2024 Vol. 51, No. 6
Article Contents

CAO Wengeng, WANG Yanyan, ZHANG Yanan, GUO Jiju, XIAO Shunyu, DING Minjin, NA Jing, SUN Zhuang. 2024. Pollution status, environmental risk and development trend of groundwater containing microplastics[J]. Geology in China, 51(6): 1895-1916. doi: 10.12029/gc20231028001
Citation: CAO Wengeng, WANG Yanyan, ZHANG Yanan, GUO Jiju, XIAO Shunyu, DING Minjin, NA Jing, SUN Zhuang. 2024. Pollution status, environmental risk and development trend of groundwater containing microplastics[J]. Geology in China, 51(6): 1895-1916. doi: 10.12029/gc20231028001

Pollution status, environmental risk and development trend of groundwater containing microplastics

    Fund Project: Supported by Outstanding Youth Science Foundation of Hebei Natural Science Foundation (No. D2023504030) and Hebei Central Government-Guided Local Science and Technology Development Fund Project (No. 246Z3601G).
More Information
  • Author Bio: CAO Wengeng, male, born in 1985, associate researcher, mainly engaged in hydrogeology and hydrogeochemistry; E-mail: caowengeng@mail.cgs.gov.cn
  • Corresponding author: WANG Yanyan, female, born in 1987, associate researcher, mainly engaged in the research of water pollution control; E-mail: wangyanyan@mail.cgs.gov.cn
  • This paper is the result of hydrogeological survey engineering.

    Objective

    Microplastics (MPs) have emerged as a global pollutant, causing increasingly severe environmental problems. While most research has focused on surface water bodies such as oceans and rivers, studies on MPs in groundwater systems have been relatively limited.

    Methods

    Based on extensive literature research and analysis, this paper examines the progress made in the study of MPs in groundwater. It explores the sources, detection methods, distribution characteristics, environmental risks and future trends of MPs in groundwater. The objective is to provide references for future research and facilitate risk prevention and control of MPs−contaminated groundwater.

    Results

    MPs primarily enter groundwater through three pathways: surface water−groundwater interaction, soil infiltration, and direct injection. Currently, research on MPs in groundwater is primarily concentrated in coastal areas, particularly in China, Europe and North America. However, additional data and research are needed in regions such as South America, Africa and Oceania. The most common types of MPs found in groundwater are polyethylene terephthalate (PET) and polyethylene (PE), with fibers and debris being the predominant shapes. Groundwater contaminated with MPs poses environmental risks to soil and crop health, pollutant migration, human health, underground ecosystem, and the effectiveness of groundwater pollution remediation. Future research on MPs in groundwater should prioritize the establishment of standardized sampling and detection procedures, determination of spatial distribution characteristics, and exploration of key scientific issues influencing the migration and transformation mechanism.

    Conclusions

    Numerous studies have been conducted on the sources, distribution characteristics, environmental risks and development trends of MPs in groundwater. However, current research is still in its early stage and is expected to continue growing due to the vital role groundwater plays in sustaining human activities and natural ecosystems. Management strategies for MPs pollution in groundwater should primarily focus on three aspects. Firstly, controlling the source by minimizing plastic waste production is crucial. Secondly, it is important to cut off migratory routes of MPs by implementing preventive measures in high−risk areas. Lastly, developing appropriate remediation technologies is essential for the end−removal of MPs from groundwater.

  • 加载中
  • [1] Accinelli C, Abbas H K, Shier W T, Vicari A, Little N S, Aloise M R, Giacomini S. 2019. Degradation of microplastic seed film−coating fragments in soil[J]. Chemosphere, 226: 645−650. doi: 10.1016/j.chemosphere.2019.03.161

    CrossRef Google Scholar

    [2] Akechti M, Benomar M, Alami M, Mendiguchia C. 2022. Metal adsorption by microplastics in aquatic environments under controlled conditions: exposure time, pH and salinity[J]. International Journal of Environmental Analytical Chemistry, 102(5): 1118−1125.

    Google Scholar

    [3] Akdogan Z, Guven B, Kideys A E. 2023. Microplastic distribution in the surface water and sediment of the Ergene River[J]. Environmental Research, 234: 116500. doi: 10.1016/j.envres.2023.116500

    CrossRef Google Scholar

    [4] Anger P M, von der Esch E, Baumann T, Elsner M, Niessner R, Ivleva N P. 2018. Raman microspectroscopy as a tool for microplastic particle analysis[J]. TrAC–Trends in Analytical Chemistry, 109: 214−226. doi: 10.1016/j.trac.2018.10.010

    CrossRef Google Scholar

    [5] Banu J R, Sharmila V G, Ushani U, Amudha V, Kumar G. 2020. Impervious and influence in the liquid fuel production from municipal plastic waste through thermo–chemical biomass conversion technologies–A review[J]. Science of the Total Environment, 718: 137287. doi: 10.1016/j.scitotenv.2020.137287

    CrossRef Google Scholar

    [6] Bharath K M, Usha N, Vaikunth R, Kumar R P, Ruthra R, Srinivasalu S. 2021. Spatial distribution of microplastic concentration around landfill sites and its potential risk on groundwater[J]. Chemosphere, 277: 130263. doi: 10.1016/j.chemosphere.2021.130263

    CrossRef Google Scholar

    [7] Bradney L, Wijesekara H, Palansooriya K N, Obadamudalige N, Bolan N S, Ok Y S, Rinklebe J O R, Kim K H, Kirkham M. 2019. Particulate plastics as a vector for toxic trace–element uptake by aquatic and terrestrial organisms and human health risk[J]. Environment International, 131: 104937. doi: 10.1016/j.envint.2019.104937

    CrossRef Google Scholar

    [8] Brennecke D, Duarte B, Paiva F, Caçador I, Canning–Clode J. 2016. Microplastics as vector for heavy metal contamination from the marine environment. Estuarine[J]. Estuarine Coastal and Shelf Science, 178: 189−195. doi: 10.1016/j.ecss.2015.12.003

    CrossRef Google Scholar

    [9] Bridson J H, Gaugler E C, Smith D A, Northcott G L, Gaw S. 2021. Leaching and extraction of additives from plastic pollution to inform environmental risk: A multidisciplinary review of analytical approaches[J]. Journal of Hazardous Materials, 414: 125571. doi: 10.1016/j.jhazmat.2021.125571

    CrossRef Google Scholar

    [10] Cao Wengeng, Wang Yanyan, Ren Yu, Fei Yuhong, Li Jinchen, Li Zeyan, Zhang Dong, Shuai Guanyin. 2022. Status and progress of treatment technologies for arsenic–bearing groundwater[J]. Geology in China, 49(5): 1408−1426 (in Chinese with English abstract).

    Google Scholar

    [11] Cao Wengeng, Wang Yanyan, Zhang Dong, Sun Xiaoyue, Wen Aixin, Na Jing. 2023. Research status and new development on heavy metals removal from industrial wastewater[J]. Geology in China, 50(3): 756−776 (in Chinese with English abstract).

    Google Scholar

    [12] Carr S A, Liu J, Tesoro A G. 2016. Transport and fate of microplastic particles in wastewater treatment plants[J]. Water Research, 91: 174−182. doi: 10.1016/j.watres.2016.01.002

    CrossRef Google Scholar

    [13] Chang X, Xue Y, Li J, Zou L, Tang M. 2020. Potential health impact of environmental micro– and nanoplastics pollution[J]. Journal of Applied Toxicology, 40(1): 4−15. doi: 10.1002/jat.3915

    CrossRef Google Scholar

    [14] Chen Q, Hao D C, Wei J C, Jia C P, Wang H M, Shi L Q, Liu S L, Ning F Z, Ji Y H, Dong F Y, Jia Z W. 2019. Geo–chemical processes during the mixing of seawater and fresh water in estuarine regions and their effect on water fluorine levels[J]. Mausam, 70(2): 329−338.

    Google Scholar

    [15] Chen H, Hua X, Yang Y, Wang C, Jin L, Dong C, Chang Z, Ding P, Xiang M, Li H, Yu Y. 2021. Chronic exposure to UV–aged microplastics induces neurotoxicity by affecting dopamine, glutamate, and serotonin neurotransmission in Caenorhabditis elegans[J]. Journal of Hazardous Materials, 419: 126482. doi: 10.1016/j.jhazmat.2021.126482

    CrossRef Google Scholar

    [16] Cheng F Y, Zhang T T, Liu Y, Zhang Y N, Qu J. 2022. Non–negligible effects of UV irradiation on transformation and environmental risks of microplastics in the water environment[J]. Journal of Xenobiotics, 12: 1−12.

    Google Scholar

    [17] Chia R W, Lee J Y, Kim H, Jang J. 2021. Microplastic pollution in soil and groundwater: A review[J]. Environmental Chemistry Letters, 19(6): 4211−4224. doi: 10.1007/s10311-021-01297-6

    CrossRef Google Scholar

    [18] Chu X, Li T, Li Z, Yan A, Shen C. 2019. Transport of microplastic particles in saturated porous media[J]. Water, 11: 2474. doi: 10.3390/w11122474

    CrossRef Google Scholar

    [19] Crawford C B, Quinn B. 2017. Microplastic Separation Techniques[M]. Microplastic Pollutants, 203–218.

    Google Scholar

    [20] Dai Y, Shi J, Zhang N, Pan Z, Xing C, Chen X. 2022. Current research trends on microplastics pollution and impacts on agro–ecosystems: A short review[J]. Separation Science and Technology, 57(4): 656−669. doi: 10.1080/01496395.2021.1927094

    CrossRef Google Scholar

    [21] Danso D, Chow J, Streit W R. 2019. Plastics: Environmental and biotechnological perspectives on microbial degradation[J]. Applied & Environmental Microbiology, 85(19): 1−14.

    Google Scholar

    [22] Dekiff J H, Remy D, Klasmeier J, Fries E. 2014. Occurrence and spatial distribution of microplastics in sediments from Norderney[J]. Environmental Pollution, 186: 248−256. doi: 10.1016/j.envpol.2013.11.019

    CrossRef Google Scholar

    [23] Dilkes–Hoffman L, Ashworth P, Laycock B, Pratt S, Lant P. 2019. Public attitudes towards bioplastics–knowledge, perception and end–of–life management[J]. Resources, Conservation and Recycling, 151: 104479.

    Google Scholar

    [24] Ding J, Ju P, Ran Q, Li J, Jiang F, Cao W, Zhang J, Sun C. 2023. Elder fish means more microplastics? Alaska pollock microplastic story in the Bering Sea[J]. Science Advances, 9(27): eadf5897. doi: 10.1126/sciadv.adf5897

    CrossRef Google Scholar

    [25] Do M V, Le T X T, Vu N D, Dang T T. 2022. Distribution and occurrence of microplastics in wastewater treatment plants[J]. Environmental Technology & Innovation, 26: 102286.

    Google Scholar

    [26] Dong Z, Zhu L, Zhang W, Huang R, Lv X, Jing X, Yang Z, Wang J, Qiu Y. 2019. Role of surface functionalities of nanoplastics on their transport in seawater–saturated sea sand[J]. Environmental Pollution, 255: 113177. doi: 10.1016/j.envpol.2019.113177

    CrossRef Google Scholar

    [27] Dong Shunan, Xia Jihong, Wang Weimu, Liu Hui, Sheng Liting. 2020a. Review on impact factors and mechanisms of microplastic transport in soil and groundwater[J]. Transactions of the Chinese Society of Agricultural Engineering, 36(14): 1−8 (in Chinese with English abstract).

    Google Scholar

    [28] Dong Y, Gao M, Song Z, Qiu W. 2020b. Microplastic particles increase arsenic toxicity to rice seedlings[J]. Environmental Pollution, 259: 113892. doi: 10.1016/j.envpol.2019.113892

    CrossRef Google Scholar

    [29] Dong S, Xia J, Sheng L, Wang W, Liu H, Gao B. 2021a. Transport characteristics of fragmental polyethylene glycol terephthalate (PET) microplastics in porous media under various chemical conditions[J]. Chemosphere, 276: 130214. doi: 10.1016/j.chemosphere.2021.130214

    CrossRef Google Scholar

    [30] Dong Y, Gao M, Qiu W, Song Z. 2021b. Effect of microplastics and arsenic on nutrients and microorganisms in rice rhizosphere soil[J]. Ecotoxicology and Environmental Safety, 211: 111899. doi: 10.1016/j.ecoenv.2021.111899

    CrossRef Google Scholar

    [31] Drummond J D, Nel H A, Packman A I, Krause S. 2020. Significance of hyporheic exchange for predicting microplastic fate in rivers[J]. Environmental Science & Technology Letters, 7: 727−732.

    Google Scholar

    [32] Du C, Liang H, Li Z, Gong J. 2020. Pollution characteristics of microplastics in soils in southeastern suburbs of Baoding City, China[J]. International Journal of Environmental Research and Public Health, 17(3): 845. doi: 10.3390/ijerph17030845

    CrossRef Google Scholar

    [33] Edo C, Gonzalez–Pleiter M, Leganes F, Fernandez–Pinas F, Rosal R. 2020. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge[J]. Environmental Pollution, 259: 113837. doi: 10.1016/j.envpol.2019.113837

    CrossRef Google Scholar

    [34] Eerkes–Medrano D, Thompson R C, Aldridge D C. 2015. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs[J]. Water Research, 75: 63−82. doi: 10.1016/j.watres.2015.02.012

    CrossRef Google Scholar

    [35] Erni–Cassola G, Wright R J, Gibson M I, Christie–Oleza J A. 2020. Early colonization of weathered polyethylene by distinct bacteria in marine coastal seawater[J]. Microbial Ecology, 79(3): 517−526. doi: 10.1007/s00248-019-01424-5

    CrossRef Google Scholar

    [36] Famiglietti J S. 2014. The global groundwater crisis[J]. Nature Climate Change, 4(11): 945−948. doi: 10.1038/nclimate2425

    CrossRef Google Scholar

    [37] Foschi E, Bonoli A. 2019. The commitment of packaging industry in the framework of the European strategy for plastics in a circular economy[J]. Administrative Sciences, 9(1): 18. doi: 10.3390/admsci9010018

    CrossRef Google Scholar

    [38] Fotopoulou K N, Karapanagioti H K. 2012. Surface properties of beached plastic pellets[J]. Marine Environmental Research, 81: 70−77. doi: 10.1016/j.marenvres.2012.08.010

    CrossRef Google Scholar

    [39] Gallo F, Fossi C, Weber R, Santillo D, Sousa J, Ingram I, Romano D. 2018. Marine litter plastics and microplastics and their toxic chemicals components: The need for urgent preventive measures[J]. Environmental Sciences Europe, 30(1): 13. doi: 10.1186/s12302-018-0139-z

    CrossRef Google Scholar

    [40] Gao M, Liu Y, Song Z. 2019. Effects of polyethylene microplastic on the phytotoxicity of di–n–butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort)[J]. Chemosphere, 237: 124482. doi: 10.1016/j.chemosphere.2019.124482

    CrossRef Google Scholar

    [41] Gao D, Li X Y, Liu H T. 2020. Source, occurrence, migration and potential environmental risk of microplastics in sewage sludge and during sludge amendment to soil[J]. Science of the Total Environment, 742: 140355. doi: 10.1016/j.scitotenv.2020.140355

    CrossRef Google Scholar

    [42] Geyer R, Jambeck J R, Law K L. 2017. Production, use, and fate of all plastics ever made[J]. Science Advances, 3(7): 1700782. doi: 10.1126/sciadv.1700782

    CrossRef Google Scholar

    [43] Giorgetti L, Spano C, Muccifora S, Bottega S, Barbieri F, Bellani L, Castiglione M R. 2020. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress[J]. Plant Physiology and Biochemistry, 149: 170−177. doi: 10.1016/j.plaphy.2020.02.014

    CrossRef Google Scholar

    [44] Godoy V, Blázquez G, Calero M, Quesada L, Martín–Lara M. 2019. The potential of microplastics as carriers of metals[J]. Environmental Pollution, 255: 113363. doi: 10.1016/j.envpol.2019.113363

    CrossRef Google Scholar

    [45] Goeppert N, Goldscheider N. 2021. Experimental field evidence for transport of microplastic tracers over large distances in an alluvial aquifer[J]. Journal of Hazardous Materials, 408: 124844. doi: 10.1016/j.jhazmat.2020.124844

    CrossRef Google Scholar

    [46] Gopinath S, Srinivasamoorthy K, Saravanan K, Prakash R, Karunanidhi D. 2019. Characterizing groundwater quality and seawater intrusion in coastal aquifers of Nagapattinam and Karaikal, South India using hydrogeochemistry and modeling techniques[J]. Human and Ecological Risk Assessment: An International Journal, 25(1/2): 314−334. doi: 10.1080/10807039.2019.1578947

    CrossRef Google Scholar

    [47] Gunarathne V, Ashiq A, Ramanayaka S, Wijekoon P, Vithanage M. 2019. Biochar from municipal solid waste for resource recovery and pollution remediation[J]. Environmental Chemistry Letters, 17(3): 1225−1235. doi: 10.1007/s10311-019-00866-0

    CrossRef Google Scholar

    [48] Guo X, Wang J. 2019. Sorption of antibiotics onto aged microplastics in freshwater and seawater[J]. Marine Pollution Bulletin, 149: 110511. doi: 10.1016/j.marpolbul.2019.110511

    CrossRef Google Scholar

    [49] Guo J J, Huang X P, Xiang L, Wang Y Z, Li Y W, Li H, Cai Q Y, Mo C H, Wong M H. 2020. Source, migration and toxicology of microplastics in soil[J]. Environment International, 137: 105263. doi: 10.1016/j.envint.2019.105263

    CrossRef Google Scholar

    [50] Guo Z, Wang D, Yan Z, Qian L, Yang L, Yan J, Chen M. 2023. Efficient remediation of p–chloroaniline contaminated soil by activated persulfate using ball milling nanosized zero valent iron/biochar composite: Performance and mechanisms[J]. Nanomaterials, 13(9): 1517. doi: 10.3390/nano13091517

    CrossRef Google Scholar

    [51] Hahladakis J N, Velis C A, Weber R, Iacovidou E, Purnell P. 2018. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling[J]. Journal of Hazardous Materials, 344: 179−199. doi: 10.1016/j.jhazmat.2017.10.014

    CrossRef Google Scholar

    [52] Halle t A, Ladirat L, Martignac M, Mingotaud A F, Boyron O, Perez E. 2017. To what extent are microplastics from the open ocean weathered?[J]. Environmental Pollution, 227: 167−174. doi: 10.1016/j.envpol.2017.04.051

    CrossRef Google Scholar

    [53] Hermabessiere L, Himber C, Boricaud B, Kazour M, Amara R, Cassone A L, Laurentie M, PaulPont I, Soudant P, Dehaut A, Duflos G. 2018. Optimization, performance, and application of a pyrolysis–GC/MS method for the identification of microplastics[J]. Analytical & Bioanalytical Chemistry, 410(25): 6663−6676.

    Google Scholar

    [54] Hou J, Xu X, Lan L, Miao L, Xu Y, You G, Liu Z L. 2020. Transport behavior of micro polyethylene particles in saturated quartz sand: Impacts of input concentration and physicochemical factors[J]. Environment Pollution. 263: 114499.

    Google Scholar

    [55] Hu B, Li Y, Jiang L, Chen X, Wang L, An S, Zhang F. 2020. Influence of microplastics occurrence on the adsorption of 17β–estradiol in soil[J]. Journal of Hazardous Materials, 400: 123325. doi: 10.1016/j.jhazmat.2020.123325

    CrossRef Google Scholar

    [56] Hu Tingting, Chen Jiawei. 2022. A review on adsorption and transport of microplastics in soil and the effects of ageing on environmental behavior of pollutants[J]. Rock and Mineral Analysis, 41(3): 353−363 (in Chinese with English abstract).

    Google Scholar

    [57] Huang Y, Zhao Y, Wang J, Zhang M, Jia W, Qin X. 2019. LDPE microplastic films alter microbial community composition and enzymatic activities in soil[J]. Environmental Pollution, 254: 112983. doi: 10.1016/j.envpol.2019.112983

    CrossRef Google Scholar

    [58] Huang J, Chen H, Zheng Y, Yang Y, Zhang Y, Gao B. 2021a. Microplastic pollution in soils and groundwater: Characteristics, analytical methods and impacts[J]. Chemical Engineering Journal, 425: 131870. doi: 10.1016/j.cej.2021.131870

    CrossRef Google Scholar

    [59] Huang M, Wang X, Liu C, Fang G, Gao J, Wang Y, Zhou D. 2021b. Mechanism of metal sulfides accelerating Fe(II)/Fe(III) redox cycling to enhance pollutant degradation by persulfate: Metallic active sites vs. reducing sulfur species[J]. Journal of Hazardous Materials, 404: 124175. doi: 10.1016/j.jhazmat.2020.124175

    CrossRef Google Scholar

    [60] Hussain M S, Abd–Elhamid H F, Javadi A A, Sherif M M. 2019. Management of seawater intrusion in coastal aquifers: A review[J]. Water, 11(12): 2467. doi: 10.3390/w11122467

    CrossRef Google Scholar

    [61] Iannilli V, Pasquali V, Setini A, Corami F. 2019. First evidence of microplastics ingestion in benthic amphipods from Svalbard[J]. Environmental Research, 179: 108811. doi: 10.1016/j.envres.2019.108811

    CrossRef Google Scholar

    [62] Imhof H K, Ivleva N P, Schmid J, Niessner R, Laforsch C. 2013. Contamination of beach sediments of a subalpine lake with microplastic particles[J]. Current Biology, 23(19): 867−868. doi: 10.1016/j.cub.2013.09.001

    CrossRef Google Scholar

    [63] Iñiguez M E, Conesa J A, Fullana A. 2018. Recyclability of four types of plastics exposed to UV irradiation in a marine environment[J]. Waste Management, 79: 339−345. doi: 10.1016/j.wasman.2018.08.006

    CrossRef Google Scholar

    [64] Jeong E, Kim Y I, Lee J Y, Raza M. 2023. Microplastic contamination in groundwater of rural area, eastern part of Korea[J]. Science of the Total Environment, 895: 165006. doi: 10.1016/j.scitotenv.2023.165006

    CrossRef Google Scholar

    [65] Jiang X, Chen H, Liao Y, Ye Z, Li M, Klobučar G. 2019. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba[J]. Environmental Pollution, 250: 831−838. doi: 10.1016/j.envpol.2019.04.055

    CrossRef Google Scholar

    [66] Kabir M S, Wang H, Luster–Teasley S, Zhang L, Zhao R. 2023. Microplastics in landfill leachate: Sources, detection, occurrence, and removal[J]. Environmental Science and Ecotechnology, 16: 100256. doi: 10.1016/j.ese.2023.100256

    CrossRef Google Scholar

    [67] Katyal D, Kong E, Villanueva J. 2020. Microplastics in the environment: Impact on human health and future mitigation strategies[J]. Environmental Health Review, 63(1): 27−31. doi: 10.5864/d2020-005

    CrossRef Google Scholar

    [68] Käppler A, Fischer M, Scholz–Böttcher B M, Oberbeckmann S, Labrenz M, Fischer D, Eichhorn K J, Voit B. 2018. Comparison of μ–ATR–FTIR spectroscopy and Py–GCMS as identification tools for microplastic particles and fibers isolated from river sediments[J]. Analytical & Bioanalytical Chemistry, 410(21): 5313−5327.

    Google Scholar

    [69] Kedzierski M, Le Tilly V, Bourseau P, Bellegou H, César G, Sire O, Bruzaud S. 2018. Challenging the microplastic extraction from sandy sediments[C]// Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea, 59–65.

    Google Scholar

    [70] Kirstein I V, Kirmizi S, Wichels A, Garin–Fernandez A, Erler R, Löder M, Gerdts G. 2016. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles[J]. Marine Environmental Research, 120: 1−8. doi: 10.1016/j.marenvres.2016.07.004

    CrossRef Google Scholar

    [71] Kirstein I V, Hensel F, Gomiero A, Iordachescu L, Vianello A, Wittgren H B, Vollertsen J. 2021. Drinking plastics? Quantification and qualification of microplastics in drinking water distribution systems by µFTIR and Py–GCMS[J]. Water Research, 188: 116519. doi: 10.1016/j.watres.2020.116519

    CrossRef Google Scholar

    [72] Li J, Zhang K, Zhang H. 2018. Adsorption of antibiotics on microplastics[J]. Environmental Pollution, 237: 460−467. doi: 10.1016/j.envpol.2018.02.050

    CrossRef Google Scholar

    [73] Li M, Zhang X, Yi K, He L, Han P, Tong M. 2021. Transport and deposition of microplastic particles in saturated porous media: Co–effects of clay particles and natural organic matter[J]. Environmental Pollution, 287: 117585. doi: 10.1016/j.envpol.2021.117585

    CrossRef Google Scholar

    [74] Li X, Mei Q, Chen L, Zhang H, Dong B, Dai X, He C, Zhou J. 2019a. Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process[J]. Water Research, 157: 228−237. doi: 10.1016/j.watres.2019.03.069

    CrossRef Google Scholar

    [75] Li Y, Li M, Li Z, Yang L, Liu X. 2019b. Effects of particle size and solution chemistry on Triclosan sorption on polystyrene microplastic[J]. Chemosphere, 231: 308−314. doi: 10.1016/j.chemosphere.2019.05.116

    CrossRef Google Scholar

    [76] Li Z, Li R, Li Q, Zhou J, Wang G. 2020a. Physiological response of cucumber (Cucumis sativus L. ) leaves to polystyrene nanoplastics pollution[J]. Chemosphere, 255: 127041. doi: 10.1016/j.chemosphere.2020.127041

    CrossRef Google Scholar

    [77] Li Z, Hu X, Qin L, Yin D. 2020b. Evaluating the effect of different modified microplastics on the availability of polycyclic aromatic hydrocarbons[J]. Water Research, 170: 115290. doi: 10.1016/j.watres.2019.115290

    CrossRef Google Scholar

    [78] Lian Jianjun, Xie Shiting, Wu Pei, Meng Guanhua, Chen Bo. 2023. Effect of microplastics on ammonia nitrogen adsorption by zeolite and its mechanism[J]. Environmental Science, 7(1): 1−12 (in Chinese with English abstract).

    Google Scholar

    [79] Liedermann M, Gmeiner P, Pessenlehner S, Haimann M, Hohenblum P, Habersack H. 2018. A methodology for measuring microplastic transport in large or medium rivers[J]. Water, 10(4): 414. doi: 10.3390/w10040414

    CrossRef Google Scholar

    [80] Liu X, Xu J, Zhao Y, Shi H, Huang C H. 2019a. Hydrophobic sorption behaviors of 17β–Estradiol on environmental microplastics[J]. Chemosphere, 226: 726−735. doi: 10.1016/j.chemosphere.2019.03.162

    CrossRef Google Scholar

    [81] Liu Y, Hu Y, Yang C, Chen C, Huang W, Dang Z. 2019b. Aggregation kinetics of UV irradiated nanoplastics in aquatic environments[J]. Water Research, 163: 114870. doi: 10.1016/j.watres.2019.114870

    CrossRef Google Scholar

    [82] Liu P, Lu K, Li J, Wu X, Qian L, Wang M, Gao S. 2020. Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: Adsorption mechanism and role of aging intermediates[J]. Journal of Hazardous Materials, 384: 121193. doi: 10.1016/j.jhazmat.2019.121193

    CrossRef Google Scholar

    [83] Lu T, Gilfedder B S, Peng H, Niu G, Frei S, 2021. Effects of clay minerals on the transport of nanoplastics through water–saturated porous media[J]. Science of the Total Environment, 796: 148982.

    Google Scholar

    [84] Luo H, Liu C, He D, Xu J, Sun J, Li J, Pan X. 2022a. Environmental behaviors of microplastics in aquatic systems: A systematic review on degradation, adsorption, toxicity and biofilm under aging conditions[J]. Journal of Hazardous Materials, 423: 126915. doi: 10.1016/j.jhazmat.2021.126915

    CrossRef Google Scholar

    [85] Luo Z, Zhu J, Yu L, Yin K. 2021. Heavy metal remediation by nano zero–valent iron in the presence of microplastics in groundwater: Inhibition and induced promotion on aging effects[J]. Environmental Pollution, 287: 117628. doi: 10.1016/j.envpol.2021.117628

    CrossRef Google Scholar

    [86] Luo Zhenyi. 2022b. Effect and Mechanism of Microplastics on Remediation of Heavy Metal Pollution in Groundwater by Nano–zero–valent−iron[D]. Nanjing: Nanjing Forestry University, 1−63 (in Chinese with English abstract).

    Google Scholar

    [87] Lwanga E H, Gertsen H, Gooren H, Peters P, Salánki T A S, van der Ploeg M, Besseling E, Koelmans A A, Geissen V. 2016. Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae)[J]. Environmental Science & Technology, 50(5): 2685−2691.

    Google Scholar

    [88] Ma H, Pu S, Liu S, Bai Y M. 2020. Microplastics in aquatic environments: Toxicity to trigger ecological consequences[J]. Environmental Pollution, 261: 114089. doi: 10.1016/j.envpol.2020.114089

    CrossRef Google Scholar

    [89] Magalhães S, Alves L, Medronho B, Romano A, Rasteiro M G. 2020. Microplastics in ecosystems: From current trends to bio–based removal strategies[J]. Molecules, 25(17): 3954. doi: 10.3390/molecules25173954

    CrossRef Google Scholar

    [90] Mintenig S M, Löder M G, Primpke S, Gerdts G. 2019. Low numbers of microplastics detected in drinking water from ground water sources[J]. Science of the Total Environment, 648(1): 631−635.

    Google Scholar

    [91] Mohajerani A, Ukwatta A, Jeffrey–Bailey T, Swaney M, Ahmed M, Rodwell G, Bartolo S, Eshtiaghi N, Setunge S. 2019. A proposal for recycling the world’s unused stockpiles of treated wastewater sludge (biosolids) in fired–clay bricks[J]. Buildings, 9(1): 14. doi: 10.3390/buildings9010014

    CrossRef Google Scholar

    [92] Mohajerani A, Karabatak B. 2020. Microplastics and pollutants in biosolids have contaminated agricultural soils: An analytical study and a proposal to cease the use of biosolids in farmlands and utilise them in sustainable bricks[J]. Waste Management, 107: 252−265. doi: 10.1016/j.wasman.2020.04.021

    CrossRef Google Scholar

    [93] Naqash N, Prakash S, Kapoor D, Singh R. 2020. Interaction of freshwater microplastics with biota and heavy metals: A review[J]. Environmental Chemistry Letters, 18(6): 1813−1824. doi: 10.1007/s10311-020-01044-3

    CrossRef Google Scholar

    [94] Nizzetto L, Bussi G, Futter M N, Butterfield D, Whitehead P G. 2016. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments[J]. Environmental Science: Processes & Impacts, 18(8): 1050–1059.

    Google Scholar

    [95] Novotna K, Cermakova L, Pivokonska L, Cajthaml T, Pivokonsky M. 2019. Microplastics in drinking water treatment–current knowledge and research needs[J]. Science of The Total Environment, 667: 730−740. doi: 10.1016/j.scitotenv.2019.02.431

    CrossRef Google Scholar

    [96] O 'Connor D, Pan S, Shen Z, Song Y, Jin Y, Wu W M, Hou D. 2019. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet–dry cycles[J]. Environmental Pollution, 249: 527−534. doi: 10.1016/j.envpol.2019.03.092

    CrossRef Google Scholar

    [97] O’Kelly B C, El–Zein A, Liu X, Patel A, Fei X, Sharma S, Mohammad A, Goli V, Wang J J, Li D. 2021. Microplastics in soils: An environmental geotechnics perspective[J]. Environmental Geotechnics, 8(8): 586−618. doi: 10.1680/jenge.20.00179

    CrossRef Google Scholar

    [98] Oliver B. 2021. From plastics to microplastics and organisms[J]. FEBS Open Bio, 11(4): 954−966. doi: 10.1002/2211-5463.13120

    CrossRef Google Scholar

    [99] Othman A R, Hasan H A, Muhamad M H, Ismail N I, Abdullah S R S. 2021. Microbial degradation of microplastics by enzymatic processes: A review[J]. Environmental Chemistry Letters, 19(4): 3057−3073. doi: 10.1007/s10311-021-01197-9

    CrossRef Google Scholar

    [100] Panno S V, Kelly W R, Scott J, Zheng W, Mcneish R E, Holm N, Hoellein T J, Baranski E L. 2019. Microplastic contamination in karst groundwater systems[J]. Groundwater, 57(2): 189−196. doi: 10.1111/gwat.12862

    CrossRef Google Scholar

    [101] Pathan S I, Arfaioli P, Bardelli T, Ceccherini M T, Nannipieri P, Pietramellara G. 2020. Soil pollution from micro–and nanoplastic debris: A hidden and unknown biohazard[J]. Sustainability, 12(18): 7255. doi: 10.3390/su12187255

    CrossRef Google Scholar

    [102] Peng S, Wu D, Ge Z, Tong M, Kim H. 2017. Influence of graphene oxide on the transport and deposition behaviors of colloids in saturated porous media[J]. Environmental Pollution, 225(16): 141−149.

    Google Scholar

    [103] Picó Y, Barceló D. 2019. Analysis and prevention of microplastics pollution in water: Current perspectives and future directions[J]. ACS Omega, 4(4): 6709−6719. doi: 10.1021/acsomega.9b00222

    CrossRef Google Scholar

    [104] Pita F, Castilho A. 2017. Separation of plastics by froth flotation. The role of size, shape and density of the particles[J]. Waste Management, 60: 91−99. doi: 10.1016/j.wasman.2016.07.041

    CrossRef Google Scholar

    [105] Pivokonsky M, Cermakova L, Novotna K, Peer P, Cajthaml T, Janda V. 2018. Occurrence of microplastics in raw and treated drinking water[J]. Science of the Total Environment, 643: 1644−1651. doi: 10.1016/j.scitotenv.2018.08.102

    CrossRef Google Scholar

    [106] Połeć M, Aleksander–Kwaterczak U, Wątor K, Kmiecik E. 2018. The occurrence of microplastics in freshwater systems–preliminary results from Krakow (Poland)[J]. Geology, Geophysics and Environment, 44(4): 391–400.

    Google Scholar

    [107] Prata J C, Da Costa J P, Girão A V, Lopes I, Duarte A C, Rocha–Santos T. 2019. Identifying a quick and efficient method of removing organic matter without damaging microplastic samples[J]. Science of the Total Environment, 686: 131−139. doi: 10.1016/j.scitotenv.2019.05.456

    CrossRef Google Scholar

    [108] Prata J C, Da Costa J P, Lopes I, Duarte A C. 2020. Environmental exposure to microplastics: An overview on possible human health effects[J]. Science of the Total Environment, 702: 134455. doi: 10.1016/j.scitotenv.2019.134455

    CrossRef Google Scholar

    [109] Primpke S, Christiansen S H, Cowger W, De Frond H, Deshpande A, Fischer M, Holland E, Meyns M, O'Donnell B A, Oßmann B E, Pittroff M, Sarau G, Scholz–Böttcher B M, Wiggin K. 2020. Critical assessment of analytical methods for the harmonized and cost–efficient analysis of microplastics[J]. Applied Spectroscopy, 74(6): 1012−1047.

    Google Scholar

    [110] Purwiyanto A I S, Suteja Y, Ningrum P S, Putri W A E, Agustriani F, Cordova M R, Koropitan A F. 2020. Concentration and adsorption of Pb and Cu in microplastics: Case study in aquatic environment[J]. Marine Pollution Bulletin, 158: 111380. doi: 10.1016/j.marpolbul.2020.111380

    CrossRef Google Scholar

    [111] Qi Y, Yang X, Pelaez A M, Lwanga E H, Beriot N, Gertsen H, Garbeva P, Geissen V. 2018. Macro– and micro– plastics in soil–plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth[J]. Science of the Total Environment, 645(1): 1048−1056.

    Google Scholar

    [112] Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, Papa F, Rongioletti M C A, Baiocco F, Draghi S, D'Amore E, Rinaldo D, Matta M, Giorgini E. 2021. Plasticenta: First evidence of microplastics in human placenta[J]. Environment International, 146: 106274. doi: 10.1016/j.envint.2020.106274

    CrossRef Google Scholar

    [113] Re V. 2019. Shedding light on the invisible: Addressing the potential for groundwater contamination by plastic microfibers[J]. Hydrogeology Journal, 27(7): 2719−2727. doi: 10.1007/s10040-019-01998-x

    CrossRef Google Scholar

    [114] Reddy M S, Basha S, Adimurthy S, Ramachandraiah G. 2006. Description of the small plastics fragments in marine sediments along the Alang–Sosiya ship–breaking yard, India[J]. Estuarine, Coastal and Shelf Science, 68: 656–660.

    Google Scholar

    [115] Ren Z, Gui X, Xu X, Zhao L, Qiu H, Cao X. 2021a. Microplastics in the soil–groundwater environment: aging, migration, and co–transport of contaminants– A critical review[J]. Journal of Hazardous Materials, 419: 126455. doi: 10.1016/j.jhazmat.2021.126455

    CrossRef Google Scholar

    [116] Ren Z, Gui X, Wei Y, Chen X, Xu X, Zhao L, Qiu H, Xao X. 2021b. Chemical and photo–initiated aging enhances transport risk of microplastics in saturated soils: Key factors, mechanisms, and modeling[J]. Water Research, 202: 117407. doi: 10.1016/j.watres.2021.117407

    CrossRef Google Scholar

    [117] Robin R, Karthik R, Purvaja R, Ganguly D, Anandavelu I, Mugilarasan M, Ramesh R. 2020. Holistic assessment of microplastics in various coastal environmental matrices, southwest coast of India[J]. Science of the Total Environment, 703: 134947. doi: 10.1016/j.scitotenv.2019.134947

    CrossRef Google Scholar

    [118] Rochman C M, Hoh E, Kurobe T, Teh S J. 2013. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress[J]. Scientific Reports, 3(1): 3263. doi: 10.1038/srep03263

    CrossRef Google Scholar

    [119] Samandra S, Johnston J M, Jaeger J E, Symons B, Xie S, Currell M, Ellis A V, Clarke B O. 2022. Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia[J]. Science of the Total Environment, 802: 149727. doi: 10.1016/j.scitotenv.2021.149727

    CrossRef Google Scholar

    [120] Sana S S, Dogiparthi L K, Gangadhar L, Chakravorty A, Abhishek N. 2020. Effects of microplastics and nanoplastics on marine environment and human health[J]. Environmental Science and Pollution Research, 27(36): 44743−44756. doi: 10.1007/s11356-020-10573-x

    CrossRef Google Scholar

    [121] Sangkham S, Islam M A, Adhikari S, Kumar R, Sharma P, Sakunkoo P, Bhattacharya P, Tiwari A. 2023. Evidence of microplastics in groundwater: A growing risk for human health[J]. Groundwater For Sustainable Development, 23: 100981. doi: 10.1016/j.gsd.2023.100981

    CrossRef Google Scholar

    [122] Schenkel C A, Brown M R M, Lenczewski M E. 2024. Impact of type and shape of microplastics on the transport in column experiments[J]. Groundwater, 62(4): 537−547.

    Google Scholar

    [123] Schroder G D, Hulse M. 1979. Survey of rodent populations associated with an urban landfill[J]. American Journal of Public Health, 69(7): 713−715. doi: 10.2105/AJPH.69.7.713

    CrossRef Google Scholar

    [124] Schymanski D, Goldbeck C, Humpf H U, Fürst P. 2018. Analysis of microplastics in water by micro–Raman spectroscopy: Release of plastic particles from different packaging into mineral water[J]. Water Research, 129: 154−162. doi: 10.1016/j.watres.2017.11.011

    CrossRef Google Scholar

    [125] Selvam S, Jesuraja K, Venkatramanan S, Roy P D, Kumari V J. 2021. Hazardous microplastic characteristics and its role as a vector of heavy metal in groundwater and surface water of coastal south India[J]. Journal of Hazardous Materials, 402: 123786. doi: 10.1016/j.jhazmat.2020.123786

    CrossRef Google Scholar

    [126] Severini E, Ducci L, Sutti A. 2022. River–groundwater interaction and recharge effects on microplastics contamination of groundwater in confined alluvial aquifers[J]. Water, 14(12): 1913. doi: 10.3390/w14121913

    CrossRef Google Scholar

    [127] Shams M, Alam I, Chowdhury I. 2020. Aggregation and stability of nanoscale plastics in aquatic environment[J]. Water Research, 171: 115401. doi: 10.1016/j.watres.2019.115401

    CrossRef Google Scholar

    [128] Shen M, Song B, Zhu Y, Zeng G, Zhang Y, Yang Y, Wen X, Chen M, Yi H. 2020. Removal of microplastics via drinking water treatment: Current knowledge and future directions[J]. Chemosphere, 251: 126612. doi: 10.1016/j.chemosphere.2020.126612

    CrossRef Google Scholar

    [129] Shruti V, Kutralam–Muniasamy G. 2019. Bioplastics: Missing link in the era of Microplastics[J]. Science of the Total Environment, 697: 134139. doi: 10.1016/j.scitotenv.2019.134139

    CrossRef Google Scholar

    [130] Shruti V, Pérez–Guevara F, Kutralam–Muniasamy G. 2020. Metro station free drinking water fountain– A potential “microplastics hotspot” for human consumption[J]. Environmental Pollution, 261: 114227. doi: 10.1016/j.envpol.2020.114227

    CrossRef Google Scholar

    [131] Singh S, Kalyanasundaram M, Diwan V. 2021. Removal of microplastics from wastewater: Available techniques and way forward[J]. Water Science and Technology, 84(12): 3689−3704. doi: 10.2166/wst.2021.472

    CrossRef Google Scholar

    [132] Singh S, Bhagwat A. 2022. Microplastics: A potential threat to groundwater resources[J]. Groundwater For Sustainable Development, 19: 100852. doi: 10.1016/j.gsd.2022.100852

    CrossRef Google Scholar

    [133] Singh S, Trushna T, Kalyanasundaram M, Tamhankar A J, Diwan V. 2022. Microplastics in drinking water: A macro issue[J]. Water Supply, 22(5): 5650−5674. doi: 10.2166/ws.2022.189

    CrossRef Google Scholar

    [134] SK A, Varghese G K. 2020. Environmental forensic analysis of the microplastic pollution at “Nattika” Beach, Kerala Coast, India[J]. Environmental Forensics, 21(1): 21−36. doi: 10.1080/15275922.2019.1693442

    CrossRef Google Scholar

    [135] Smith M, Love D C, Rochman C M, Neff R A. 2018. Microplastics in seafood and the implications for human health[J]. Current Environmental Health Reports, 5(3): 375−386. doi: 10.1007/s40572-018-0206-z

    CrossRef Google Scholar

    [136] Strand J, Feld L, Murphy F, Mackevica A, Hartmann N B, Shruti V C, Pérez–Guevara F, Kutralam–Muniasamy G. 2018. Analysis of microplastic particles in Danish drinking water[M]. Aarhus, Denmark: DCE–Danish Centre for Environment and Energy.

    Google Scholar

    [137] Tan H, Yue T, Xu Y, Zhao J, Xing B. 2020. Microplastics reduce lipid digestion in simulated human gastrointestinal system[J]. Environmental Science & Technology, 54(19): 12285−12294.

    Google Scholar

    [138] Tiwari B R, Lecka J, Pulicharla R, Brar S K. 2023. Microplastic pollution and associated health hazards: Impact of COVID–19 pandemic[J]. Current Opinion in Environmental Science & Health, 34: 100480.

    Google Scholar

    [139] Tong M, Li T, Li M, He L, Ma Z. 2020. Cotransport and deposition of biochar with different sized–plastic particles in saturated porous media[J]. Science of the Total Environment, 713: 136387.

    Google Scholar

    [140] Turner A. 2016. Heavy metals, metalloids and other hazardous elements in marine plastic litter[J]. Marine Pollution Bulletin, 111(1): 136−142.

    Google Scholar

    [141] Vallespir L N, Ursell T. 2019. Structured environments fundamentally alter dynamics and stability of ecological communities[J]. Proceedings of the National Academy of Sciences, 116(2): 379−388. doi: 10.1073/pnas.1811887116

    CrossRef Google Scholar

    [142] Viaroli S, Lancia M, Re V. 2022. Microplastics contamination of groundwater: Current evidence and future perspectives. A review[J]. Science of the Total Environment, 824: 153851. doi: 10.1016/j.scitotenv.2022.153851

    CrossRef Google Scholar

    [143] Wagner M, Scherer C, Alvarez–Muñoz D, Brennholt N, Bourrain X, Buchinger S, Fries E, Grosbois C, Klasmeier J, Marti T. 2014. Microplastics in freshwater ecosystems: What we know and what we need to know[J]. Environmental Sciences Europe, 26(1): 12. doi: 10.1186/s12302-014-0012-7

    CrossRef Google Scholar

    [144] Wang F, Yang W, Cheng P, Zhang S, Zhang S, Jiao W, Sun Y. 2019. Adsorption characteristics of cadmium onto microplastics from aqueous solutions[J]. Chemosphere, 235: 1073−1080. doi: 10.1016/j.chemosphere.2019.06.196

    CrossRef Google Scholar

    [145] Wang S, Xue N, Li W, Zhang D, Pan X, Luo Y. 2020a. Selectively enrichment of antibiotics and ARGs by microplastics in river, estuary and marine waters[J]. Science of the Total Environment, 708: 134594. doi: 10.1016/j.scitotenv.2019.134594

    CrossRef Google Scholar

    [146] Wang W, Ge J, Yu X, Li H. 2020b. Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective[J]. Science of the Total Environment, 708: 134841. doi: 10.1016/j.scitotenv.2019.134841

    CrossRef Google Scholar

    [147] Wang Z, Sedighi M, Lea–Langton A. 2020c. Filtration of microplastic spheres by biochar: Removal efficiency and immobilisation mechanisms[J]. Water Research, 184: 116165. doi: 10.1016/j.watres.2020.116165

    CrossRef Google Scholar

    [148] Wang Z, Lin T, Chen W. 2020d. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP)[J]. Science of the Total Environment, 700: 134520. doi: 10.1016/j.scitotenv.2019.134520

    CrossRef Google Scholar

    [149] Wang C, Zhao J, Xing B. 2021a. Environmental source, fate, and toxicity of microplastics[J]. Journal of Hazardous Materials, 407: 124357. doi: 10.1016/j.jhazmat.2020.124357

    CrossRef Google Scholar

    [150] Wang Y, Wang X, Li Y, Li J, Liu Y, Xia S, Zhao J. 2021b. Effects of exposure of polyethylene microplastics to air, water and soil on their adsorption behaviors for copper and tetracycline[J]. Chemical Engineering Journal, 404: 126412. doi: 10.1016/j.cej.2020.126412

    CrossRef Google Scholar

    [151] Weber F, Kerpen J, Wolff S, Langer R, Eschweiler V. 2021. Investigation of microplastics contamination in drinking water of a German city[J]. Science of the Total Environment, 755: 143421. doi: 10.1016/j.scitotenv.2020.143421

    CrossRef Google Scholar

    [152] Wu P, Cai Z, Jin H, Tang Y. 2019. Adsorption mechanisms of five bisphenol analogues on PVC microplastics[J]. Science of the Total Environment, 650: 671−678. doi: 10.1016/j.scitotenv.2018.09.049

    CrossRef Google Scholar

    [153] Wu J, Xu P, Chen Q, Ma D, Ge W, Jiang T, Chai C. 2020. Effects of polymer aging on sorption of 2, 2’, 4, 4’–tetrabromodiphenyl ether by polystyrene microplastics[J]. Chemosphere, 253: 126706. doi: 10.1016/j.chemosphere.2020.126706

    CrossRef Google Scholar

    [154] Yan Yuchen, Yang Zhongfang, Yu Tao. 2022. Sources, ecological hazards and treatment technologies of microplastics in soil[J]. Geology in China, 49(3): 770−788 (in Chinese with English abstract).

    Google Scholar

    [155] Yang Jie, Li Lianzhen, Zhou Qian, Li Ruijie, Tu Chen, Luo Yongming. 2021. Microplastics contamination of soil environment: Sources, processes and risks[J]. Acta Pedologica Sinica, 58(2): 281−298 (in Chinese with English abstract).

    Google Scholar

    [156] Yao L, Hui L, Yang Z, Chen X, Xiao A. 2020. Freshwater microplastics pollution: Detecting and visualizing emerging trends based on Citespace II[J]. Chemosphere, 245: 125627. doi: 10.1016/j.chemosphere.2019.125627

    CrossRef Google Scholar

    [157] Yu M, Van Der Ploeg M, Lwanga E H, Yang X, Zhang S, Ma X, Ritsema C J, Geissen V. 2019. Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows[J]. Environmental Chemistry, 16(1): 31−40. doi: 10.1071/EN18161

    CrossRef Google Scholar

    [158] Yu Q, Hu X, Yang B, Zhang G, Wang J, Ling W. 2020. Distribution, abundance and risks of microplastics in the environment[J]. Chemosphere, 249: 126059. doi: 10.1016/j.chemosphere.2020.126059

    CrossRef Google Scholar

    [159] Zang H, Zhou J, Marshall M R, Chadwick D R, Wen Y, Jones D L. 2020. Microplastics in the agroecosystem: Are they an emerging threat to the plant–soil system[J]. Soil Biology and Biochemistry, 148: 107926. doi: 10.1016/j.soilbio.2020.107926

    CrossRef Google Scholar

    [160] Zhang J, Wang L, Halden R U, Kannan K. 2019. Polyethylene terephthalate and polycarbonate microplastics in sewage sludge collected from the United States[J]. Environmental Science & Technology Letters, 6(11): 650−655.

    Google Scholar

    [161] Zhang T, Jiang B, Xing Y, Ya H, Lv M, Wang X. 2022a. Current status of microplastics pollution in the aquatic environment, interaction with other pollutants, and effects on aquatic organisms[J]. Environmental Science and Pollution Research, 29(12): 16830−16859. doi: 10.1007/s11356-022-18504-8

    CrossRef Google Scholar

    [162] Zhang Y, Cheng F, Zhang T, Li C, Qu J, Chen J, Peijnenburg W J. 2022b. Dissolved organic matter enhanced the aggregation and oxidation of nanoparticles under simulated sunlight irradiation in water[J]. Environmental Science & Technology, 56: 3085−3095.

    Google Scholar

    [163] Zhou Y, Liu X, Wang J. 2019. Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China[J]. Science of the Total Environment, 694: 133798. doi: 10.1016/j.scitotenv.2019.133798

    CrossRef Google Scholar

    [164] Zhou Y, Wang J, Zou M, Jia Z, Zhou S, Li Y. 2020. Microplastics in soils: A review of methods, occurrence, fate, transport, ecological and environmental risks[J]. Science of the Total Environment, 748: 141368. doi: 10.1016/j.scitotenv.2020.141368

    CrossRef Google Scholar

    [165] Zhuang S, Wang J. 2023. Interaction between antibiotics and microplastics: Recent advances and perspective[J]. Science of the Total Environment, 897: 165414. doi: 10.1016/j.scitotenv.2023.165414

    CrossRef Google Scholar

    [166] Ziajahromi S, Neale P A, Rintoul L, Leusch F D. 2017. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater–based microplastics[J]. Water Research, 112: 93−99. doi: 10.1016/j.watres.2017.01.042

    CrossRef Google Scholar

    [167] Zou Yanqiao, Chen Guangquan, Yu Hongjun, Song Fan, Wang Yancheng, Zhao Wenqing. 2023. Review of the transport mechanism and environmental effects of microplastics in coastal aquifers[J]. Marine Sciences, (6): 130−143 (in Chinese with English abstract).

    Google Scholar

    [168] Zuo L Z, Li H X, Lin L, Sun Y X, Diao Z H, Liu S, Zhang Z Y, Xu X R. 2019. Sorption and desorption of phenanthrene on biodegradable poly (butylene adipate co–terephtalate) microplastics[J]. Chemosphere, 215: 25−32. doi: 10.1016/j.chemosphere.2018.09.173

    CrossRef Google Scholar

    [169] 曹文庚, 王妍妍, 任宇, 费宇红, 李瑾丞, 李泽岩, 张栋, 帅官印. 2022. 含砷地下水的治理技术现状与进展[J]. 中国地质, 49(5): 1408−1426.

    Google Scholar

    [170] 曹文庚, 王妍妍, 张栋, 孙晓悦, 文爱欣, 那静. 2023. 工业废水去除重金属技术的研究现状与进展[J]. 中国地质, 50(3): 756−776.

    Google Scholar

    [171] 董姝楠, 夏继红, 王为木, 刘慧, 盛丽婷, 2020. 土壤–地下水中微塑料迁移的影响因素及机制研究进展[J]. 农业工程学报, 36(14) : 1–8.

    Google Scholar

    [172] 胡婷婷, 陈家玮. 2022. 土壤中微塑料的吸附迁移及老化作用对污染物环境行为的影响研究进展[J]. 岩矿测试, 41(3): 353−363.

    Google Scholar

    [173] 练建军, 谢诗婷, 吴培, 孟冠华, 陈波, 2023. 微塑料对沸石吸附水体氨氮的影响及其机制[J]. 环境科学, 7(1) : 1–12.

    Google Scholar

    [174] 罗镇懿. 2022. 微塑料对纳米零价铁修复地下水重金属污染的影响与机理[D]. 南京: 南京林业大学, 1−63.

    Google Scholar

    [175] 延雨宸, 杨忠芳, 余涛. 2022. 土壤中微塑料的来源、生态环境危害及治理技术[J]. 中国地质, 49(3): 770−788.

    Google Scholar

    [176] 杨杰, 李连祯, 周倩, 李瑞杰, 涂晨, 骆永明. 2021. 土壤环境中微塑料污染: 来源、过程及风险[J]. 土壤学报, 58(2): 281−298.

    Google Scholar

    [177] 邹寅俏, 陈广泉, 于洪军, 宋凡, 王延诚, 赵文卿. 2023. 滨海地下水含水层中微塑料运移机制及环境效应研究综述[J]. 海洋科学, (6): 130−143.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(282) PDF downloads(30) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint