2025 Vol. 52, No. 1
Article Contents

WANG Shuangming, SUN Qiang, GENG Jishi, YUAN Shihao, JIA Hailiang, WANG Shengquan, ZHANG Weiqiang, HU Jianjun, LI Delu. 2025. Geological support for response and damage reduction in the Earth's critical zone under coal mining[J]. Geology in China, 52(1): 1-21. doi: 10.12029/gc20240506001
Citation: WANG Shuangming, SUN Qiang, GENG Jishi, YUAN Shihao, JIA Hailiang, WANG Shengquan, ZHANG Weiqiang, HU Jianjun, LI Delu. 2025. Geological support for response and damage reduction in the Earth's critical zone under coal mining[J]. Geology in China, 52(1): 1-21. doi: 10.12029/gc20240506001

Geological support for response and damage reduction in the Earth's critical zone under coal mining

    Fund Project: Supported by National Natural Science Foundation of China (No.42330808), “Two−chain” fusion key program of Shaanxi Province (No.2023−LL−QY−05), Natural Science Basic Research Program of Shaanxi (No.2024JC−YBQN−0289), Postdoctoral Research Project of Shaanxi Province, China (No.2023BSHEDZZ304).
More Information
  • Author Bio: WANG Shuangming, born in 1955, male, Academician of Chinese Academy of Engineering, engaged in coal geological exploration and environmental protection in mining areas; E-mail: sxmtwsm@163.com
  • Corresponding author: SUN Qiang, born in 1981, male, professor, doctoral supervisor, engaged in research on coal mine engineering geology, rock and soil stability, and geological disaster prevention and control; E-mail: sunqiang04@cumt.edu.cn
  • This paper is the result of mineral exploration engineering.

    Objective

    Cracking the contradiction between energy security and ecological environment protection is a major challenge for the development of coal resources in ecologically fragile areas. The large−scale and intensive extraction of coal resources not only triggers rapid changes in geological conditions but also impacts the structure and function of the Earth's critical zone in mining areas. The Earth's critical zone refers to a continuous domain that extends upwards from the bottom of groundwater or soil rock interface to the top of vegetation canopy.

    Methods

    Focusing on how to understand the relationship between the operation of the Earth's critical zone and the evolution of geological conditions for coal development, based on the analysis of coal mining geological conditions and the response of the Earth's critical zone, this paper elucidates the response mode, monitoring technology, prediction methods, guarantee strategies, and loss reduction work of the Earth's critical zone in coal mining affected areas. Based on the evolution of geological conditions for coal resource extraction and the protection of the Earth's critical zone, this paper systematically analyzes the theory and technology of reducing losses and ensuring coal development in the Earth's critical zone from four aspects: Scientific connotation, scientific problems, research ideas, and guarantee plans.

    Results

    The overall approach of the research on the response of the Earth's critical zone to coal mining is structured as "Pre−mining geological conditions and key zone structures and elements → Geological condition changes and the Earth's critical zone response modes and evolution status identification → Full time and space active and passive multi−source information response and dynamic monitoring → The Earth's critical zone structure functional dynamic evolution model and intelligent prediction evaluation → The Earth's critical zone loss reduction geological guarantee strategy and restoration reconstruction integrated technical method". The research content includes: (1) Identify the comprehensive characteristics of mining geological conditions such as geological structure, hydrogeology, rock layer combination, and crustal stress with coal occurrence, reveal the spatial relationship characteristics of the Earth's critical and lower coal seams, rock layers, and groundwater, and finely characterize the critical zone with multiple elements, modes, and scenarios, forming a fast query and intelligent analysis digital platform including environmental bearing capacity indicator system, evaluation model, and bearing capacity zoning. (2) Analyze the connection between fracture fields of rock (soil) layers under the impact of mining and the hydrological cycle of critical zones, revealing the synergistic evolution mechanism of geological conditions and critical zones and proposes methods for identifying the response patterns of the Earth's critical zone to coal development. (3) Investigate the temporal and spatial evolution of rock layer structures, fracture networks, seepage channels, stress−energy concentration characteristics, material cycles, energy exchanges, and the multi−source information field under mining factors and construct the spatial−temporal information response model of the Earth’s critical zone under the whole life cycle of coal development. (4) Construct a spatial and multi−directional multi−source information fusion monitoring system for the space−sky−earth−drill−well under the conditions of the whole life cycle of coal mining, form a monitoring and analysis system for the interfacial structure and operation process elements of the Earth's critical zone under the influence of coal mining and predict the structural changes, response patterns, operational processes and ecological and environmental effects of the Earth's critical zone in the coal development zone. (5) Propose technologies such as collaborative development of coal and coal measures resources, comprehensive utilization of mine water, and large−scale utilization of underground space in coal development, functional reconstruction. Establish a geological condition and critical zone structure monitoring technology based on multi−source information, achieving "transparency of geological structural conditions, digitization of key damage elements, informatization of evolution process monitoring, intelligent model prediction, and precision of critical zones protection technology".

    Conclusions

    The geological guarantee of the Earth's critical zone covers geological conditions, mining modes, monitoring systems, prediction methods, and loss reduction technologies. It pursues the coordinated development of coal safety mining and geological environment protection, solves the contradiction between resource development and geological environment constraints, improves the theory and technology of comprehensive development of coal and coal bearing resources in ecologically fragile areas, and the protection, restoration, and reconstruction of the Earth's critical zone functions. It provides a scientific basis for geological, mechanical, and physical foundations to build a resource−saving and environmentally friendly society, and promotes the in−depth development of coal engineering practice and safety theory.

  • 加载中
  • [1] An P J, Zhang Z Q, Wang L W. 2016. Review of Earth critical zone research[J]. Advances in Earth Science, 31(12): 1228−1234.

    Google Scholar

    [2] Bian Zhengfu, Lei Shaogang. 2020. Green exploitation of coal resources and its environmental effects and protecting strategy in Xinjiang[J]. Coal Sciences and Technology, 48(4): 43−51 (in Chinese with English abstract).

    Google Scholar

    [3] Chen Xi, Zhang Zhicai. 2022. An overview on the development of science and ecological hydrology of the earth critical zones in karst area[J]. Carsologica sinica, 41(3): 356−364 (in Chinese with English abstract).

    Google Scholar

    [4] Chinese Academy of Engineering. 2011. Research on Medium – Long Term (2030, 2050) Development Strategy of China's Energy: Energy Saving, Coal Roll [M]. Beijing: Science Press.

    Google Scholar

    [5] Fan Limin, Xiang Maoxi, Peng Jie, Li Cheng, Li Yonghong, Wu Boyun, Bian Huiying, Gao Shuai, Qiao Xiaoying. 2016. Groundwater response to intensive mining in ecologically fragile area[J]. Joural of China Coal Society, 41(11): 2672−2678 (in Chinese with English abstract).

    Google Scholar

    [6] Gu Dazhao, Zhang Yong, Cao Zhiguo. 2016. Technical progress of water resource protection and utilization by coal mining in China[J]. Coal Science and Technology, 44(1): 1−7 (in Chinese with English abstract).

    Google Scholar

    [7] Huang Yanli, Guo Yachao, Qi Wenyue, Li Junmeng, Wang Jiaqi, Ouyang Shenyang, Wu Laiwei. 2022. Evolution and degradation mechanism of surface vegetation coverage in typical ecologically fragile mining areas in western China[J]. Journal of China Coal Society, 47(12): 4217−4227 (in Chinese with English abstract).

    Google Scholar

    [8] Jiao Huazhe, Chen Xi, Zhang Tiegang, Yang Liuhua, Chen Xinming, Honaker Rick, Ma Junwei, Yu Yang. 2024. Cause analysis of groundwater pollution in coal development zone of Yellow River Basin and prevention suggestions[J]. Geology in China, 51(1): 143−156 (in Chinese with English abstract).

    Google Scholar

    [9] Li Quansheng. 2023. Key technologies for damage reduction mining and ecological restoration of large−scale open pit coal mines in grassland area of eastern Inner Mongolia[J]. Journal of Mining and Safety Engineering, 40(5): 905−915 (in Chinese with English abstract).

    Google Scholar

    [10] Li Xiaoyan, Ma Yujun. 2016. Advances in Earth’s Critical Zone science and hydropedology[J]. Journal of Beijing Normal University (Natural Science), 52(6): 731−737 (in Chinese with English abstract).

    Google Scholar

    [11] Li Yong, Pan Songqi, Ning Shuzheng, Shao Longyi, Jing Zhenhua, Wang Zhuangsen. 2022. Coal measure metallogeny: Metallogenic system and implication for resource and environment[J]. Science China (Earth Sciences), 65(7): 1211−1228 (in Chinese with English abstract). doi: 10.1007/s11430-021-9920-4

    CrossRef Google Scholar

    [12] Liu Haiping, Wang Yi. 2023. Research and practices of countermeasures for resource and environment management in Shendong mining area[J]. China Coal, 49(S1): 6−14 (in Chinese with English abstract).

    Google Scholar

    [13] Liu Jintao, Han Xiaole, Liu Jianli, Liang Zhongmin, He Ruimin. 2019. Understanding of critical zone structures and hydrological connectivity: A review[J]. Advances in Water Science, 30(1): 112−122 (in Chinese with English abstract).

    Google Scholar

    [14] Luo Zhanbin, Fan Jun, Shao Mingan. 2022. Progresses of weathered bedrock ecohydrology in the Earth’s critical zone[J]. Chinese Science Bulletin, 67(27): 3311−3323 (in Chinese with English abstract).

    Google Scholar

    [15] Lü Yuxiang, Hu Wei, Yang Yan. 2019. Research progress of hydrological cycle in karst critical zone[J]. Advances in Water Science, 30(1): 123−138 (in Chinese with English abstract).

    Google Scholar

    [16] Ma Teng, Shen Shuai, Deng Yamin, Du Yao, Liang Xing, Wang Zhiqiang, Yu Haotian. 2020. Theoretical approaches of survey on Earth’s Critical Zone in basin: An example from Jianghan Plain, Central Yangtze River[J]. Earth Science, 45(12): 4498−4511 (in Chinese with English abstract).

    Google Scholar

    [17] Pu Junbing. 2022. Earth's critical zone and karst−critical zone: Structure, characteristic and bottom boundary[J]. Bulletin of Geological Science and Technology, 41(5): 230−241 (in Chinese with English abstract).

    Google Scholar

    [18] Research Group of National Key Basic Research Program of China (2013CB227900) (Basic Study on Geological Hazard Prevention and Environmental Protection in High Intensity Mining of Western Coal Area). 2017. Theory and method research of geological disaster prevention on high−intensity coal exloitation in the west areas[J]. Journal of China Coal Society, 42(2): 267−275 (in Chinese with English abstract).

    Google Scholar

    [19] Riebe C S, Hahm W J, Brantley S L. 2017. Controls on deep critical zone architecture: A historical review and four testable hypotheses[J]. Earth Surface Processes and Landforms, 42: 128−156. doi: 10.1002/esp.4052

    CrossRef Google Scholar

    [20] Sun Qiang, Zhang Weiqiang, Geng Jishi, Hu Jianjun, Zhang Yuliang, Lyu Chao, Ge Zhenlong, Li Pengfei, Jia Hailiang, Liu Yabin, Li Yuxiang. 2023. Technological path and geological guarantee for energy storage in underground space formed by coal mining[J]. Coal Geology and Exporlation, 51(2): 229−242 (in Chinese with English abstract).

    Google Scholar

    [21] Wang Guofa, Ren Shihua, Pang Yihui, Qu Sijian, Zheng Dezhi. 2021. Development achievements of China’s coal industry during the 13th Five−Year plan period and implementation path of “dual carbon” target[J]. Coal Science and Technology, 2(4): 2−9 (in Chinese with English abstract).

    Google Scholar

    [22] Wang Junwei, Ming Shengping, Xu Min, La Qiong. 2023. Diversity pattern and phylogenetic structure of plant communities in Alpine Ecological Key Zone[J]. Acta Agrestia Sinica, 31(9): 2777−2786 (in Chinese with English abstract).

    Google Scholar

    [23] Wang Shuangming, Geng Jishi, Li Pengfei, Sun Qiang, Fan Zhangqun, Li Dan. 2023. Construction of geological guarantee system for green coal mining[J]. Coal Geology and Exporlation, 51(1): 33−43 (in Chinese with English abstract).

    Google Scholar

    [24] Wang Shuangming, Hou Enke, Xie Xiaoshen, Yang Fan, Liu Ying, Xiao Xucai, Shi Zengwu, Huang Yongan, Yang Zheng, Xie Yongli. 2021. Study on influence of surface ecological environment caused by middle deep coal mining and the ways of restoration[J]. Coal Sciences and Technology, 49(1): 19−31 (in Chinese with English abstract).

    Google Scholar

    [25] Wang Shuangming, Shen Yanjun, Sun Qiang, Hou Enke. 2020. Scientific issues of coal detraction mining geological assurance and their technology expectations in ecologically fragile mining areas of Western China[J]. Journal of Mining and Strata Control Engineering, 2(4): 5−19 (in Chinese with English abstract).

    Google Scholar

    [26] Wang Shuangming, Sun Qiang, Gu Chao, Li Pengfei, Geng Jishi. 2024. The development of geoscientific research promoted by coal exploitation[J]. China Coal, 50(1): 2−8 (in Chinese with English abstract).

    Google Scholar

    [27] Wang Shuangming, Sun Qiang, Hu Xin, Geng Jishi, Xue Shengze. 2024. Geological guarantee for in−situ development of coal[J]. Journal of Xi’an University of Science and Technology, 44(1): 1−11 (in Chinese with English abstract).

    Google Scholar

    [28] Wang Tong, Shao Longyi, Xia Yucheng, Fu Xuehai, Sun Yuzhuang, Sun Yajun, Ju Yiwen, Bi Yinli, Yu Jingchun, Xie Zhiqing, Ma Guodong, Wang Qinwei, Zhou Jin, Jiang Tao. 2017. Major achievements and future research directions of the coal geology in China[J]. Geology in China, 44(2): 242−262 (in Chinese with English abstract).

    Google Scholar

    [29] Wu Qiang, Tu Kun, Zeng Yifan, Liu Shouqiang. 2019. Discussion on the main problems and countermeasures for building an upgrade version of main energy (coal) industry in China[J]. Journal of China Coal Society, 44(6): 1625−1636 (in Chinese with English abstract).

    Google Scholar

    [30] Yang Jianfeng, Zhang Cuiguang. 2014. Earth’s critical zone: A holistic framework for geo−environmental researches[J]. Hydoheology & Engineering Geology, 41(3): 98−104,110 (in Chinese with English abstract).

    Google Scholar

    [31] Yang Jianfeng, Zuo Liyan, Zhang Cuiguang, Yao Xiaofeng. 2023. Progress on groundwater’s role in the earth system and groundwater modeling for earth system models[J]. Mineral Exploration, 14(8): 1473−1483 (in Chinese with English abstract).

    Google Scholar

    [32] Yang Shunhua, Song Xiaodong, Wu Huayong, Wu Kening, Zhang Ganlin. 2023. A review and discussion on the Earth’s Critical Zone research: Status Quo and prospect[J]. Acta Pedologica Sinica, 6(2): 308−318 (in Chinese with English abstract).

    Google Scholar

    [33] Zhang Dongsheng, Li Wenping, Lai Xingping, Fan Gangwei, Liu Weiqun. 2017. Development on basic theory of water protection during coal mining in Northwest of China[J]. Journal of China Coal Society, 42(1): 36−43 (in Chinese with English abstract).

    Google Scholar

    [34] Zhang Ganlin, Shi Zhou, Wang Qiubing, Zhao Yongcun, Liu Feng, Yang Lin, Song Xiaodong, Yang Fei, Jiang Zhuodong, Zeng Rong, Chen Songchao, Yang Shunhua. 2023. Development of soil geography in the new era and its future[J]. Acta Pedologica Sinica, 60(5): 1264−1276 (in Chinese with English abstract).

    Google Scholar

    [35] Zhang Ganlin, Song Xiaodong, Wu Kening. 2012. A classification scheme for Earth’s Critical Zones and its application in China[J]. Science China (Earth Sciences), 64(10): 1709−1720 (in Chinese with English abstract).

    Google Scholar

    [36] Zhang Jun, Chen Hongsong, Nie Yunpeng, Fu Zhiyong, Lian Jinjiao, Wang Fa, Luo Zidong, Wang Kelin. 2024. Research progress on structure and hydrological processes in the karst critical zone, southwest China[J]. Chinese Journal of Applied Ecology, 35(4): 985−996 (in Chinese with English abstract).

    Google Scholar

    [37] Zhao Ping, Tan Kelong, Han Xiaozong, Lin Zhongyue, Sun Hongjun, Xie Zhiqing, Huang Yong, Liu Yaran, Sun Jie. 2021. Research for energy and ecological security in China under new situation[J]. Coal Gology of China, 33(1): 1−7 (in Chinese with English abstract).

    Google Scholar

    [38] Zhou Changsong, Zou Shengzhang, Feng Qiyan. Zhu Danni, Li Jun, Wang Jia, Xie Hao, Deng Rixin. 2022. Progress in hydrogeochemical study of Karst Critical Zone: A critical review[J]. Earth Science Frontiers, 29(3): 37−50 (in Chinese with English abstract).

    Google Scholar

    [39] Zhu Yongguan, Li Gang, Zhang Ganlin, Fu Bojie. 2015. Soil security: From Earth's critical zone to ecosystem services[J]. Acta Geographica Sinica, 70(12): 1859−1869 (in Chinese with English abstract).

    Google Scholar

    [40] 安培浚, 张志强, 王立伟. 2016. 地球关键带的研究进展[J]. 地球科学进展, 31(12) : 1228−1234,

    Google Scholar

    [41] 卞正富, 雷少刚. 2020. 新疆煤炭资源开发的环境效应与保护策略研究[J]. 煤炭科学技术, 48(4): 43−51.

    Google Scholar

    [42] 陈喜, 张志才. 2022. 喀斯特地区地球关键带科学与生态水文学发展综述[J]. 中国岩溶, 41(3): 356−364. doi: 10.11932/karst20220303

    CrossRef Google Scholar

    [43] 范立民, 向茂西, 彭捷, 李成, 李永红, 仵拨云, 卞惠瑛, 高帅, 乔晓英. 2016. 西部生态脆弱矿区地下水对高强度采煤的响应[J]. 煤炭学报, 41(11): 2672−2678.

    Google Scholar

    [44] 顾大钊, 张勇, 曹志国. 2016. 我国煤炭开采水资源保护利用技术研究进展[J]. 煤炭科学技术, 44(1): 1−7.

    Google Scholar

    [45] 黄艳利, 郭亚超, 齐文跃, 李俊孟, 王佳奇, 欧阳神央, 吴来伟. 2022. 西部典型生态脆弱矿区采损地表植被盖度演化规律与退化机制[J]. 煤炭学报, 47(12): 4217−4227.

    Google Scholar

    [46] 焦华喆, 陈曦, 张铁岗, 杨柳华, 陈新明, Honaker Rick, 马俊伟, 余洋. 2024. 黄河流域煤炭开发区地下水污染成因分析及防治建议[J]. 中国地质, 51(1): 143−156. doi: 10.12029/gc20230217001

    CrossRef Google Scholar

    [47] 973计划(2013CB227900)“西部煤炭高强度开采下地质灾害防治与环境保护基础研究”项目组. 2017. 西部煤炭高强度开采下地质灾害防治理论与方法研究进展[J]. 煤炭学报, 42(2): 267−275.

    Google Scholar

    [48] 李全生. 2023. 蒙东草原区大型露天煤矿减损开采与生态修复关键技术[J]. 采矿与安全工程学报, 40(5): 905−915.

    Google Scholar

    [49] 李小雁, 马育军. 2016. 地球关键带科学与水文土壤学研究进展[J]. 北京师范大学学报(自然科学版), 52(6): 731−737.

    Google Scholar

    [50] 李勇, 潘松圻, 宁树正, 邵龙义, 荆振华, 王壮森. 2022. 煤系成矿学内涵与发展—兼论煤系成矿系统及其资源环境效应[J]. 中国科学: 地球科学, 52(10): 1948−1965.

    Google Scholar

    [51] 刘海平, 王义. 2023. 神东矿区资源环境治理对策研究及其具体实践[J]. 中国煤炭, 49(S1): 6−14.

    Google Scholar

    [52] 刘金涛, 韩小乐, 刘建立, 梁忠民, 贺瑞敏. 2019. 山坡表层关键带结构与水文连通性研究进展[J]. 水科学进展, 30(1): 112−122.

    Google Scholar

    [53] 骆占斌, 樊军, 邵明安. 2022. 地球关键带基岩风化层生态水文研究进展[J]. 科学通报, 67(27): 3311−3323.

    Google Scholar

    [54] 吕玉香, 胡伟, 杨琰. 2019. 岩溶关键带水循环过程研究进展[J]. 水科学进展, 30(1): 123−138.

    Google Scholar

    [55] 马腾, 沈帅, 邓亚敏, 杜尧, 梁杏, 王志强, 於昊天. 2020. 流域地球关键带调查理论方法: 以长江中游江汉平原为例[J]. 地球科学, 45(12): 4498−4511.

    Google Scholar

    [56] 蒲俊兵. 2022. 地球关键带与岩溶关键带: 结构、特征、底界[J]. 地质科技通报, 41(5): 230−241.

    Google Scholar

    [57] 孙强, 张卫强, 耿济世, 胡建军, 张玉良, 吕超, 葛振龙, 李鹏飞, 贾海梁, 刘亚斌, 李宇翔. 2023. 利用煤炭开发地下空间储能的技术路径与地质保障[J]. 煤田地质与勘探, 51(2): 229−242. doi: 10.12363/issn.1001-1986.22.10.0799

    CrossRef Google Scholar

    [58] 王国法, 任世华, 庞义辉, 曲思建, 郑德志. 2021. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术, 49(9): 1−8.

    Google Scholar

    [59] 王俊伟, 明升平, 许敏, 拉琼. 2023. 高山生态关键带植物群落多样性格局与系统发育结构[J]. 草地学报, 31(9): 2777−2786.

    Google Scholar

    [60] 王双明, 耿济世, 李鹏飞, 孙强, 范章群, 李丹. 2023. 煤炭绿色开发地质保障体系的构建[J]. 煤田地质与勘探, 51(1): 33−43. doi: 10.12363/issn.1001-1986.23.01.0030

    CrossRef Google Scholar

    [61] 王双明, 侯恩科, 谢晓深, 杨帆, 刘英, 肖绪才, 石增武, 黄永安, 杨征, 谢永利. 2021. 中深部煤层开采对地表生态环境的影响及修复提升途径研究[J]. 煤炭科学技术, 49(1): 19−31.

    Google Scholar

    [62] 王双明, 申艳军, 孙强, 侯恩科. 2020. 西部生态脆弱区煤炭减损开采地质保障科学问题及技术展望[J]. 采矿与岩层控制工程学报, 2(4): 5−19.

    Google Scholar

    [63] 王双明, 孙强, 谷超, 李鹏飞, 耿济世. 2024. 煤炭开发推动地学研究发展[J]. 中国煤炭, 50(1): 2−8.

    Google Scholar

    [64] 王双明, 孙强, 胡鑫, 耿济世. 薛圣泽. 2024. 煤炭原位开发地质保障[J]. 西安科技大学学报, 44(1): 1−11.

    Google Scholar

    [65] 王佟, 邵龙义, 夏玉成, 傅雪海, 孙玉壮, 孙亚军, 琚宜文, 毕银丽, 于景邨, 谢志清, 马国东, 王庆伟, 周兢, 江涛. 2017. 中国煤炭地质研究取得的重大进展与今后的主要研究方向[J]. 中国地质, 44(2): 242−262.

    Google Scholar

    [66] 武强, 涂坤, 曾一凡, 刘守强. 2019. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报, 44(6): 1625−1636.

    Google Scholar

    [67] 谢克昌. 2022. 面向2035年我国能源发展的思考与建议[J]. 中国工程科学, 24(6): 1−7.

    Google Scholar

    [68] 杨建锋, 张翠光. 2014. 地球关键带: 地质环境研究的新框架[J]. 水文地质工程地质, 41(3): 98−104,110.

    Google Scholar

    [69] 杨建锋, 左力艳, 张翠光, 姚晓峰. 2023. 全球尺度地下水作用与地球系统模式地下水过程建模进展[J]. 矿产勘查, 14(8): 1473−1483.

    Google Scholar

    [70] 杨顺华, 宋效东, 吴华勇, 吴克宁, 张甘霖. 2023. 地球关键带研究评述: 现状与展望[J]. 土壤学报, 6(2): 308−318.

    Google Scholar

    [71] 张东升, 李文平, 来兴平, 范钢伟, 刘卫群. 2017. 我国西北煤炭开采中的水资源保护基础理论研究进展[J]. 煤炭学报, 42(1): 36−43.

    Google Scholar

    [72] 张甘霖, 史舟, 王秋兵, 赵永存, 刘峰, 杨琳, 宋效东, 杨飞, 蒋卓东, 曾荣, 陈颂超, 杨顺华. 2023. 新时代土壤地理学的发展现状与趋势[J]. 土壤学报, 60(5): 1264−1276.

    Google Scholar

    [73] 张甘霖, 宋效东, 吴克宁. 2021. 地球关键带分类方法与中国案例研究[J]. 中国科学: 地球科学, 51(10): 1681−1692.

    Google Scholar

    [74] 张君, 陈洪松, 聂云鹏, 付智勇, 连晋姣, 王发, 罗紫东, 王克林. 2024. 西南喀斯特关键带结构及其水文过程研究进展[J]. 应用生态学报, 35(4): 985−996.

    Google Scholar

    [75] 赵平, 谭克龙, 韩效忠, 林中月, 孙红军, 谢志清, 黄勇, 刘亚然, 孙杰. 2021. 新形势下我国能源与生态安全保障研究[J]. 中国煤炭地质, 33(1): 1−7. doi: 10.3969/j.issn.1674-1803.2021.01.01

    CrossRef Google Scholar

    [76] 中国工程院. 2011. 中国能源中长期(2030、2050)发展战略研究: 节能, 煤炭卷[M]. 北京: 科学出版社.

    Google Scholar

    [77] 周长松, 邹胜章, 冯启言, 朱丹尼, 李军, 王佳, 谢浩, 邓日欣. 2022. 岩溶关键带水文地球化学研究进展[J]. 地学前缘, 29(3): 37−50.

    Google Scholar

    [78] 朱永官, 李刚, 张甘霖, 傅伯杰. 2015. 土壤安全: 从地球关键带到生态服务系统[J]. 地理学报, 70(12): 1859−1869. doi: 10.11821/dlxb201512001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(17)

Tables(2)

Article Metrics

Article views(112) PDF downloads(12) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint