2018 Vol. 24, No. 2
Article Contents

Di ZHOU, Zhongyun NI, Zhenyu YANG. OBJECT-ORIENTED REMOTE SENSING INFORMATION EXTRACTION METHOD FOR ROCKY DESERTIFICATION IN KARST AREA-A CASE STUDY OF DAFANG COUNTY, GUIZHOU[J]. Journal of Geomechanics, 2018, 24(2): 263-273. doi: 10.12090/j.issn.1006-6616.2018.24.02.028
Citation: Di ZHOU, Zhongyun NI, Zhenyu YANG. OBJECT-ORIENTED REMOTE SENSING INFORMATION EXTRACTION METHOD FOR ROCKY DESERTIFICATION IN KARST AREA-A CASE STUDY OF DAFANG COUNTY, GUIZHOU[J]. Journal of Geomechanics, 2018, 24(2): 263-273. doi: 10.12090/j.issn.1006-6616.2018.24.02.028

OBJECT-ORIENTED REMOTE SENSING INFORMATION EXTRACTION METHOD FOR ROCKY DESERTIFICATION IN KARST AREA-A CASE STUDY OF DAFANG COUNTY, GUIZHOU

More Information
  • The existing pixel-based supervised and unsupervised classification methods can't meet the requirements of rocky desertification information extraction accuracy in karst rocky desertification area under the circumstances of complicated geological environment, large topographic relief and obvious shadows. In order to improve the accuracy of remote sensing image information extraction, texture feature data and topographic data are used to assist the object oriented method in the rocky desertification information extraction in karst rocky desertification area. Firstly, based on the characteristics of rocky desertification with uneven image sizes in TM/ETM+, the optimal segmentation parameters are calculated using texture and terrain factors to conduct multi-scale segmentation. Secondly, the grading indexes of rocky desertification are established based on vegetation coverage rates, rock exposure rates and slope factors. Finally, according to the grading rules of rocky desertification, spectral information and texture features, the information of rocky desertification in Karst area is extracted. The temporal TM/ETM+images of rocky desertification areas in DaFang, Guizhou, are selected for rocky desertification information extraction. The results show that comparing with pixel-based supervised classification and unsupervised classification methods, the object-oriented classification technology can effectively reduce the "salt and pepper phenomenon" caused by complicated topography, and the extraction accuracy is much better.
  • 加载中
  • 周忠发.遥感和GIS技术在贵州喀斯特地区土地石漠化研究中的应用[J].水土保持通报, 2001, 21(3):52~54.

    Google Scholar

    ZHOU Zhongfa. Application of remote sensing and GIS technology for land desertification in Guizhou Karst Region[J]. Bulletin of Soil and Water Conservation, 2001, 21(3):52~54. (in Chinese with English abstract)

    Google Scholar

    王金华. 近30年来粤北土地石漠化动态变化及发展趋势研究[D]. 广州: 华南师范大学, 2007.http://cdmd.cnki.com.cn/Article/CDMD-10574-2007184881.htm

    Google Scholar

    WANG Jinhua. Study on dynamic change and development trend of rocky desertification in Northern Guangdong in recent 30 years[D]. Guangzhou: South China Normal University, 2007. (in Chinese)

    Google Scholar

    陈起伟, 熊康宁, 兰安军.基于3S的贵州喀斯特石漠化遥感监测研究[J].干旱区资源与环境, 2014, 28(3):62~67.

    Google Scholar

    CHEN Qiwei, XIONG Kangning, LAN Anjun. Monitoring studies on Karst rocky desertification in Guizhou based on 3S[J]. Journal of Arid Land Resources and Environment, 2014, 28(3):62~67. (in Chinese with English abstract)

    Google Scholar

    Gill T K, Phinn S R, Armston J D, et al. Estimating tree-cover change in Australia:Challenges of using the MODIS vegetation index product[J]. International Journal of Remote Sensing, 2009, 30(6):1547~1565. doi: 10.1080/01431160802509066

    CrossRef Google Scholar

    岳跃民, 张兵, 王克林, 等.石漠化遥感评价因子提取研究[J].遥感学报, 2011, 15(4):722~736.

    Google Scholar

    YUE Yuemin, ZHANG Bing, WANG Kelin, et al. Remote sensing of indicators for evaluating karst rocky desertification[J]. Journal of Remote Sensing, 2011, 15(4):722~736. (in Chinese with English abstract)

    Google Scholar

    Townsend P A, Walsh S J. Remote sensing of forested wetlands:Application of multitemporal and multispectral satellite imagery to determine plant community composition and structure in southeastern USA[J]. Plant Ecology, 2001, 157(2):129~149.

    Google Scholar

    李朝阳, 况顺达, 李志忠, 等.喀斯特石漠化遥感信息增强与监测技术[J].桂林工学院学报, 2007, 27(1):30~35.

    Google Scholar

    LI Zhaoyang, KUANG Shunda, LI Zhizhong, et al. RS monitoring technology in karst rocky desertification[J]. Journal of Guilin University of Technology, 2007, 27(1):30~35. (in Chinese with English abstract)

    Google Scholar

    杨奇勇, 蒋忠诚, 马祖陆, 等.基于地统计学和遥感的岩溶区石漠化空间变异特征[J].农业工程学报, 2012, 28(4):243~247.

    Google Scholar

    YANG Qiyong, JIANG Zhongcheng, MA Zulu, et al. Spatial variability of karst rock desertification based on geostatistics and remote sensing[J]. Transactions of the CSAE, 2012, 28(4):243~247. (in Chinese with English abstract)

    Google Scholar

    Gambarova E, Gambarov A, Ismayilov J. Applying neural networks in rare vegetation communities classification of remotely sensed images[J]. Optical Memory and Neural Networks, 2008, 17(2):157~166. doi: 10.3103/S1060992X08020100

    CrossRef Google Scholar

    胡宝清, 王世杰.基于3S技术的区域喀斯特石漠化过程、机制及风险评估:以广西都安为例[M].北京:科学出版社, 2008.

    Google Scholar

    HU Baoqing, WANG Shijie. Process, Mechanism and risk assessment of regional Karst desertification based on 3S technology:a case study of Du'an, Guangxi[M]. Beijing:Science Press, 2008. (in Chinese)

    Google Scholar

    Willhauck G, Schneider T, De Kok R, et al. Comparison of object oriented classification techniques and standard image analysis for the use of change detection between SPOT multispectral satellite images and aerial photos[A]. Proceedings of XIX ISPRS Congress[C]. Amsterdam: IAPRS, 2000.

    Google Scholar

    贾明明, 任春颖, 刘殿伟, 等.基于环境星与MODIS时序数据的面向对象森林植被分类[J].生态学报, 2014, 34(24):7167~7174.

    Google Scholar

    JIA Mingming, REN Chunying, LIU Dianwei, et al. Object-oriented forest classification based on combination of HJ-1 CCD and MODIS-NDVI data[J]. Acta Ecologica Sinica, 2014, 34(24):7167~7174. (in Chinese with English abstract)

    Google Scholar

    谢雨萍, 吴虹, 刘泽东, 等.恭城县岩溶石漠化环境变化定量遥感研究[J].桂林工学院学报, 2009, 29(1):65~71.

    Google Scholar

    XIE Yuping, WU Hong, LIU Zedong, et al. Environment change of karst rocky desertification by quantitative remote sensing in Gongcheng[J]. Journal of Guilin University of Technology, 2009, 29(1):65~71. (in Chinese with English abstract)

    Google Scholar

    Lupo F, Linderman M, Vanacker V, et al. Categorization of land-cover change processes based on phenological indicators extracted from time series of vegetation index data[J]. International Journal of Remote Sensing, 2007, 28(11):2469~2483. doi: 10.1080/01431160600921943

    CrossRef Google Scholar

    孟小军, 莫源富.基于遥感技术的打狗河流域1999-2009年间石漠化及绿化研究[J].桂林理工大学学报, 2013, 33(4):622~628.

    Google Scholar

    MENG Xiaojun, MO Yuanfu. Rocky desertification and afforestation of Dagou River basin during 1999-2009 based on remote sensing technology[J]. Journal of Guilin University of Technology, 2013, 33(4):622~628. (in Chinese with English abstract)

    Google Scholar

    童立强.西南岩溶石山地区石漠化信息自动提取技术研究[J].国土资源遥感, 2003, (4):35~38. doi: 10.6046/gtzyyg.2003.04.09

    CrossRef Google Scholar

    TONG Liqiang. A method for extracting remote sensing information from rocky desertification areas in Southwest China[J]. Remote Sensing for Land & Resources, 2003, (4):35~38. (in Chinese with English abstract) doi: 10.6046/gtzyyg.2003.04.09

    CrossRef Google Scholar

    林雪. 面向林地信息的高分一号遥感影像融合与分类研究[D]. 北京: 北京林业大学, 2016.http://cdmd.cnki.com.cn/Article/CDMD-10022-1016145061.htm

    Google Scholar

    LIN Xue. Study on fusion algorithms and classincation methods for GF-1 data oriented to forestland information[D]. Beijing: Beijing Forestry University, 2016. (in Chinese with English abstract)

    Google Scholar

    YANG Panpan. Research on object-oriented vegetation classification method based on texture features of high resolution remote sensing images[J]. Kunming:Yunnan Normal University, 2017. (in Chinese with English abstract)

    Google Scholar

    梁茂昆. 基于面向对象及Landsat影像的广州市城市空间格局演变研究[D]. 抚州: 东华理工大学, 2017.

    Google Scholar

    LIANG Maokun. Research on the evolution of Guangzhou urban spatial pattern based on object-oriented and Landsat images[D]. Fuzhou: East China University of Technology, 2017. (in Chinese with English abstract)

    Google Scholar

    李海霞. 高分辨率遥感影像对象分类方法研究及其城乡规划监测应用[D]. 北京: 中国农业大学, 2014.http://cdmd.cnki.com.cn/Article/CDMD-10019-1014223423.htm

    Google Scholar

    LI Haixia. Study on the methods of object classification and its application on urban and rural plan monitoring with high spatial resolution remotely sensed data[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract)

    Google Scholar

    陈建容. 面向对象的土地利用/覆被信息提取——以乐山市GF-1号影像为例[D]. 成都: 成都理工大学, 2016.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3048461

    Google Scholar

    CHEN Jianrong. Object-oriented land use/cover information extraction[D]. Chengdu: Chengdu University of Technology, 2016. (in Chinese)

    Google Scholar

    贾伟. 面向对象的复杂地形区土地利用信息提取研究[D]. 西宁: 青海师范大学, 2015.http://cdmd.cnki.com.cn/Article/CDMD-10746-1015661361.htm

    Google Scholar

    JIA Wei. Land use information extraction for complicated terrain regions from object-oriented classification technique[D]. Xining: Qinghai Normal University, 2015. (in Chinese with English abstract)

    Google Scholar

    欧阳华璘, 沈敬伟, 周廷刚.面向对象分类方法在台风灾害信息提取中的应用研究[J].自然灾害学报, 2016, 25(6):9~17.

    Google Scholar

    OUYANG Hualin, SHEN Jingwei, ZHOU Tinggang. Application of object-oriented classification method to typhoon disaster information extraction[J]. Journal of Natural Disaster, 2016, 25(6):9~17. (in Chinese with English abstract)

    Google Scholar

    李雪冬, 杨广斌, 李蔓, 等.面向对象的喀斯特地区土地利用遥感分类信息提取-以贵州毕节地区为例[J].中国岩溶, 2013, 32(2):231~237.

    Google Scholar

    LI Xuedong, YANG Guangbin, LI Man, et al. RS classification information extraction of landuse in karst area by means of object oriented approach:a case in Bijie, Guizhou[J]. Carsologica Sinica, 2013, 32(2):231~237. (in Chinese with English abstract)

    Google Scholar

    刘海龙. 面向对象的石漠化遥感监测及过程模拟研究[D]. 昆明: 昆明理工大学, 2015.http://cdmd.cnki.com.cn/Article/CDMD-10674-1015636041.htm

    Google Scholar

    LIU Hailong. Object-oriented remote sensing monitoring and process simulation of rocky desertification[D]. Kunming: Kunming University of Science and Technology, 2015. (in Chinese)

    Google Scholar

    曹密媛. 基于遥感影像的地物要素智能识别与提取研究[D]. 西安: 长安大学, 2015.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D748355

    Google Scholar

    CAO Miyuan. Based on the feature elements of intelligent recognition and extraction of remote sensing image[D]. Xi'an: Chang'an University, 2015. (in Chinese with English abstract)

    Google Scholar

    佘宇晨. 基于GF-2光谱特征的石漠化信息自动提取[D]. 株洲: 中南林业科技大学, 2017.http://cdmd.cnki.com.cn/Article/CDMD-10538-1017117982.htm

    Google Scholar

    SHE Yuchen. Automatic extraction of desertification information based on GF-2 spectral characteristics[D]. Zhuzhou: Central South University of Forestry & Technology, 2017. (in Chinese with English abstract)

    Google Scholar

    苏伟, 李京, 陈云浩, 等.基于多尺度影像分割的面向对象城市土地覆被分类研究-以马来西亚吉隆坡市城市中心区为例[J].遥感学报, 2007, 11(4):521~530. doi: 10.11834/jrs.20070472

    CrossRef Google Scholar

    SU Wei, LI Jing, CHEN Yunhao, et al. Object-oriented urban land-cover classification of multi-scale image segmentation method——a case study in Kuala Lumpur City center, Malaysia[J]. Journal of Remote Sensing, 2007, 11(4):521~530. (in Chinese with English abstract) doi: 10.11834/jrs.20070472

    CrossRef Google Scholar

    LIAO Ning, XU Lisha, QIAN Xiaoshan. Texture classification based on multi-scale wavelet[J]. Journal of System Simulation, 2015, 27(9):1951~1959.

    Google Scholar

    熊康宁.喀斯特石漠化的遥感-GIS典型研究[M].地质出版社, 2002

    Google Scholar

    Xiong Kangning. A Typical Remote Sensing-GIS Study of Karst Rocky Desertification[M]. Geological Publishing House, 2002(in Chinese)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(5)

Article Metrics

Article views(3080) PDF downloads(39) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint