2019 Vol. 25, No. 3
Article Contents

TANNOCK Lisa, Ya WANG, Jingfu LI, Jie LIU, Ke ZHANG, Lifeng XU, REGENAUER-LIEB Klaus. A PRELIMINARY STUDY ON THE MECHANICS AND TECTONIC RELATIONSHIP TO THE GEOTHERMAL FIELD OF THE HEYUAN FAULT ZONE IN GUANGDONG PROVINCE[J]. Journal of Geomechanics, 2019, 25(3): 400-411. doi: 10.12090/j.issn.1006-6616.2019.25.03.037
Citation: TANNOCK Lisa, Ya WANG, Jingfu LI, Jie LIU, Ke ZHANG, Lifeng XU, REGENAUER-LIEB Klaus. A PRELIMINARY STUDY ON THE MECHANICS AND TECTONIC RELATIONSHIP TO THE GEOTHERMAL FIELD OF THE HEYUAN FAULT ZONE IN GUANGDONG PROVINCE[J]. Journal of Geomechanics, 2019, 25(3): 400-411. doi: 10.12090/j.issn.1006-6616.2019.25.03.037

A PRELIMINARY STUDY ON THE MECHANICS AND TECTONIC RELATIONSHIP TO THE GEOTHERMAL FIELD OF THE HEYUAN FAULT ZONE IN GUANGDONG PROVINCE

More Information
  • Located in the geothermal anomaly area along the southeast coast of China, the Heyuan fault zone in Guangdong Province owns abundant geothermal resources. To investigate its potential, the mechanics and tectonic relationship to the geothermal field of the Heyuan fault zone in Guangdong Province are analysed. It is preliminarily believed that:1) The origin of hot springs is mainly attributed to deep circulation of groundwater along the fault zone heated by the geothermal gradient; the contribution of shear heat and residual heat of granite magma can be eliminated. 2) The thick quartz reef distributed along the fault is the product of the ancient hydrothermal activity. 3) The direction of compressive stress during the formation of quartz reef is NE-SW, corresponding to the extension of the Heyuan fault and the Heyuan Basin since the Late Cretaceous. This is a marked change to the stress direction of the modern tectonic stress field of NWW-SEE. 4) The current tectonic stress field makes the NE Heyuan faults dextral trans-compressional, while the NW faults have left-lateral strike and tension, resulting in a corresponding change in the groundwater circulation pattern. 5) The hot springs are distributed along the Heyuan fault zone and aligned along the NW faults; the intersection of the faults is the channel through which hot springs rise. Overall, the Heyuan area has promising geothermal resources and potential to establish geothermal power plants. It is recommended that further multidisciplinary studies are carried out, including geology, geophysics, hydrogeology and geothermal.
  • 加载中
  • LUND J W, BOYD T L. Direct utilization of geothermal energy 2015 worldwide review[C]//Proceedings World Geothermal Congress. Melbourne, Australia, 2015.https://www.sciencedirect.com/science/article/pii/S0375650511000344

    Google Scholar

    BERTANI R. Geothermal power generation in the world 2010-2014 update report[J]. Geothermics, 2016, 60:31-43. doi: 10.1016/j.geothermics.2015.11.003

    CrossRef Google Scholar

    陈墨香.中国地热资源的分布及其开发利用[J].自然资源, 1992, 7(3):40-46, 58.

    Google Scholar

    CHEN Moxiang. Geothermal distribution and utilities in China[J]. Advances of Earth Sciences, 1992, 7(3):40-46, 58. (in Chinese)

    Google Scholar

    汪集旸, 胡圣标, 庞忠和, 等.中国大陆干热岩地热资源潜力评估[J].科技导报, 2012, 30(32):25-31. doi: 10.3981/j.issn.1000-7857.2012.32.002

    CrossRef Google Scholar

    WANG Jiyang, HU Shengbiao, PANG Zhonghe, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 30(32):25-31. (in Chinese with English abstract) doi: 10.3981/j.issn.1000-7857.2012.32.002

    CrossRef Google Scholar

    WAN T F. The tectonics of China:data, maps and evolution[M]. Berlin Heidelberg:Springer, 2012.

    Google Scholar

    WANG A D, SUN Z X, HU B Q, et al. Guangdong, a potential province for developing hot dry rock geothermal resource[J]. Applied Mechanics and Materials, 2014, 492:583-585. doi: 10.4028/www.scientific.net/AMM.492

    CrossRef Google Scholar

    LIU R X, XIE G H, ZHOU X H, et al. Tectonic environments of cenozoic volcanic rocks in china and characteristics of the source regions in the mantle[J]. Chinese Journal of Geochemistry, 1995, 14(4):289-302. doi: 10.1007/BF02872628

    CrossRef Google Scholar

    王霄飞, 余珊, 龚跃华, 等.华南北东向断裂在南海北部陆架的延伸[J].大地构造与成矿学, 2014, 38(03):557-570.

