2024 Vol. 51, No. 6
Article Contents

JIN Ming, DING Xiaozhong, HAN Kunying, CHEN Jian, LIU Jingwen, PANG Jianfeng, WANG Ying, LIU Liwei. 2024. Characteristics analysis and evolution model of Ingenii Basin on the Moon based on multisource remote sensing data[J]. Geology in China, 51(6): 1807-1821. doi: 10.12029/gc20231021001
Citation: JIN Ming, DING Xiaozhong, HAN Kunying, CHEN Jian, LIU Jingwen, PANG Jianfeng, WANG Ying, LIU Liwei. 2024. Characteristics analysis and evolution model of Ingenii Basin on the Moon based on multisource remote sensing data[J]. Geology in China, 51(6): 1807-1821. doi: 10.12029/gc20231021001

Characteristics analysis and evolution model of Ingenii Basin on the Moon based on multisource remote sensing data

    Fund Project: Supported by the projects of China Geological Survey (No.DD20230007, No.DD20221645), National Natural Science Foundation of China (No.41941003), Science and Technology Basic Work Special Project (No.2015FY210500).
More Information
  • Author Bio: JIN Ming, female, born in 1984, assistant researcher, mainly engaged in geological mapping and planetary remote sensing research; E-mail: jinmingjsh@163.com
  • Corresponding author: DING Xiaozhong, male, born in 1963, researcher, mainly engaged in regional geology and geological mapping research; E-mail: xiaozhongding@sina.com
  • This paper is the result of moon geological survey engineering.

    Objective

    Mare basins constitute pivotal geological units on the lunar surface. Their geological evolution characteristics are comprehensively affected by both endogenic and exogenic dynamic geological processes. The ancient Ingenii Basin is located on the northwest rim of South Pole−Aitken Basin on the lunar farside. This special geographical location endows it with great significance for understanding lunar structure, composition, and the evolution of these dynamic geological processes.

    Methods

    This study conducts a comprehensive and multi−faceted analysis of Ingenii Basin, encompassing surface attributes like albedo variations, soil maturity indices, topography, slope gradients, and roughness, alongside deep−seated features such as Bouguer gravity anomalies, crustal thickness, and compositional characteristics in elemental and mineral abundances.

    Results

    The region of Ingenii Basin exhibits pronounced asymmetry, with a topographic profile characterized by elevated northwest regions and lower−lying southeast areas. Distinctive swirl patterns adorn the basin. The majority of the terrain, excluding swirls, steep basin walls, and impact crater walls, generally displays high maturity. The Ingenii Basin−forming impact event uplifted high−density mantle materials beneath the Moho surface, resulting in a positive gravity anomaly at the basin’s center, where the crustal thickness attains its minimum. A linear inverse correlation emerges between crust thickness and Bouguer gravity anomalies, particularly pronounced for gravity anomalies exceeding 200 mGal. Within the basin’s mare basalt regions, FeO and TiO2 abundances are elevated, while compositional traits outside the Ingenii region generally mirror those of the impacted target. Through a multi−dimensional examination of surface, subsurface, and compositional features, we delineated the regional geological evolution mode of Ingenii Basin.

    Conclusions

    The landform and composition of the Ingenii Basin are comprehensively affected by endogenic and exogenic dynamic geological processes, exhibiting the dual characteristics of the South Pole − Aitken Terrane and the Feldspathic Highlands Terrane, which is a window to understand the early evolutionary history of the Moon.

  • 加载中
  • [1] Che X C, Nemchin A, Liu D Y, Long T, Wang C, Norman M D, Joy K H, Tartese R, Head J W, Jolliff B, Snape J F, Neal C R, Whitehouse M J, Crow C, Benedix G, Jourdan F, Yang Z Q, Yang C, Liu J H, Xie S W, Bao Z M, Fan R L, Li D P, Li Z S, Webb T G. 2021. Age and composition of young basalts on the Moon, measured from samples returned by Chang’e−5[J]. Science, 374: 887−890. doi: 10.1126/science.abl7957

    CrossRef Google Scholar

    [2] Chen J, Ling Z C, Jolliff BL, Sun L Z, Qiao L, Liu J Z, Fu X H, Zhang J, Li B, Liu C Q, Qi X B, Lu X J, He Z P, Xu R. 2022a. Radiative Transfer Modeling of Chang'e−4 spectroscopic observations and interpretion of the South Pole−Aitken compositional anomaly[J]. The Astrophysical Journal Letters, 931: 1−15. doi: 10.3847/1538-4357/ac6876

