2018 Vol. 24, No. 6
Article Contents

Shaohua YANG, Zhonghai LI. A NUMERICAL CALCULATION APPROACH BASED ON FEM FOR LONG-TERM DEFORMATION OF LITHOSPHERE[J]. Journal of Geomechanics, 2018, 24(6): 768-775. doi: 10.12090/j.issn.1006-6616.2018.24.06.079
Citation: Shaohua YANG, Zhonghai LI. A NUMERICAL CALCULATION APPROACH BASED ON FEM FOR LONG-TERM DEFORMATION OF LITHOSPHERE[J]. Journal of Geomechanics, 2018, 24(6): 768-775. doi: 10.12090/j.issn.1006-6616.2018.24.06.079

A NUMERICAL CALCULATION APPROACH BASED ON FEM FOR LONG-TERM DEFORMATION OF LITHOSPHERE

More Information
  • Finite element method (FEM), which is very important in almost all fields of solid earth sciences, has been widely used in numerical experiments in solid earth sciences due to its flexibility and precision, ranging from short-term seismic activity to long-term lithospheric deformation, mantle convection and even planetary evolution. However, with the deepening of the research, some specific geological problems bring challenges to the finite element calculation, especially the numerical calculation of large-scale lithosphere deformation, such as the evolution of subduction zone and stress localization caused by plastic rheology in shear zone. Based on explicit FEM, an attempt is made to numerical calculation in the process of large deformation of lithosphere considering visco-elastic-plasticity in this study. Marker-In-Cell (MIC) approach was used in processing each material migration. On the basis of describing the basic principle and process, the core modules of visco-elastic deformation, elastic-plastic deformation, large deformation and heat transfer were tested. These four modules are the key to simulate the long-term deformation of the lithosphere. According to the comparison between the test results and the previous simulation results, the tested core modules basically meet the test requirements. It can be predicted that the existing basic algorithms can meet the needs of studying the large deformation of the lithosphere, and further specific research work will explore this kind of problem.
  • 加载中
  • Hughes T J R. The finite element method:linear static and dynamic finite element analysis[M]. New York:Dover Publication, 2000.

    Google Scholar

    Ismail-Zadeh A, Tackley P. Computational methods for geodynamics[M]. Cambridge:Cambridge University Press, 2010.

    Google Scholar

    Tucker G E, Hancock G R. Modelling landscape evolution[J]. Earth Surface Processes and Landforms, 2010, 35(1):28~50. doi: 10.1002/esp.v35:1

    CrossRef Google Scholar

    Yang S H, Shi Y L. Three-dimensional numerical simulation of glacial trough forming process[J]. Science China Earth Sciences, 2015, 58(9):1656~1668. doi: 10.1007/s11430-015-5120-8

    CrossRef Google Scholar

    Beaumont C, Jamieson R A, Nguyen M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414(6865):738~742. doi: 10.1038/414738a

    CrossRef Google Scholar

    Van Keken P E, Kiefer B, Peacock S M. High-resolution models of subduction zones:implications for mineral dehydration reactions and the transport of water into the deep mantle[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(10):1~20.

    Google Scholar

    Leng W, Zhong S J. Viscous heating, adiabatic heating and energetic consistency in compressible mantle convection[J]. Geophysical Journal International, 2008, 173(2):693~702. doi: 10.1111/gji.2008.173.issue-2

    CrossRef Google Scholar

    杨少华, 许志琴, 李忠海, 等.欧罗巴星陨石坑对冰层厚度的制约[J].地球物理学报, 2017, 60(3):935~940.

    Google Scholar

    YANG Shaohua, XU Zhiqin, LI Zhonghai, et al. Constraint of impact craters on ice thickness on the Europa[J]. Chinese Journal of Geophysics, 2017, 60(3):935~940(in Chinese with English abstract)

    Google Scholar

    Zhang S Q, O'Neill C. The early geodynamic evolution of Mars-type planets[J]. Icarus, 2016, 265:187~208. doi: 10.1016/j.icarus.2015.10.019

    CrossRef Google Scholar

    He Y, Puckett E G, Billen M I. A discontinuous Galerkin method with a bound preserving limiter for the advection of non-diffusive fields in solid Earth geodynamics[J]. Physics of the Earth and Planetary Interiors, 2017, 263:23~37. doi: 10.1016/j.pepi.2016.12.001

    CrossRef Google Scholar

    Enright D, Losasso F, Fedkiw R. A fast and accurate semi-Lagrangian particle level set method[J]. Computers & Structures, 2005, 83(6~7):479~490.

    Google Scholar

    Weinberg R F, Schmeling H. Polydiapirs:multiwavelength gravity structures[J]. Journal of Structural Geology, 1992, 14(4):425~436. doi: 10.1016/0191-8141(92)90103-4

    CrossRef Google Scholar

    Gerya T V. Introduction to numerical geodynamic modelling[M]. Cambridge, UK:Cambridge University Press, 2010.

    Google Scholar

    Ranalli G. Rheology of the Earth[M]. UK:Chapman and Hall, 1995.

    Google Scholar

    Kronbichler M, Heister T, Bangerth W. High accuracy mantle convection simulation through modern numerical methods[J]. Geophysical Journal International, 2012, 191(1):12~29. doi: 10.1111/gji.2012.191.issue-1

    CrossRef Google Scholar

    Kaus B J P. Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation[J]. Tectonophysics, 2010, 484(1~4):36~47. doi: 10.1016/j.tecto.2009.08.042

    CrossRef Google Scholar

    Moresi L, Dufour F, Mühlhaus H B. Mantle convection modeling with viscoelastic/brittle lithosphere:numerical methodology and plate tectonic modeling[J]. Pure and Applied Geophysics, 2002, 159(10):2335~2356. doi: 10.1007/s00024-002-8738-3

    CrossRef Google Scholar

    Kaus B J P, Popov A A, Baumann T S, et al. Forward and inverse modelling of lithospheric deformation on geological timescales[A]. NIC Symposium 2016[C]. NIC Series, 2016, 298~307.

    Google Scholar

    Gerya T V, Yuen D A. Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems[J]. Physics of the Earth and Planetary Interiors, 2007, 163(1~4):83~105. doi: 10.1016/j.pepi.2007.04.015

    CrossRef Google Scholar

    Jaeger J C, Cook N G W, Zimmerman R W. Fundamentals of rock mechanics[M]. Malden:Blackwell Publishingl, 2007.

    Google Scholar

    王勖成.有限单元法[M].北京:清华大学出版社, 2003.

    Google Scholar

    WANG Xucheng. Finite element method[M]. Beijng:Tsinghua University Press, 2003. (in Chinese)

    Google Scholar

    夏志皋.塑性力学[M].上海:同济大学出版社, 1991.

    Google Scholar

    XIA Zhigao, Plasticity mechnics[M]. Shanghai:Tongji University Press, 1991. (in Chinese)

    Google Scholar

    Shewchuk J R. Delaunay refinement algorithms for triangular mesh generation[J]. Computational Geometry, 2002, 22(1~3):21~74. doi: 10.1016/S0925-7721(01)00047-5

    CrossRef Google Scholar

    Burden R L, Faires J D. Numerical analysis[M]. Boston:Brooks/Cole, 2011.

    Google Scholar

    李庆扬, 王能超, 易大义.数值分析[M]. 5版.北京:清华大学出版社, 2008.

    Google Scholar

    LI Qingyang, WANG Nengchao, YI Dayi. Numerical analysis[M]. 5th ed. Beijing:Tsinghua University Press, 2008. (in Chinese)

    Google Scholar

    Van Keken P E, King S D, Schmeling H, et al. A comparison of methods for the modeling of thermochemical convection[J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B10):22477~22495. doi: 10.1029/97JB01353

    CrossRef Google Scholar

    Thieulot C. ELEFANT:a user-friendly multipurpose geodynamics code[J]. Solid Earth Discussion, 2014, 6(2):1949~2096. doi: 10.5194/sed-6-1949-2014

    CrossRef Google Scholar

    Turcotte D L, Schubert G. Geodynamics[M]. Cambridge, UK:Cambridge University Press, 2002.

    Google Scholar

    le Pourhiet L, May D A, Huile L, et al. A genetic link between transform and hyper-extended margins[J]. Earth and Planetary Science Letters, 2017, 465:184~192. doi: 10.1016/j.epsl.2017.02.043

    CrossRef Google Scholar

    Ruh J B, Gerya T, Burg J P. 3D effects of strain vs. velocity weakening on deformation patterns in accretionary wedges[J]. Tectonophysics, 2014, 615~616:122~141.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(2390) PDF downloads(24) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint