Citation: | LIANG Zhen, WANG Chunlian, CHEN Qingli, NING Pengyuan, YAN Kai, LIU Dianhe. 2025. Distribution, origin, application and prospecting prospect analysis of diatomite in the world[J]. Geology in China, 52(3): 915-931. doi: 10.12029/gc20230620003 |
This paper is the result of mineral exploration engineering.
Diatomaceous earth is a mineral formed by single−celled organisms such as dead diatoms through deposition and a series of geological processes. It belongs to sedimentary rocks, and its main component is SiO2. Diatomite is an indispensable non−metallic mineral resource in my country's social production activities, because of its porosity, strong adsorption, light weight, high melting point, heat insulation, sound absorption, low refractive index, stable chemical properties, etc. It is widely used in sewage treatment, agriculture, building materials and its emerging technology fields.
In this paper, by collecting and sorting out data and fully drawing on previous research results, this paper investigates the distribution of diatomite resources in the world, the genetic types of deposits, and its application in traditional and emerging technology fields.
Diatomaceous earth resources are widely distributed in 122 countries in the world. At present, the total reserves of diatomaceous earth in the world are about 920 million tons, of which the United States is the most abundant, its reserves are about 250 million tons, accounting for 27.2% of the world's total. China's diatomaceous earth reserves are about 170 million tons, accounting for about 18% of the world's total reserves. According to the different formation mechanism and sedimentary environment of diatomite, the deposit types are divided into Marine sedimentary deposit and continental sedimentary deposit, both of which are affected by the superposition of geological structure, climatic environment, time condition and suitable sedimentary environment.
Combined with domestic and foreign data, the genetic analysis of diatomite deposits shows that diatomite deposits are concentrated in fault basins and intermountain basins generated by volcanic structures from Tertiary to Quaternary, and are directly related to the distribution of basalt. The zone with humid climate, warm environment and sufficient rainfall can be used as a prospecting prospect area for diatomite deposits. For example, the depression in the eastern part of China is easy to form volcanic structure, the foresea basin in the southeast area has more volcanic eruption activities in the Neogene period, and the small and medium−sized tectonic basin formed by the mountain movement in the southwest area, especially some Cenozoic basins with basalt base and basalt distribution area can be used as the prospecting prospect of continental sedimentary diatomite deposits in China. In the middle and high latitudes of the North Pacific Ocean, marginal basins were formed through the interaction of tectonic and volcanic activities in the late Oligocene and early Miocene. In the middle and late Miocene, the deposition rate of diatomite increased under the hypoxia condition of the deep sea bottom water, which made diatomite widely distributed in this area. Therefore, the northern part of the North Pacific Ocean, the Bering Sea, the Sea of Okhotsk and the Sea of Japan can be used as prospecting prospects for Marine sedimentary diatomite deposits.
[1] | Aydar E, Çubukçu H E, Şen E, Akın L. 2012. Central Anatolian Plateau, Turkey: Incisin and paleoaltimetry recorded from volcanic rocks[J]. Turkish Earth Science, 22(5): 739−746. |
[2] | Baartman J C, Christensen O B. 1975. Contributions to the interpretation of the Fennoscandian Border Zone[J]. Danmarks Geologiske Undersøgelse II. Række, 102: 1–47. |
[3] | Chen Qilong, Qin Feng, Tang Yinqing, Pang Bin. 2022. Research on water erosion resistance performance of rubber–diatom composite modified asphalt mixture[J]. New Building Materials, 49(2): 66−69 (in Chinese with English abstract). |
[4] | Cheng Shuai, Jiang Wei, Wang Lin, Huang Xiaoqiao, Han Xiaobin, Liu Zhihang, Lu Zeyu, Yu Jianying. 2022. Effect of diatomite on physical and aging properties of SBS modified asphalt[J]. Highway, 67(7): 353−358 (in Chinese). |
[5] | Dinesen A, Michelsen O, Lieberkind K. 1977. A Survey of the Paleocene and Eocene Deposits of Jylland and Fyn[M]. Iommission hos CA Reitzels Forlag. |
[6] | Ding Rui. 2014. Geological characteristics and genesis of Gaosongshu diatomite deposit in Dunhua City[J]. China Non–Metallic Mineral Industry Guide, (4): 41−43 (in Chinese). |
[7] | Dobrosielska M, Przekop R E, Sztorch B, Brząkalski D, Zgłobicka I, Łępicka M, Dobosz R, Kurzydłowski K J. 2020. Biogenic composite filaments based on polylactide and diatomaceous earth for 3D printing[J]. Materials, 13(20): 4632. doi: 10.3390/ma13204632 |
[8] | Du T, Song P, Liu L P. 2022. Experimental study on activated diatomite modified asphalt pavement in deep loess area[J]. Processes, 10(6): 1227. doi: 10.3390/pr10061227 |
[9] | Du Y C, Wang X K, Wu J S, Qi C, Li Y. 2018. Adsorption and photoreduction of Cr(VI) via diatomite modified by Nb2O5 nanorods[J]. Particuology, 40: 123−130. doi: 10.1016/j.partic.2017.11.005 |
[10] | Erol K, Yildiz E, Alacabey I, Karabörk M, Uzun L. 2019. Magnetic diatomite for pesticide removal from aqueous solution via hydrophobic interactions[J]. Environmental Science and Pollution Research, 26: 33631−33641. doi: 10.1007/s11356-019-06423-0 |
[11] | Feng Huang, Zhang Huifen, Wang Fuya. 1995. Diatoms and their chemical constituents in diatomaceous earth of Leizhou Peninsula[J]. Journal of Mineralogy, (1): 29−35 (in Chinese). |
[12] | Fu Y, Jiang J W, Chen Z P, Ying S M, Wang J W, Hu J S. 2019. Rapid and selective removal of Hg(II) ions and high catalytic performance of the spent adsorbent based on functionalized mesoporous silica/poly(m–aminothiophenol) nanocomposite[J]. Journal of Molecular Liquids, 286: 110746. doi: 10.1016/j.molliq.2019.04.023 |
[13] | Jiang Yuzhi, Jia Songyang. 2011. Exploitation application existing conditions and evolution of diatiomite[J]. Nonferrous Mining and Metallurgy, 27(5): 31−37 (in Chinese with English abstract). |
[14] | Kipsanai J J, Wambua P M, Namango S S, Amziane S A. 2022. Review on the incorporation of diatomaceous earth as a geopolymer–based concrete building resource[J]. Materials, 15(20): 7130. doi: 10.3390/ma15207130 |
[15] | Koizumi I, Yamamoto H. 2018. Diatom ooze and diatomite–diatomaceous sediments in and around the North Pacific Ocean[J]. JAMSTEC Report of Research and Development, 27: 26−46. doi: 10.5918/jamstecr.27.26 |
[16] | Li S, Li D Y, Su F, Ren Y P, Qin G W. 2014. Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions[J]. Applied Surface Science, 317: 724−729. doi: 10.1016/j.apsusc.2014.08.184 |
[17] | Li Z, Zhang N, Sun Y B, Ke H Z, Cheng H S. 2017. Application of diatomite as an effective polysulfides adsorbent for lithium–sulfur batteries[J]. Journal of Energy Chemistry, 26(6): 1267−1275. doi: 10.1016/j.jechem.2017.09.020 |
[18] | Li Zhen, Zhang Haodong, Pu Jinming, Tan Geng, Zhang Mingyue. 2018. Effictiveness of cadmium–contained wastewater treated by Mg(OH)2 modified diatomite[J]. Chemical Research and Application, 30(10): 1621−1628 (in Chinese with English abstract). |
[19] | Li Zhiwei, Wang Ge, Li Zhongshui, Wang Hong, Guo Xia, Zhao Qi, Nan Yao. 2021. The utilization status of diatomite mines in China and countermeasures for development and utilization[J]. China Non–Metallic Mineral Industry Guide, (3): 1−5 (in Chinese with English abstract). |
[20] | Li Zhongshui, Liu Xiaolou, Wu Yanling. 2013. New application of diatomite mine in China and resource security countermeasures[J]. China Non–Metal Mining Industry Guide, (5): 1−3,7 (in Chinese with English abstract). |
[21] | Li Zhongshui. 2018. Geological characteristics and new exploration progress of important non–metallic mineral resources in Jilin Province[J]. China Non–metallic Mineral Industry Guide, (4): 31−34,60 (in Chinese). |
[22] | Liu Zhenmin. 2018. Characteristics and prospecting direction of diatomite resources in China[J]. Geology of Chemical Mineral, 40(4): 235−240 (in Chinese with English abstract). |
[23] | Lu Hao. 2001. Diatomite resource and its situation of development and utilization[J]. Geology of Zhejiang, (1): 52−59 (in Chinese with English abstract). |
[24] | Lü Huafang, Yang Hanbo, Wu Xinyuan, Zhu Xuezhou, Lei Huimin. 2022. Development and application of diatomite filter–soil moisture sensor[J]. Water Resources and Hydropower Engineering, 53(1): 207−218 (in Chinese with English abstract). |
[25] | Ma J G, Wu J F, Zhang H J, Du L, Zhang H, Zhao W B, Ma B, Chang J, Wu C t. 2022. 3D Printing of diatomite incorporated composite scaffolds for skin repair of deep burn wounds[J]. International Journal of Bioprinting, 8(3): 580. doi: 10.18063/ijb.v8i3.580 |
[26] | Ma Junyu. 2021. Geological features and genesis of the Hudonggou diatomite deposit in Changbai County, Jilin Province[J]. Jilin Geology, 40(2): 18−23,39 (in Chinese with English abstract). |