    CrossRef Google Scholar

    [3] Chen J, Ling Z C, Liu J Z, Chen S B, Ding X Z, Chen J P, Cheng W M, Li B, Zhang J, Sun L Z. 2022b. Digital and global lithologic mapping of the Moon at a 1: 2, 500, 000 scale[J]. Science Bulletin, 67: 2050−2054. doi: 10.1016/j.scib.2022.09.015

    CrossRef Google Scholar

    [4] Domingue D, Weirich J, Chuang F, Sickafoose A, Palmer E. 2022. Topographic correlations within Lunar swirls in Mare Ingenii[J]. Geophysical Research Letters, 49: e2021GL095285. doi: 10.1029/2021GL095285

    CrossRef Google Scholar

    [5] Du Jinsong, Liang Qing, Chen Chao, Zhou Cong, Chen Bo. 2010. Deep structure and impact evolution of lunar mascon basins[J]. Geological Science and Technology Information, 29(5): 134−142 (in Chinese with English abstract).

    Google Scholar

    [6] Glotch T D, Bandfield J L, Lucey P G, Hayne P O, Greenhagen B T, Arnold J A, Ghent R R, Paige D A. 2015. Formation of lunar swirls by magnetic field standoff of the solar wind[J]. Nature Communications, 6: 6189. doi: 10.1038/ncomms7189

    CrossRef Google Scholar

    [7] Gou S, Yue Z Y, Di K C, Wang J, Wan W H, Liu Z Q, Liu B, Peng M. 2020. Impact melt breccia and surrounding regolith measured by Chang’e−4 rover[J]. Earth and Planetary Science Letters, 544: 116378. doi: 10.1016/j.jpgl.2020.116378

    CrossRef Google Scholar

    [8] Guo, D J, Liu J Z, Head J W, Zhang F Q, Ling Z C, Chen S B, Chen J P, Ding X Z, Ji J Z, Ouyang ZY. 2024. A lunar time scale from the perspective of the Moon’s dynamic evolution[J]. Science China Earth Sciences, 67(1): 234−251. doi: 10.1007/s11430-022-1183-4

    CrossRef Google Scholar

    [9] Guo Dijun, Liu Jianzhong, Zhang Li, Ji Jinzhu, Liu Jingwen, Wang Liang. 2014. The methods of lunar geochronology study and the subdivisions of lunar geologic history[J]. Earth Science Frontiers, 21(6): 45−61 (in Chinese with English abstract).

    Google Scholar

    [10] Guo Dijun, Liu Jianzhong, Head J W, Li Shuai, Potter R W K, Lin Honglei. 2018. Crustal structure and spectral features of lunar Apollo basin region[J]. Journal of Deep Space Exploration, 5(5): 488−494 (in Chinese with English abstract).

    Google Scholar

    [11] Hiesinger H, Jaumann R, Neukum G, Head J W. 2000. Ages of mare basalts on the lunar nearside[J]. Journal of Geophysical Research−Planets, 105: 29239−29275. doi: 10.1029/2000JE001244

    CrossRef Google Scholar

    [12] Hanna K L D, Cheek L C, Pieters C M, Mustard J F, Greenhagen B T, Thomas I R and Bowles N E. 2014. Global assessment of pure crystalline plagioclase across the Moon and implications for the evolution of the primary crust[J]. Journal of Geophysical Research−Planets, 119: 1516−1545. doi: 10.1002/2013JE004476

    CrossRef Google Scholar

    [13] Huang J, Xiao Z Y, Xiao L, Horgan B, Hu X Y, Lucey P, Xiao X, Zhao S Y, Qian Y Q, Zhang H, Li C L, Xu R, He Z P, Yang J F, Xue B, He Q, Zhong J, Lin G Y, Huang C N, Xie J F. 2020. Diverse rock types detected in the lunar South Pole–Aitken Basin by the Chang’E−4 lunar mission[J]. Geology, 48: 723−727.

    Google Scholar

    [14] Hurwitz D, Kring D A. 2015. Potential sample sites for South Pole–Aitken basin impact melt within the Schrödinger basin[J]. Earth and Planetary Science Letters, 427: 31−36. doi: 10.1016/j.jpgl.2015.06.055

    CrossRef Google Scholar

    [15] Ji Jinzhu, Liu Jianzhong, Guo Dijun, Liu Jingwen, Wang Qinglong, Zhang li. 2016. Impact basin of Mare Nubium: Reconstruction and geological evolution[J]. Acta Petrologica Sinica, 32(1): 127−134 (in Chinese with English abstract).

    Google Scholar

    [16] Jia M N, Di K C, Yue Z Y, Liu B, Wan W H, Niu S L, Liu J Z, Cheng W M, Lin Y T. 2021. Multi−scale morphologic investigation of craters in the Chang'e−4 landing area[J]. Icarus, 355: 114164. doi: 10.1016/j.icarus.2020.114164

    CrossRef Google Scholar

    [17] Kramer G Y, Combe J P, Harnett E M, Hawke B R, Noble S K, Blewett D T, McCord T B, Giguere T A. 2011. Characterization of lunar swirls at Mare Ingenii: A model for space weathering at magnetic anomalies[J]. Journal of Geophysical Research Planets, 116: E04008.

    Google Scholar

    [18] Kramer G Y, Kring D A, Nahm A L, Pieters C M. 2013. Spectral and photogeologic mapping of Schrödinger Basin and implications for post−South Pole−Aitken impact deep subsurface stratigraphy[J]. Icarus, 223: 131−148. doi: 10.1016/j.icarus.2012.11.008

    CrossRef Google Scholar

    [19] Lemelin M, Lucey P G, Gaddis L R, Hare T, Ohtake M. 2016. Global map products from the kaguya multiband imager at 512 ppd: minerals, FeO, and OMAT[C]//47th Lunar and Planetary Science Conference.

    Google Scholar

    [20] Li Q L, Zhou Q, Liu Y, Xiao Z Y, Lin Y T, Li J H, Ma H X, Tang G Q, Guo S, Tang X, Yuan J Y, Li J, Wu F Y, Ouyang Z Y, Li C L, Li X H. 2021. Two−billion−year−old volcanism on the Moon from Chang’e−5 basalts[J]. Nature, 600: 54−58. doi: 10.1038/s41586-021-04100-2

    CrossRef Google Scholar

    [21] Lin H L, He Z P, Yang W, Lin Y T, Xu R, Zhang C, Zhu M H, Chang R, Zhang J H, Li C L, Lin H Y, Liu Y, Gou S, Wei Y, Hu S, Xue Chang, Yang Jian, Zhong J, Fu X H, Wan W X, Zou Y L. 2020. Olivine−norite rock detected by the lunar rover Yutu−2 likely crystallized from the SPA−impact melt pool[J]. National Science Review, 7: 913−920. doi: 10.1093/nsr/nwz183

    CrossRef Google Scholar

    [22] Liu Jingwen, Liu Jianzhong, Guo Dijun, Ji Jinzhu, Wang Qinglong, Li Shijie. 2016. Comprehensive analysis of lunar Orientale Basin and research of the initial impact condition[J]. Acta Petrologica Sinica, 32(1): 135−143(in Chinese with English abstract).

    Google Scholar

    [23] Lu Tianqi. 2020. Study on Remote Sensing Recognition and Evolution of Lunar Tectonics[D]. Changchun: Jilin University, 1−172.

    Google Scholar

    [24] Maria Z T, David S E. 1994. The shape and internal structure of the moon from the Clementine mission[J]. Science, 266: 1839−1843. doi: 10.1126/science.266.5192.1839

    CrossRef Google Scholar

    [25] Ohtake M, Matsunaga T, Haruyama J, Yokota Y, Morota T, Honda C, Ogawa Y, Torii M, Miyamoto H, Arai T, Hirata N, Iwasaki A. 2009. The global distribution of pure anorthosite on the Moon[J]. Nature, 461: 236−240. doi: 10.1038/nature08317

    CrossRef Google Scholar

    [26] Ouyang Ziyuan, Liu Jianzhong. 2014. The origin and evolution of the Moon and its geological mapping[J]. Earth Science Frontiers, 21(6): 1−6 (in Chinese with English abstract).

    Google Scholar

    [27] Pieters C M, Hanna K D, Cheek L, Dhingra D, Prissel T, Jackson C, Taylor L A. 2014. The distribution of Mg−spinel across the Moon and constraints on crustal origin[J]. American Mineralogist, 99: 1893−1910. doi: 10.2138/am-2014-4776

    CrossRef Google Scholar

    [28] Potter R W K, Head J W, Guo D J, Liu J Z, Xiao L. 2018. The Apollo Peak−Ring Impact Basin: Insights into the structure and evolution of the South Pole−Aitken Basin[J]. Icarus, 306: 139−149. doi: 10.1016/j.icarus.2018.02.007

    CrossRef Google Scholar

    [29] Smith D E, Zuber M T, Neumann G A, Lemoine F G, Mazarico E, Torrence M H, McGarry J F, Rowlands D D, Head J W, Duxbury T H, Aharonson O, Lucey P G, Robinson M S, Barnouin O S, Cavanaugh J F, Sun X L, Liiva P, Mao D D, Smith J C, Bartels . E. 2010. Initial observations from the Lunar Orbiter Laser Altimeter (LOLA) [J]. Geophysical Research Letters, 37: L18204.

    Google Scholar

    [30] Sun Y, Li L, Zhang Y Z. 2017. Detection of Mg−spinel bearing central peaks using M3 images: Implications for the petrogenesis of Mg−spinel[J]. Earth and Planetary Science Letters, 465: 48−58.

    Google Scholar

    [31] Wang Liang, Ding Xiaozhong, Han Kunying, Pang Jianfeng, Xu Kejuan, Zheng Hongwei, Wu Hao. 2015. The compilation of the lunar digital geological map and a discussion on the tectonic evolution of the moon[J]. Geology in China, 42(1): 331−341 (in Chinese with English abstract).

    Google Scholar

    [32] Wieczorek M A, Neumann G A, Nimmo F, Kiefer W S, Taylor G J, Melosh H J, Phillips R J, Solomon S C, Andrews−Hanna J C, Asmar S W. 2013. The Crust of the Moon as seen by GRAIL[J]. Science, 339: 671−675. doi: 10.1126/science.1231530

    CrossRef Google Scholar

    [33] Wieczorek M A, Phillips R J. 1998. Potential anomalies on a sphere: Applications to the thickness of the lunar crust[J]. Journal of Geophysical Research−Planets, 103: 1715−1724. doi: 10.1029/97JE03136

    CrossRef Google Scholar

    [34] Yamamoto S, Nakamura R, Matsunaga T, Ogawa Y, Ishihara Y, Morota T, Hirata N, Ohtake M, Hiroi T, Yokota Y, Haruyama J. 2012. Massive layer of pure anorthosite on the Moon[J]. Geophysical Research Letters, 39: 34−47.

    Google Scholar

    [35] Xu Yingkui, Zhu Dan, Wang Shijie, Liu Yun. 2012. Recent advances of lunar formation theories[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 31(5): 516−521(in Chinese with English abstract).

    Google Scholar

    [36] 杜劲松, 梁青, 陈超, 周聪, 陈波. 2010. 月球“质量瘤”盆地的深部结构与撞击演化[J]. 地质科技情报, 29(5): 134−142.

    Google Scholar

    [37] 郭弟均, 刘建忠, Head J W, 李帅, Potter R W K, 林红磊. 2018. 月球阿波罗盆地区域月壳结构及光谱特征[J]. 深空探测学报, 5(5): 488−494.

    Google Scholar

    [38] 郭弟均, 刘建忠, 张莉, 籍进柱, 刘敬稳, 王梁. 2014. 月球地质年代学研究方法及月面历史划分[J]. 地学前缘, 21(6): 45−61.

    Google Scholar

    [39] 籍进柱, 刘建忠, 郭弟均, 刘敬稳, 王庆龙, 张莉. 2015. 云海撞击盆地的恢复及其地质演化研究[J]. 岩石学报, 32(1): 127−134.

    Google Scholar

    [40] 刘敬稳, 刘建忠, 郭弟均, 籍进柱, 王庆龙, 李世杰. 2016. 月球东海盆地综合解析与撞击初始条件的研究[J]. 岩石学报, 32(1): 135−143.

    Google Scholar

    [41] 陆天启. 2020. 月球构造遥感识别及其演化研究[D]. 长春: 吉林大学, 1−172.

    Google Scholar

    [42] 欧阳自远, 刘建忠. 2014. 月球形成演化与月球地质图编研[J]. 地学前缘, 21(6): 1−6.

    Google Scholar

    [43] 王梁, 丁孝忠, 韩坤英, 庞健峰, 许可娟, 郑洪伟, 吴昊. 2015. 月球数字地质图的编制与研究[J]. 中国地质, 42(1): 331−341.

    Google Scholar

    [44] 许英奎, 朱丹, 王世杰, 刘耘. 2012. 月球起源研究进展[J]. 矿物岩石地球化学通报, 31(5): 516−521. doi: 10.3969/j.issn.1007-2802.2012.05.011

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(157) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint