar
|
曾立新.深层岩石力学性质的试验方法[J].地质力学学报, 1999, 5(1):71-75. doi: 10.3969/j.issn.1006-6616.1999.01.012
CrossRef Google Scholar
ZENG Lixin. Laboratory test method study of deep rock physical mechanics[J]. Journal of Geomechanics, 1999, 5(1):71-75. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.1999.01.012
CrossRef Google Scholar
|
尤明庆.围压对杨氏模量的影响与裂隙摩擦的关系[J].岩土力学, 2003, 24(S1):167-170.
Google Scholar
YOU Mingqing. Effect of confining pressure on the young's modulus of rock specimen and the friction in fissures[J]. Rock and Soil Mechanics, 2003, 24(S1):167-170. (in Chinese with English abstract)
Google Scholar
|
王佩新, 曹平, 王敏, 等.围压作用下岩石峰后应力-应变关系模型[J].中南大学学报(自然科学版), 2017, 48(10):2753-2758. doi: 10.11817/j.issn.1672-7207.2017.10.027
CrossRef Google Scholar
WANG Peixin, CAO Ping, WANG Min, et al. Post-peak stress-strain relationship model of rock considering confining pressure effect[J]. Journal of Central South University (Science and Technology), 2017, 48(10):2753-2758. (in Chinese with English abstract) doi: 10.11817/j.issn.1672-7207.2017.10.027
CrossRef Google Scholar
|
张骞, 李术才, 李利平, 等.岩石三轴压缩峰后曲线与抗剪强度参数关系探讨[J].地下空间与工程学报, 2015, 11(3):642-646, 657.
Google Scholar
ZHANG Qian, LI Shucai, LI Liping, et al. Discussion on relationship between post-peak curves and shear strength parameters of rock subjected to Triaxial compression[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(3):642-646, 657. (in Chinese with English abstract)
Google Scholar
|
陈勉, 金衍, 张广清.石油工程岩石力学[M].北京:科学出版社, 2008.
Google Scholar
CHEN Mian, JIN Yan, ZHANG Guanqing. Rock mechanics in petroleum engineering[M]. Beijing:Science Press, 2008. (in Chinese)
Google Scholar
|
HUCKA V, DAS B. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1974, 11(10):389-392.
Google Scholar
|
HAJIABDOLMAJID V, KAISER P. Brittleness of rock and stability assessment in hard rock tunneling[J]. Tunnelling and Underground Space Technology, 2003, 18(1):35-48. doi: 10.1016/S0886-7798(02)00100-1
CrossRef Google Scholar
|
周辉, 孟凡震, 张传庆, 等.基于应力-应变曲线的岩石脆性特征定量评价方法[J].岩石力学与工程学报, 2014, 33(6):1114-1122.
Google Scholar
ZHOU Hui, MENG Fanzhen, ZHANG Chuanqing, et al. Quantitative evaluation method of rock brittleness based on stress-strain curve[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6):1114-1122. (in Chinese with English abstract)
Google Scholar
|