[27] | Ma Xiaoshun, Huang Jing, Liu Jianfeng. 2020. Geological characteristics and prospecting criteria of Erdaoyangcha diatomite deposit, Changbai County, Jilin Province[J]. World Nonferrous Metals, (9): 249−250 (in Chinese with English abstract). |
[28] | Marín–Alzate N, Tobón J I, Bertolotti B, Cáceda M E Q, Flores E. 2021. Evaluation of the properties of diatomaceous earth in relation to their performance in the removal of heavy metals from contaminated effluents[J]. Water Air Soil Pollut, 232: 122. doi: 10.1007/s11270-021-05045-y |
[29] | Naifah, Hasan M, Saidi T. 2021. The Resistance of High Strength Concrete with Diatomaceous Earth As Cement Replacement to Nacl Attack[C]//Journal of Physics: Conference Series(ed.). IOP Publishing, 1933(1): 012104. |
[30] | Nefzi H, Abderrabba M, Ayadi S, Labidi J. 2018. Formation of palygorskite clay from treated diatomite and its application for the removal of heavy metals from aqueous solution[J]. Water, 10(9): 1257. doi: 10.3390/w10091257 |
[31] | Pan Biaokai, Ning Siyuan, Gong Shuai, Zhang Dongting, Tian Binsheng. 2021. Geological characteristics and metallogenic regularity of diatomite deposit in Leiqiong Area[J]. China Non–metallic Mineral Industry Guide, (1): 39−42 (in Chinese with English abstract). |
[32] | Pasquaré G, Poli S, Venzolli L, Zanchi A. 1988. Continental arc volcanism and tectonic setting in Central Anatolia, Turkey[J]. Tectonophysics, 146(1/4): 217−230. |
[33] | Pedersen G K. 1981. Anoxic events during sedimentation of a Palaeogene diatomite in Denmark[J]. Sedimentology, 28(4): 487−504. doi: 10.1111/j.1365-3091.1981.tb01697.x |
[34] | Qu Rongying, Chen Shui’an. 2005. Geological factors of ore–controlling and metallogenic laws for diatomaceous earth ore deposit in Leizhou Peninsula[J]. West–China Exploration Engineering, 17(4): 91−92 (in Chinese with English abstract). |
[35] | Salih S S, Ghosh T K. 2018. Adsorption of Zn (II) ions by chitosan coated diatomaceous earth[J]. International Journal of Biological Macromolecules, 106: 602−610. doi: 10.1016/j.ijbiomac.2017.08.053 |
[36] | Smirnov P V, Konstantinov A O, Gursky H J. 2017. Petrology and industrial application of main diatomite deposits in the Transuralian region (Russian Federation)[J]. Environmental Earth Sciences, 76(20): 682. doi: 10.1007/s12665-017-7037-3 |
[37] | Taliaferro N L. 1933. Relation of volcanism to diatomaceous and associated siliceous sediments[J]. University of California Publication Geological Science, 23: 1−55. |
[38] | Uthappa U T, Sriram G, Brahmkhatri V, Kigga M, Jung H Y, Altalhi T, Neelgund G, Kurkuri M. 2018. Xerogel modified diatomaceous earth microparticles for controlled drug release studies[J]. New Journal of Chemistry, 42(14): 11964−11971. doi: 10.1039/C8NJ01238E |
[39] | Wang Chunlian, Wang Jiuyi, You Chao, Yu Xiaocan, Liu Dianhe, Yan Kai, Liu Sihan, Xue Yan, Liu Yanting, Liu Xue, Yin Chuankai. 2022. A study on strategic non–metallic mineral definition, key applications, and supply and demand situation[J]. Acta Geoscientica Sinica, 43(3): 267−278 (in Chinese with English abstract). |
[40] | Wang Denghong, Jiang Chengxing, Ying Hanlong, Chen Congxi, Li Zhiwei. 2002. Geochemistry of diatomite in Guanyinmiao and its genetic relation to volcanism in Tengchong, Yunnan[J]. Mineral Deposit Geology, 21(S1): 917−920. |
[41] | Wang Jian, Chen Shaoheng, Pang Xiandi. 2022. Distribution characteristics and exploitation status of diatomite mineral resources in Jilin Province[J]. China Non–metallic Mineral Industry Guide, (1): 7−9,17 (in Chinese with English abstract). |
[42] | Wang Jimei. 2014. Geological characteristics and genesis of diatomite deposit in Beigang, Changbai County[J]. China Non–Metallic Mineral Industry Guide, (5): 38−41 (in Chinese). |
[43] | Wang Lei, Ren Peng. 2013. Discussion on geological characteristics and genesis of Nangang diatomite deposit in Linjiang City, Jilin Province[J]. Western Exploration Engineering, 25(10): 122−128 (in Chinese). |
[44] | Wang Tao, Liu Yanhai, Xue Shubin. 2020. Geological characteristics and metallogenic analysis of diatomite deposits in southeast part of the Changzhi Basin[J]. Science Technology and Engineering, 20(9): 3441−3447 (in Chinese with English abstract). |
[45] | Wang X Y, Li Y F, Ren W J, Huo R X, Liu H F, Li R, Du S J, Wang L, Liu J Y. 2021. PEI–modified diatomite/chitosan composites as bone tissue engineering scaffold for sustained release of BMP–2[J]. Journal of Biomaterials Science, Polymer Edition, 32(10): 1337–1355. |
[46] | Wu Zhaoyang, Zhang Yongxing, Zhang Lizhen, Tan Xiumin. 2019. Characteristics of diatomite resources and its application in strategic emerging industries[J]. Conservation and Utilization of Mineral Resources, 39(6): 134−141 (in Chinese with English abstract). |
[47] | Xiao Liguang, Zhao Zhuang, Yu Wanzeng. 2010. The development status and prospects of diatomite[J]. Journal of Jilin Institute of Architecture & Civil Engineering, 27(2): 26−30 (in Chinese with English abstract). |
[48] | Xu Jianjun, Zhang Chuanshun, Guan Jinan. 2011. Application and research progress of diatomite[J]. Guangxi Journal of Light Industry, (5): 23−24 (in Chinese). |
[49] | Yang Huaze, Luo Huiping, Luo Xicheng, Li Zimin, Kuang Yuanzhong. 2017. Geological features and genesis of the diatomite ore deposit in Toupi of Guangchang County, Jiangxi Province[J]. Journal of Geological, 41(4): 573−581 (in Chinese with English abstract). |
[50] | Yang Qintao, Nong Jieliang, Xie Qinglin, Chen Nanchun. 2022. Research progress on the application of modified diatomite in wastewater treatment[J]. New Chemical Materials, 50(1): 298−302 (in Chinese with English abstract). |
[51] | Zhang Haojing, Liu Xiaojing, Zhao Mingjie, Li Yongtian. 2020. Application of magnesium hydroxide modified diatomite in phosphorous wastewater treatment[J]. Resource Conservation and Environmental Protection, (9): 97−98 (in Chinese). |
[52] | Zhang Xinyu, Peng Jingdong. 2018. On adsorption of Pb2+, Cu2+, Cd2+ ions by modified diatomite[J]. Journal of Southwest China Normal University (Natural Science Edition), 43(9): 90−94 (in Chinese with English abstract). |
[53] | Zhang Zhiwei, Zheng Liguo. 2017. Diatomite deposit characteristics and prospecting direction in Changbai, Jilin[J]. Western Exploration Engineering, 29(2): 89−91 (in Chinese). |
[54] | Zheng Liduan. 2020. Late Neogene Environmental Changes and Ecological Responses Recorded by Geological Lipids in the Lake and Swamp Facies of the Zhaotong Basin, Yunnan Province[D]. Wuhan: China University of Geosciences, 1–150 (in Chinese). |
[55] | Zhou F, Li Z, Lu Y Y, Shen B, Guan Y, Wang X X, Yin Y C, Zhu B S, Lu L L, Ni Y, Cui Y, Yao H B, Yu S H. 2019. Diatomite derived hierarchical hybrid anode for high performance all–solid–state lithium metal batteries[J]. Nature Communications, 10(1): 2482. doi: 10.1038/s41467-019-10473-w |
[56] | Zhou Kaican. 1988. Geological characteristics of diatomite deposits in my country[J]. Building Materials Geology, (2): 28−33,50 (in Chinese). |
[57] | Zhou Tingting, Wu Zhaowei. 2017. The status and development of diatomite utilization in China[J]. Conservation and Utilization of Mineral Resources, (4): 87−92 (in Chinese with English abstract). |
[58] | Zhou Yongqing. 1990. Geological features and exploitation prospect of the diatomite deposits in Leizhou peninsula[J]. Guangdong Geology, 5(2): 22−27 (in Chinese with English abstract). |
[59] | Ziegler W H. 1975. Outline of the geological history of the North Sea[J]. Applied Science Publishers, 1: 165−187. |
[60] | 陈其龙, 覃峰, 唐银青, 庞彬. 2022. 橡胶–硅藻土复合改性沥青混合料抗水侵蚀性能研究[J]. 新型建筑材料, 49(2): 66−69. doi: 10.3969/j.issn.1001-702X.2022.02.016 |
[61] | 程帅, 姜蔚, 汪林, 黄小侨, 韩晓斌, 刘志航, 卢泽宇, 余剑英. 2022. 硅藻土对SBS改性沥青物理和老化性能的影响[J]. 公路, 67(7): 353−358. |
[62] | 丁瑞. 2014. 敦化市高松树硅藻土矿床地质特征及成因[J]. 中国非金属矿工业导刊, (4): 41−43. doi: 10.3969/j.issn.1007-9386.2014.04.013 |
[63] | 冯璜, 张惠芬, 王辅亚. 1995. 雷州半岛硅藻土中的硅藻及其化学成分[J]. 矿物学报, (1): 29−35. doi: 10.3321/j.issn:1000-4734.1995.01.006 |
[64] | 姜玉芝, 贾嵩阳. 2011. 硅藻土的国内外开发应用现状及进展[J]. 有色矿冶, 27(5): 31−37. doi: 10.3969/j.issn.1007-967X.2011.05.012 |
[65] | 李振, 张皓东, 卜鸡明, 谭耿, 张明月. 2018. 氢氧化镁改性硅藻土处理含镉废水的研究[J]. 化学研究与应用, 30(10): 1621−1628. doi: 10.3969/j.issn.1004-1656.2018.10.007 |
[66] | 李志威, 王鸽, 李忠水, 王宏, 郭霞, 赵琪, 南瑶. 2021. 我国硅藻土矿利用现状及开发利用对策[J]. 中国非金属矿工业导刊, (3): 1−5. |
[67] | 李忠水, 刘小楼, 吴彦岭. 2013. 我国硅藻土矿新应用及资源保障对策[J]. 中国非金属矿工业导刊, (5): 1−3,7. doi: 10.3969/j.issn.1007-9386.2013.05.001 |
[68] | 李忠水. 2018. 吉林省重要非金属矿产资源地质特征及勘查新进展[J]. 中国非金属矿工业导刊, (4): 31−34,60. doi: 10.3969/j.issn.1007-9386.2018.04.011 |
[69] | 刘振敏. 2018. 中国硅藻土矿资源特征及找矿方向[J]. 化工矿产地质, 40(4): 235−240. doi: 10.3969/j.issn.1006-5296.2018.04.008 |
[70] | 陆浩. 2001. 硅藻土资源及开发利用概况[J]. 浙江地质, (1): 52−59. |
[71] | 吕华芳, 杨汉波, 伍鑫源, 朱学舟, 雷慧闽. 2022. “硅藻土–过滤器”型土壤墒情传感器研制及应用[J]. 水利水电技术(中英文), 53(1): 207−218. |
[72] | 马骏雨. 2021. 吉林省长白县虎洞沟硅藻土矿床地质特征及成因浅析[J]. 吉林地质, 40(2): 18−23,39. doi: 10.3969/j.issn.1001-2427.2021.02.004 |
[73] | 马小顺, 黄静, 刘健峰. 2020. 吉林省长白县二道阳岔硅藻土矿矿床地质特征和找矿标志[J]. 世界有色金属, (5): 249−250. doi: 10.3969/j.issn.1002-5065.2020.05.149 |
[74] | 潘标开, 宁思远, 弓帅, 张东婷, 田斌升. 2021. 雷琼地区硅藻土矿床地质特征与成矿规律[J]. 中国非金属矿工业导刊, (1): 39−42. |
[75] | 屈荣英, 陈水安. 2005. 雷州半岛硅藻土矿床控矿地质因素及成矿规律[J]. 西部探矿工程, 17(4): 91−92. doi: 10.3969/j.issn.1004-5716.2005.04.048 |
[76] | 王春连, 王九一, 游超, 余小灿, 刘殿鹤, 颜开, 刘思晗, 薛燕, 刘延亭, 刘雪, 尹传凯. 2022. 战略性非金属矿产厘定、关键应用和供需形势研究[J]. 地球学报, 43(3): 267−278. doi: 10.3975/cagsb.2022.052701 |
[77] | 王登红, 蒋成兴, 应汉龙, 陈从喜, 李志伟. 2002. 云南腾冲观音庙硅藻土矿床的地球化学特征及其与火山作用的成因联系[J]. 矿床地质, 21(S1): 917−920. |
[78] | 王健, 程绍恒, 庞仙笛. 2022. 吉林硅藻土矿产资源分布特征及开发现状[J]. 中国非金属矿工业导刊, (1): 7−9,17. doi: 10.3969/j.issn.1007-9386.2022.01.002 |
[79] | 王继梅. 2014. 长白县北岗参场硅藻土矿床地质特征及成因浅析[J]. 中国非金属矿工业导刊, (5): 38−41. doi: 10.3969/j.issn.1007-9386.2014.05.013 |
[80] | 王磊, 任鹏. 2013. 吉林省临江市南岗硅藻土矿床地质特征及成因探讨[J]. 西部探矿工程, 25(10): 122−128. doi: 10.3969/j.issn.1004-5716.2013.10.041 |
[81] | 王涛, 刘燕海, 薛曙斌. 2020. 长治盆地东南部硅藻土矿床地质特征及成矿分析[J]. 科学技术与工程, 20(9): 3441−3447. doi: 10.3969/j.issn.1671-1815.2020.09.011 |
[82] | 吴照洋, 张永兴, 张利珍, 谭秀民. 2019. 硅藻土资源特点及在战略新兴产业中的应用[J]. 矿产保护与利用, 39(6): 134−141. |
[83] | 肖力光, 赵壮, 余万增. 2010. 硅藻土国内外发展现状及展望[J]. 吉林建筑工程学院学报, 27(2): 26−30. |
[84] | 徐建军, 张传顺, 管继南. 2011. 硅藻土的应用及研究进展[J]. 广西轻工业, (5): 23−24. doi: 10.3969/j.issn.1003-2673.2011.05.011 |
[85] | 杨华泽, 罗辉平, 罗喜成, 李自敏, 况沅忠. 2017. 江西广昌头陂硅藻土矿床地质特征及成因[J]. 地质学刊, 41(4): 573−581. doi: 10.3969/j.issn.1674-3636.2017.04.008 |
[86] | 杨勤桃, 农接亮, 解庆林, 陈南春. 2022. 改性硅藻土在污水处理中的应用研究进展[J]. 化工新型材料, 50(1): 298−302. |
[87] | 张颢竞, 刘晓静, 赵明杰, 栗勇田. 2020. 氢氧化镁改性硅藻土在含磷污水处理中的应用[J]. 资源节约与环保, (9): 97−98. doi: 10.3969/j.issn.1673-2251.2020.09.058 |
[88] | 张馨予, 彭敬东. 2018. “微超酸”改性硅藻土对Pb2+, Cu2+, Cd2+的吸附性能研究[J]. 西南师范大学学报(自然科学版), 43(9): 90−94. |
[89] | 张致伟, 郑立国. 2017. 吉林长白地区硅藻土矿床特征及找矿方向[J]. 西部探矿工程, 29(2): 89−91. doi: 10.3969/j.issn.1004-5716.2017.02.027 |
[90] | 郑丽端. 2020. 云南昭通盆地湖沼相地质脂类记录的晚新近纪环境变化与生态响应[D]. 武汉: 中国地质大学, 1–150. |
[91] | 周开灿. 1988. 我国硅藻土矿地质特征[J]. 建材地质, (2): 28−33,50. |
[92] | 周婷婷, 吴肇伟. 2017. 我国硅藻土加工利用现状与研究进展[J]. 矿产保护与利用, (4): 87−92. |
[93] | 周永清. 1990. 雷州半岛硅藻土矿床地质特征和开发前景[J]. 广东地质, 5(2): 22−27. |
Distribution of diatomite resources and reserves in China
Distribution of diatomite deposits in Leizhou Peninsula (modified from Feng Huang et al., 1995)
Distribution map of diatomite mineral deposits in Jilin Province (after Wang Jian et al., 2022)
Measured stratigraphic section position and geological map of the study area (modified from Pasquaré et al., 1988)
Geographical location of the study area and location of diatomite (modified from Pedersen, 1981)
Application fields of diatomite