    Google Scholar

    Wang Xiao Fei, Yu Shan, Gong Yue Hua, et al. Extension of NE-trending faults in south china to northern south china sea continental shelf[J]. Geotectonica et Metallogenia, 2014, 38(3):557-570(in Chinese with English abstract)

    Google Scholar

    CHENG H H, ZHANG H, ZHU B J, et al. Finite element investigation of the poroelastic effect on the Xinfengjiang reservoir-triggered earthquake[J]. Science China Earth Sciences, 2012, 55(12):1942-1952. doi: 10.1007/s11430-012-4470-8

    CrossRef Google Scholar

    CHEN L, TALWANI P. Reservoir-induced seismicity in China[J]. Pure and Applied Geophysics, 1998, 153(1):133-149. doi: 10.1007/s000240050188

    CrossRef Google Scholar

    QIU X, FENTON C. Factors controlling the occurrence of reservoir-induced seismicity[C]//Lollino G. Engineering Geology for Society and Territory. Cham: Springer, 2015, 6: 567-570.https://link.springer.com/chapter/10.1007%2F978-3-319-09060-3_102

    Google Scholar

    LEE C F, YE H, ZHOU Q. On the potential seismic hazard in Hong Kong[J]. Episodes, 1997, 20(2):89-94.

    Google Scholar

    刘大任.邵武-河源断裂带活动性及分段评价[J].地质力学学报, 1997, 3(2):54-60.

    Google Scholar

    LIU Daren. Segmentation of the Shaowu Heyuan fault zone and their activity assessment[J]. Journal of Geomechanics, 1997, 3(2):54-60. (in Chinese with English abstract)

    Google Scholar

    邹和平, 彭樊源, 苏章歆, 等.河源伸展剥离断层(博罗-龙川段)及其第四纪活动特征[J].华南地震, 2010, 30(S1):1-9.

    Google Scholar

    ZOU Heping, PENG Fanyuan, SU Zhangxin, et al. Discussions on the Heyuan extensional detachment fault from Boluo to Longchuan and its quaternary activities[J]. South China Journal of Seismology, 2010, 30(S1):1-9. (in Chinese with English abstract)

    Google Scholar

    REGENAUER-LIEB K, VEVEAKIS M, POULET T, et al. Stimulating granites: from synchrotron microtomography to enhancing reservoirs[C]//Proceedings World Geothermal Congress 2015. Melbourne, Australia, 2015.

    Google Scholar

    QIU X L, WANG Y, WANG Z Z, et al. Determining the origin, circulation path and residence time of geothermal groundwater using multiple isotopic techniques in the Heyuan Fault Zone of Southern China[J]. Journal of Hydrology, 2018, 567:339-350. doi: 10.1016/j.jhydrol.2018.10.010

    CrossRef Google Scholar

    HU S B, HE L J, WANG J Y. Heat flow in the continental area of China:A new data set[J]. Earth and Planetary Science Letters, 2000, 179(2):407-419. doi: 10.1016/S0012-821X(00)00126-6

    CrossRef Google Scholar

    WANG G, LI K, WEN D, et al. Assessment of geothermal resources in China[C]//Thirty-Eighth Workshop on Geothermal Reservoir Engineering. California: Stanford University, Stanford, 2013, 10.

    Google Scholar

    田春艳.广东省中高温地热资源勘查与开发利用建议[J].地下水, 2012, 34(4):61-63.

    Google Scholar

    TIAN Chunyan. Suggestions on the exploration and development of high temperature geothermal resources in Guangdong province[J]. Groundwater, 2012, 34(4):61-63. (in Chinese with English abstract)

    Google Scholar

    XI Y, WANG Y, HU X, et al. Geothermal structure revealed by Curie isotherm surface in Guangdong province[C]//International Workshop and Gravity, Electrical & Magnetic Methods and their Applications. Chengdu, China, 2015: 189-192.

    Google Scholar

    MAO X M, WANG Y X, ZHAN H B, et al. Geochemical and isotopic characteristics of geothermal springs hosted by deep-seated faults in Dongguan Basin, Southern China[J]. Journal of Geochemical Exploration, 2015, 158:112-121. doi: 10.1016/j.gexplo.2015.07.008

    CrossRef Google Scholar

    LACHENBRUCH A H, SASS J H. Heat flow and the thermal regime of the crust[C]//HEACOCK J G. The Earth's Crust, Its Nature and Physical Properties. Washington, D. C: American Geophysical Union, 1977: 626-675.

    Google Scholar

    VIGNERESSE J L, CUNEY M. Are granites representative of heat flow provinces[A]//AČG ERMÁK V, RYBACH L. Terrestrial heat flow and the lithosphere structure[M]. Berlin: Springer, 1991.

    Google Scholar

    SUN Z X, WANG A D, LIU J H, et al. Radiogenic heat production of granites and potential for hot dry rock geothermal resource in Guangdong province, Southern China[C]//Proceedings World Geothermal Congress 2015. Melbourne, Australia, 2015.

    Google Scholar

    RYBACH L. Determination of heat production rate[C]//HÄNEL R, RYBACK L, STEGENA L. Handbook of Terrestrial Heat Flow Density Determination. Dordrecht: Kluwer, 1988, 125-142.

    Google Scholar

    ZHANG Y, YANG J H, SUN J F, et al. Petrogenesis of Jurassic fractionated I-type granites in Southeast China:Constraints from whole-rock geochemical and zircon U-Pb and Hf-O isotopes[J]. Journal of Asian Earth Sciences, 111:268-283. doi: 10.1016/j.jseaes.2015.07.009

    CrossRef Google Scholar

    BIRCH F, ROY R F, DECKER E R. Heat flow and thermal history in New York and New England[C]//ZEN F A, WHITE W S, HADLEY J B, et al. Studies of Appalachian Geology: Northern and Maritime. New York: Interscience Jr, 1968: 437-451.

    Google Scholar

    WEBB P C, LEE M K, BROWN G C. Heat flow-heat production relationships in the UK and the vertical distribution of heat production in granite batholiths[J]. Geophysical Research Letter, 1987, 14(3):279-282. doi: 10.1029/GL014i003p00279

    CrossRef Google Scholar

    钟建强, 周蒂.华南沿海温泉分布与地震活动关系初探[J].华南地震, 1990, 10(4):22-29.

    Google Scholar

    ZHONG Jianqiang, ZHOU Di. A preliminary study of the relationship between the distribution of hot springs and the activity of earthquakes along south China coast[J]. South China Journal of Seismology, 1990, 10(4):22-29. (in Chinese with English abstract)

    Google Scholar

    SIBSON R H. Fault rocks and fault mechanisms[J]. Journal of the Geological Society, 1977, 133(3):191-213. doi: 10.1144/gsjgs.133.3.0191

    CrossRef Google Scholar

    SIBSON R H. Continental fault structure and the shallow earthquake source[J]. Journal of the Geological Society, 1983, 140(5):741-767. doi: 10.1144/gsjgs.140.5.0741

    CrossRef Google Scholar

    ZHAO B, BAI Z M, XU T, et al. Lithological model of the South China crust based on integrated geophysical data[J]. Journal of Geophysics and Engineering, 2013, 10(2):25005.

    Google Scholar

    广东省地质矿产局.广东省区域地质志[M].北京:地质出版社, 1988.

    Google Scholar

    Geological Bureau of Guangdong Province. The geology of Guangdong Province[M]. Beijing:Geological Press, 1998. (in Chinese)

    Google Scholar

    饶春涛, 李平鲁.珠江口盆地热流研究[J].中国海上油气(地质), 1991, 5(6):7-18.

    Google Scholar

    RAO Chuntao, LI Pinglu. Study of heat flux in basins around the Pearl river delta[J]. China Offshore Oil and Gas (Geology), 1991, 5(6):7-18. (in Chinese with English abstract)

    Google Scholar

    王妙月, 杨懋源, 胡毓良, 等.新丰江水库地震的震源机制及其成因初步探讨[J].地球物理学报, 1976, 17(1):1-17.

    Google Scholar

    WANG Miaoyue, YANG Maoyuan, HU Yuliang, et al. Mechanism of the reservoir impounding earthquakes at Xinfengjiang and a preliminary endeavour to discuss their cause[J]. Acta Geophysica Sinica, 1976, 19(1):1-17. (in Chinese with English abstract)

    Google Scholar

    陈伟光.华南沿海沉积盆地的新构造运动及其与地震的关系[J].华南地震, 1995, 15(2):55-61.

    Google Scholar

    CHEN Weiguang. On the relation between earthquake and neotectonic movement of depositional basins in coastal area of south China[J]. South China Journal of Seismology, 1995, 15(2):55-61. (in Chinese with English abstract)

    Google Scholar

    CHADWICK R A, LEONARD R B. Structural controls of hot-spring systems on southwestern Montana[M/OL]. USGS Open-File Report 79-1333. U.S. Geological Survey, 1979. https://pubs.usgs.gov/of/1979/1343/report.pdf.

    Google Scholar

    CUREWITZ D, KARSON J A. Structural settings of hydrothermal outflow:Fracture permeability maintained by fault propagation and interaction[J]. Journal of Volcanology and Geothermal Research, 1997, 79(3-4):149-168. doi: 10.1016/S0377-0273(97)00027-9

    CrossRef Google Scholar

    PERSON M, HOFSTRA A, SWEETKIND D, et al. Analytical and numerical models of hydrothermal fluid flow at fault intersections[J]. Geofluids, 2012, 12(4):312-326. doi: 10.1111/gfl.2012.12.issue-4

    CrossRef Google Scholar

    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.地热资源地质探勘规范: GB/T 11615-2010[S].北京: 中国标准出版社, 2011.

    Google Scholar

    General administration of quality supervision, inspection and quarantine of the People's Republic of China, Standardization administration. Code for geological exploration of geothermal Resources: GB/T 11615-2010[S]. Beijing: Standards Press of China, 2011. (in Chinese)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(3)

Article Metrics

Article views(3774) PDF downloads(73) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint