2025 Vol. 52, No. 4
Article Contents

FU Jiangang, LI Guangming, WANG Genhou, GUO Weikang, ZHANG Hai, ZHANG Linkui, JIN Canhai, DONG Suiliang, JIAO Yanjie, LI Yingxu. 2025. Characteristics and metallogeny of Li−Be−Sn rare metals in the Kulagangri Dome in Xizang and their implications for prospecting[J]. Geology in China, 52(4): 1179-1203. doi: 10.12029/gc20230425002
Citation: FU Jiangang, LI Guangming, WANG Genhou, GUO Weikang, ZHANG Hai, ZHANG Linkui, JIN Canhai, DONG Suiliang, JIAO Yanjie, LI Yingxu. 2025. Characteristics and metallogeny of Li−Be−Sn rare metals in the Kulagangri Dome in Xizang and their implications for prospecting[J]. Geology in China, 52(4): 1179-1203. doi: 10.12029/gc20230425002

Characteristics and metallogeny of Li−Be−Sn rare metals in the Kulagangri Dome in Xizang and their implications for prospecting

    Fund Project: Supported by National Key Research and Development Plan (No.2021YFC2901903, No.2023YFC2908400), National Natural Science Foundation of China (No.91955208), the Second Tibetan Plateau Scientific Expedition and Research (No.2019QZKK0806), and the projects of China Geological Survey (No.DD20230337, No.DD20230281).
More Information
  • Author Bio: FU Jiangang, male, born in 1987, Ph.D., associate researcher, engaged in the study of structural geology and metallogenic theory; E-mail: fujiangangcd@163.com
  • Corresponding author: Li Guangming, male, born in 1965, professor, engaged in the study of mineral resources exploration and evaluation, regional metallogenic regularity and metallogenic prediction; E-mail: 13982257109@163.com
  • This paper is the result of mineral exploration engineering.

    Objective

    In recent years, great breakthroughs have been made in the prospecting of rare metals such as lithium, beryllium, niobium and tantalum in the Himalayan metallogenic belt. Based on the 1∶50000 mineral geological mapping, three different types mineralization have been identified: (1) The Gabo pegmatite type lithium deposit; (2) The Cimai skarn type Sn−Fe−Pb−Zn polymetallic deposit; (3) The Mucun tectonic-altered rock type Au deposit. The purpose of this paper is to find out the metallogenic age of typical rare metal deposits in the Himalayan belt, analyze the metallogenic relationship between dome structure, high differentiated granite and rare metal, and summarize the structural ore control regularity in the dome, so as to provide theoretical basis for regional rare metal prospecting and prediction.

    Methods

    Based on the detailed field geological investigation, the dating of pegmatite monazite and the geological characteristics of typical deposits are studied in this paper, and the relationship between structure in the dome and metallogenesis of rare metals is investigated.

    Results

    The Gobo lithium deposit is located at the northeast part of the Kulagangri Dome. Li−Be ore bodies are hosted by the marble in the middle unit of the Dome. Spodumene pegmatite yielded a monazite U−Th−Pb age of 23.1 Ma, which represents metallogenic age of the Gobo lithium deposit. The emplacement age of tourmaline granite in the north part of the Gabon mining area is 19.3 Ma, which is obviously later than the metallogenic age of lithium ore. The Cimai skarn type Sn−Fe−Pb−Zn polymetallic deposit is located at the south of the Gabon lithium deposit. At present, two mineralization types have been identified in the mining area: (1) Skarn type Sn−Fe bodies, which are mainly characterized by the symbiosis of cassiterite and magnetite, and belongs to a new type mineralization in the Himalayan belt; (2) Skarn−type Pb−Zn polymetallic ore bodies. Both type ore bodies are hosted in marble in middle unit of the Dome, and the U−Th−Pb age of pegmatite monazite closely related to ore-bearing skarn in the mining area is 23.0 Ma, representing its ore-forming age. The Mucun gold deposit is located in the Cover rocks in the southeast of the Kulagangri Dome, and the ore-bearing rocks are mainly a set of calcareous silty slate, and ore bodies are controlled by the northeast-strike and east−west strike faults. The mineralization in the Kulagangri Dome show a regular change from the high temperature magmatic type lithium beryllium rare metal deposit (Gabo) to the medium-high temperature skarn type tin-iron and lead-zinc deposit (Semai) to the low temperature tectonic-altered rock type gold deposit (Mucun). There are many events such as large-scale extensional detachment tectonic deformation, magmatic emplacement and high crystal differentiation of leucogranites, formation of syntectonic skarn, mineralization of Li−Be−Nb−Ta−Sn rare metals occurred at the same time at ca. 23 Ma.

    Conclusions

    As a manifestation of the STDS in the north, both high differentiated leucogranites and large-scale detachment faults are the key factors for the mineralization of Li−Be−Nb−Ta−Sn rare metals in the Kulagangri Dome, which are also a necessary condition for finding new rare metal deposits in other typical dome structures in the Himalayan metallogenic belt.

  • 加载中
  • [1] Badanina E V, Veksler I V, Thomas R, Syritso L F, Trumbull R B. 2004. Magmatic evolution of Li–F, rare-metal granites: A case study of melt inclusions in the Khangilay complex, Eastern Transbaikalia (Russia)[J]. Chemical Geology, 210(1): 113−133.

    Google Scholar

    [2] Ballouard C, Elburg M A, Tappe S, Reinke C, Ueckermann H, Doggart S. 2020. Magmatic–hydrothermal evolution of rare metal pegmatites from the Mesoproterozoic Orange River pegmatite belt (Namaqualand, South Africa)[J]. Ore Geology Reviews, 116: 103252. doi: 10.1016/j.oregeorev.2019.103252

    CrossRef Google Scholar

    [3] Burg J P, Chen G M. 1984. Tectonics and structural zonation of southern Tibet, China[J]. Nature, 311(5983): 219−223. doi: 10.1038/311219a0

    CrossRef Google Scholar

    [4] Chen Z, Liu Y, Hodges K, Burchfiel B, Royden L, Deng C. 1990. The Kangmar Dome: A metamorphic core complex in southern Xizang (Tibet)[J]. Science, 250(4987): 1552−1556. doi: 10.1126/science.250.4987.1552

    CrossRef Google Scholar

    [5] Cottle J, Searle M, Horstwood M, Waters D. 2009. Timing of midcrustal metamorphism, melting, and deformation in the Mount Everest region of southern Tibet revealed by U(−Th)−Pb geochronology[J]. The Journal of Geology, 117(6): 643−664. doi: 10.1086/605994

    CrossRef Google Scholar

    [6] Ding Huixia, Li Wentan, Jiang Yunyun. 2019. The metamorphism and the tectonic implication of the Cuonadong dome, eastern Himalaya[J]. Acta Petrologica Sinica, 35(2): 312−324 (in Chinese with English abstract doi: 10.18654/1000-0569/2019.02.03

    CrossRef Google Scholar

    [7] Fu Jiangang, Li Guangming, Guo Weikang, Zhang Hai, Dong Suiliang, Zhang Linkui, Li Yingxu, Ma Guotao, Jiao Yanjie. 2024. Discovery of the Cimai skarn–type Sn–Fe–Pb–Zn polymetallic deposit in Kulagangri Dome, Xizang, and its prospecting implications[J]. Geotectonica et Metallogenia, 48(4): 724−736 (in Chinese with English abstract

    Google Scholar

    [8] Fu Jiangang, Li Guangming, Guo Weikang, Zhang Hai, Zhang Linkui, Dong Suiliang, Zhou Limin, Li Yingxu, Jiao Yanjie, Shi Hongzhao. 2023. Mineralogical characteristics of columbite group minerals and its implications for magmatic–hydrothermal transition in the Gabo lithium deposit, Himalayan metallogenic belt[J]. Earth Science Frontiers, 30(5): 134−150 (in Chinese with English abstract

    Google Scholar

    [9] Fu Jiangang, Li Guangming, Dong Suiliang, Zhang Hai, Guo Weikang, Zhang Linkui, Liang Wei, Jiao Yanjie Ling Chen. 2022. Mineral chemistry of garnet and its implication for the magmatic–hydrothermal transition in rare metal leucogranites in the Lalong dome, southern Tibet, China[J]. Sedimentary Geology and Tethyan Geology, 42(2): 288−299 (in Chinese with English abstract

    Google Scholar

    [10] Fu J G, Li G M, Wang G H, Zhang L K, Liang W, Zhang X Q, Jiao Y J, Dong S L. 2022. Structural and kinematic analysis of the Cuonadong Dome, southern Tibet, China: Implications for middle–crust deformation[J]. Journal of Asian Earth Sciences: X, 8: 100112. doi: 10.1016/j.jaesx.2022.100112

    CrossRef Google Scholar

    [11] Fu Jiangang, Li Guangming, Wang Genhou, Dong Suiliang, Zhang Hai, Guo Weikang, Zhang Linkui, Zhang Xiaoqiong, Jiao Yanjie. 2021. Geological characteristics and metallogenic types of Be–Nb–Ta rare metals in the Lalong dome, Southern Tibet, China[J]. Geotectonica et Metallogenia, 45(5): 913−933 (in Chinese with English abstract).

    Google Scholar

    [12] Fu J G, Li G M, Wang G H, Zhang L K, Liang W, Zhang X Q, Jiao Y J, Dong S L, Huang Y. 2020. Structural analysis of sheath folds and geochronology in the Cuonadong Dome, southern Tibet, China: New constraints on the timing of the South Tibetan detachment system and its relationship to North Himalayan Gneiss Domes[J]. Terra Nova, 32(4): 300−323. doi: 10.1111/ter.12462

    CrossRef Google Scholar

    [13] Fu J G, Li G M, Wang G H, Zhang L K, Liang W, Zhang X Q, Jiao Y J, Huang Y. 2021. Structural and thermochronologic constraints on skarn rare–metal mineralization in the Cenozoic Cuonadong Dome, Southern Tibet[J]. Journal of Asian Earth Sciences, 205: 104612. doi: 10.1016/j.jseaes.2020.104612

    CrossRef Google Scholar

    [14] Fu Jiangang, Li Guangming, Dong Suiliang, Zhang Hai, Guo Weikang, Zhang Linkui, Zhang Xiaoqiong, Jiao Yanjie. 2020. Identification and its significances of the Lalong Be–Nb–Ta–bearing albite granite in the Northern Himalaya, Tibet[J]. Sedimentary Geology and Tethyan Geology, 40(2): 91−103 (in Chinese with English abstract

    Google Scholar

    [15] Fu Jiangang, Li Guangming, Wang Genhou, Huang Yong, Zhang Linkui, Dong Suiliang, Liang Wei. 2018. Establishment of the North Himalayan double gneiss domes: Evidence from field identification of the Cuonadong dome, south Tibet[J]. Geology in China, 45(4): 783−802 (in Chinese with English abstract

    Google Scholar

    [16] Guo Weikang, Li Guangming, Fu Jiangang, Zhang Hai, Zhang Linkui, Wu Jianyang, Dong Suiliang, Yang Yulin. 2023. Metallogenic epoch, magmatic evolution and metallogenic significance of the Gabo lithium pegmatite deposit, Himalayan metallogenic belt, Tibet[J]. Earth Science Frontiers, 30(5): 275−297 (in Chinese with English abstract

    Google Scholar

    [17] Hou Zengqian, Mo Xuanxue, Yang Zhiming, Wang Anjian, Pan Guitang, Qu Xiaoming, Nie Fengjun. 2006a. Metallogeneses in the collisional orogen of the Qinghai–Tibet Plateau: Tectonic setting, tempo–spatial distribution and ore deposit types[J]. Geology in China, 33(2): 340−351 (in Chinese with English abstract

    Google Scholar

    [18] Hou Zengqian, Qu Xiaoming, Yang Zhusen, Meng Xiangjin, Li Zhenqing, Yang Zhiming, Zheng Mianping, Zheng Youye, Nie Fengjun, Gao Yongfeng, Jiang Sihong, Li Guangming. 2006b. Metallogenesis in Tibetan collisional orogenic belt: Ⅲ. Mineralization in post–collisional extension setting[J]. Mineral Deposits, 25(6): 629−651 (in Chinese with English abstract).

    Google Scholar

    [19] Jackson S, Pearson N, Griffin W, Belousova E. 2004. The application of laser ablation–inductively coupled plasma–mass spectrometry to in situ U–Pb zircon geochronology[J]. Chemical Geology, 211(1): 47−69.

    Google Scholar

    [20] Jessup M J, Langille J, Cottle J, Ahmad T. 2016. Crustal thickening, Barrovian metamorphism, and exhumation of midcrustal rocks during doming and extrusion: Insights from the Himalaya, NW India[J]. Tectonics, 35(1): 160−186. doi: 10.1002/2015TC003962

    CrossRef Google Scholar

    [21] Jiao Yanjie, Huang Xuri, Li Guangming, Fu Jiangang, Liang Shenxian, Guo Jing. 2023. Prospecting methods and deep geological setting of the Gabo pegmatite lithium deposit in the Himalayan metallogenic belt[J]. Earth Science Frontiers, 30(5): 255−264 (in Chinese with English abstract).

    Google Scholar

    [22] Kawakami T, Aoya M, Wallis S, Lee J, Terada K, Wang Y, Heizler M. 2007. Contact metamorphism in the Malashan dome, North Himalayan gneiss domes, southern Tibet: An example of shallow extensional tectonics in the Tethys Himalaya[J]. Journal of Metamorphic Geology, 25(8): 831−853. doi: 10.1111/j.1525-1314.2007.00731.x

    CrossRef Google Scholar

    [23] Langille J M, Jessup M J, Cottle J M, Lederer G, Ahmad T. 2012. Timing of metamorphism, melting and exhumation of the Leo Pargil dome, northwest India[J]. Journal of Metamorphic Geology, 30(8): 769−791. doi: 10.1111/j.1525-1314.2012.00998.x

    CrossRef Google Scholar

    [24] Langille J, Lee J, Hacker B, Seward G. 2010. Middle crustal ductile deformation patterns in southern Tibet: Insights from vorticity studies in Mabja Dome[J]. Journal of Structural Geology, 32(1): 70−85. doi: 10.1016/j.jsg.2009.08.009

    CrossRef Google Scholar

    [25] Lee J, Hacker B, Wang Y. 2004. Evolution of North Himalayan gneiss domes: Structural and metamorphic studies in Mabja Dome, southern Tibet[J]. Journal of Structural Geology, 26(12): 2297−2316. doi: 10.1016/j.jsg.2004.02.013

    CrossRef Google Scholar

    [26] Lee J, Hager C, Wallis S, Stockli D, Whitehouse M, Aoya M, Wang Y. 2011. Middle to Late Miocene extremely rapid exhumation and thermal reequilibration in the Kung Co rift, southern Tibet[J]. Tectonics, 30(2): 1−26.

    Google Scholar

    [27] Li Guangming, Fu Jiangang, Guo Weikang, Zhang Hai, Zhang Linkui, Dong Suiliang, Li Yingxu, Wu Jianyang, Jiao Yanjie, Jin Canhai, Huang Chunmei. 2022. Discovery of the Gabo granitic pegmatite–type lithium deposit in the Kulagangri Dome, eastern Himalayan metallogenic belt, and its prospecting implication[J]. Acta Petrologica et Mineralogica, 41(6): 1109−1119 (in Chinese with English abstract

    Google Scholar

    [28] Li Guangming, Zhang Linkui, Jiao Yanjie, Xia Xiangbiao, Dong Suiliang, Fu Jiangang, Liang Wei, Zhang Zhi, Wu Jianyang, Dong Lei, Huang Yong. 2017. First discovery and implications of Cuonadong superlarge Be–W–Sn polymetallic deposit in Himalayan metallogenic belt, southern Tibet[J]. Mineral Deposits, 36(4): 1003−1008 (in Chinese with English abstract).

    Google Scholar

    [29] Li Guangming, Zhang Linkui, Zhang Zhi, Xia Xiangbiao, Liang Wei, Hou Chunqiu. 2021. New exploration progresses, resource potentials and prospecting targets of strategic minerals in the southern Qinghai–Tibet Plateau[J]. Sedimentary Geology and Tethyan Geology, 41(2): 351−360 (in Chinese with English abstract).

    Google Scholar

    [30] Liang Wei, Liang Guangming, Basang Yuandan, Zhang Linkui, Fu Jiangang, Huang Yong, Zhang Zhi, Wang Yiyun, Cao Huawen. 2021. Metallogenesis of Himalaya gneiss dome: An example from Cuonadong gneiss dome in Zhaxikang ore concentration area[J]. Mineral Deposits, 40(5): 932−948 (in Chinese with English abstract).

    Google Scholar

    [31] Liu Chen, Wang Rucheng, Wu Fuyuan, Xie Lei, Liu Xiaochi. 2021. First report of elbaite–lepidolite subtype pegmatite in the Himalaya leucogranite belt[J]. Acta Petrologica Sinica, 37(11): 3287−3300 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.03

    CrossRef Google Scholar

    [32] Liu Xiaochi, Wu Fuyuan, Wang Rucheng, Liu Zhichao, Wang Jiamin, Liu Chen, Hu Fangyang, Yang Lei, He Shaoxiong. 2021. Discovery of spodumene–bearing pegmatites from Ra Chu in the Mount Qomolangma region and its implications for studying rare metal mineralization in the Himalayan orogen[J]. Acta Petrologica Sinica, 37(11): 3295−3304 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.04

    CrossRef Google Scholar

    [33] Liu Z C, Wu F Y, Ding L, Liu X C, Wang J G, Ji W Q. 2016. Highly fractionated Late Eocene (−35 Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet[J]. Lithos, 240–243: 337–354.

    Google Scholar

    [34] Liu Z C, Wu F Y, Liu X C, Wang J G, Yin R, Qiu Z L, Ji W Q, Yang L. 2019. Mineralogical evidence for fractionation processes in the Himalayan leucogranites of the Ramba Dome, southern Tibet[J]. Lithos, 340–341: 71–86.

    Google Scholar

    [35] Lu Rukui, Zhong Huaming, Tong Jinsong, Xia Jun, Li Yunhuai. 2005. Tectonic deformation features of the detachment fault in Luozha area, Tibet[J]. Geotectonica et Metallogenia, 29(2): 189−197 (in Chinese with English abstract).

    Google Scholar

    [36] Mo Ruwei, Sun Xiaoming, Zhai Wei, Zhou Feng, Liang Yeheng. 2013. Ore–forming fuid geochemistry and metallogenic mechanism from Mazhala gold–antimony deposit in southern Tibet, China[J]. Acta Petrologica Sinica, 29(4): 1427−1438 (in Chinese with English abstract).

    Google Scholar

    [37] Nie Fengjun, Hu Peng, Jiang Sihong, Li Zhenqing, Liu Yan, Zhou Yongzhang. 2005. Type and temporal–spatial distribution of gold and antimony deposits (prospects)in Southern Tibet, China[J]. Acta Geologica Sinica, 79(3): 373−385 (in Chinese with English abstract).

    Google Scholar

    [38] Qi Xuexiang, Li Tianfu, Meng Xiangjin, Yu Chunlin. 2008. Cenozoic tectonic evolution of the Tethyan Himalayan foreland fault–fold belt in southern Tibet, and its constraint on antimony–gold polymetallic minerogenesis[J]. Acta Petrologica Sinica, 24(7): 1638−1648 (in Chinese with English abstract).

    Google Scholar

    [39] Qin Kezhang, Zhao Junxing, He Changtong, Shi Ruizhe. 2021. Discovery of the Qongjiagang giant lithium pegmatite deposit in Himalaya. Tibet, China[J]. Acta Petrologica Sinica, 37(11): 3277−3286 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.02

    CrossRef Google Scholar

    [40] Qing Chengshi, Ding Jun, Li Yingxu, Dong Lei, Dai Zuowen. 2014. Element combination anomalies and prospecting direction in Mazhala gold–antimony deposit[J]. Metal Mine, (12): 134−137 (in Chinese with English abstract).

    Google Scholar

    [41] Wagner T, Lee J, Hacker B, Seward G. 2010. Kinematics and vorticity in Kangmar Dome, southern Tibet: Testing midcrustal channel flow models for the Himalaya[J]. Tectonics, 29(6): 1−26.

    Google Scholar

    [42] Wang Rucheng, Wu Fuyuan, Xie Lei, Liu Xiaochi, Wang Jiamin, Yang Lei, Lai Wen, Liu Chen. 2017. A preliminary study of rare–metal mineralization in the Himalayan leucogranite belts, South Tibet[J]. Science China Earth Sciences, 60(9): 1655−1663. doi: 10.1007/s11430-017-9075-8

    CrossRef Google Scholar

    [43] Wu Fuyuan, Guo Chunli, Hu Fangyang, Liu Xiaochi, Zhao Junxing, Li Xiaofeng, Qin Kezhang. 2023. Petrogenesis of the highly fractionated granites and their mineralizations in Nanling Range, South China[J]. Acta Petrologica Sinica, 39(1): 1−36 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.01.01

    CrossRef Google Scholar

    [44] Wu Fuyuan, Liu Zhichao, Liu Xiaochi, Ji Weiqiang. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift[J]. Acta Petrologica Sinica, 31(1): 1−36 (in Chinese with English abstract).

    Google Scholar

    [45] Wu Fuyuan, Wang Rucheng, Liu Xiaochi, Xie Lei. 2021. New breakthroughs in the studies of Himalayan rare–metal mineralization[J]. Acta Petrologica Sinica, 37(11): 3261−3276 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.01

    CrossRef Google Scholar

    [46] Wu F Y, Liu X C, Ji W Q, Wang J M, Yang L. 2017. Highly fractionated granites: Recognition and research[J]. Science China Earth Sciences, 60(7): 1201−1219. doi: 10.1007/s11430-016-5139-1

    CrossRef Google Scholar

    [47] Xie Lei, Wang Rucheng, Tian Ennong, Liu Zhichao, Liu Xiaochi, Cheng Feiyue, Hu Huan, Che Xudong, Liu Chen. 2021. Oligocene Nb–Ta–W–mineralization related to the Xiaru leucogranite in the Himalayan Orogen[J]. Chinese Science Bulletin, 66: 4574−4591 (in Chinese with English abstract). doi: 10.1360/TB-2021-0546

    CrossRef Google Scholar

    [48] Yang Z S, Hou Z Q, Meng X J, Liu Y C, Fei H C, Tian S H, Li Z Q, Gao W. 2009. Post–collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogen[J]. Ore Geology Reviews, 36(1/3): 194−212.

    Google Scholar

    [49] Yang Zhusen, Hou Zengqian, Gao Wei, Wang Haiping, Li Zhenqing, Meng Xiangjin, Qu Xiaoming. 2006. Metallogenic characteristics and genetic model of antiony and gold deposits in South Tibetan Detachment System[J]. Acta Geologica Sinica, 80(9): 1377−1391 (in Chinese with English abstract

    Google Scholar

    [50] Zhai W, Sun X M, Yi J Z, Zhang X G, Mo R W, Zhou F, Wei H X, Zeng Q G. 2014. Geology, geochemistry, and genesis of orogenic gold–antimony mineralization in the Himalayan Orogen, South Tibet, China[J]. Ore Geology Reviews, 58: 68−90. doi: 10.1016/j.oregeorev.2013.11.001

    CrossRef Google Scholar

    [51] Zhang J J, Santosh M, Wang X X, Guo L, Yang X Y, Zhang B. 2012. Tectonics of the northern Himalaya since the India–Asia collision[J]. Gondwana Research, 21(4): 939−960. doi: 10.1016/j.gr.2011.11.004

    CrossRef Google Scholar

    [52] Zhang Jinjiang, Guo Lei, Zhang Bo. 2007. Structure and kinematics of the Yalashanbo dome in the Northern Himalayan dome belt, China[J]. Chinese Journal of Geology, 42(1): 16−30 (in Chinese with English abstract).

    Google Scholar

    [53] Zhang Jinjiang, Yang Xiongying, Qi Guowei, Wang Dechao. 2011. Geochronology of the Malashan dome and its application in formation of the Southern Tibet detachment system (STDS) and Northern Himalayan gneiss domes (NHGD)[J]. Acta Petrologica Sinica, 27(12): 3535−3544 (in Chinese with English abstract

    Google Scholar

    [54] Zhao Junxing, He Changtong, Oin Kezhang, Shi Ruizhe, Liu Xiaochi, Hu Fangyang, Yu Kelong, Sun Zhenghao. 2021. Geochronology, source features and the characteristics of fractional crystallization in pegmatite at the Qiongjiagang giant pegmatite–type lithium deposit, Himalaya, Tibet[J]. Acta Petrologica Sinica, 37(11): 3325−3347 (in Chinese with English abstract doi: 10.18654/1000-0569/2021.11.06

    CrossRef Google Scholar

    [55] Zhou Qifeng, Qin Kezhang, He Changtong, Wu Huaying, Liu Yuchao, Niu Xianglong, Mo Lingchao, Liu Xiaochi, Zhao Junxing. 2021. Li–Be–Nb–Ta mineralogy of the Kuqu leucogranite and pegmatite in the Eastern Himalaya, Tibet, and its implication[J]. Acta Petrologica Sinica, 37(11): 3305−3324 (in Chinese with English abstract doi: 10.18654/1000-0569/2021.11.05

    CrossRef Google Scholar

    [56] 丁慧霞, 李文坛, 江媛媛. 2019. 喜马拉雅造山带东段错那洞片麻岩穹窿的变质作用及构造意义[J]. 岩石学报, 35(2): 312−324. doi: 10.18654/1000-0569/2019.02.03

    CrossRef Google Scholar

    [57] 付建刚, 李光明, 董随亮, 张海, 郭伟康, 张林奎, 梁维, 焦彦杰, 凌晨. 2022. 西藏拉隆穹窿淡色花岗岩中石榴子石矿物学研究及对岩浆–热液过程的指示[J]. 沉积与特提斯地质, 42(2): 288−299.

    Google Scholar

    [58] 付建刚, 李光明, 董随亮, 张海, 郭伟康, 张林奎, 张小琼, 焦彦杰. 2020. 西藏北喜马拉雅拉隆穹隆含Be、Nb、Ta钠长石花岗岩的识别及意义[J]. 沉积与特提斯地质, 40(2): 91−103.

    Google Scholar

    [59] 付建刚, 李光明, 郭伟康, 张海, 董随亮, 张林奎, 李应栩, 马国桃, 焦彦杰. 2024. 西藏库拉岗日穹窿次麦矽卡岩型锡铁铅锌多金属矿的发现及其意义[J]. 大地构造与成矿学, 48(4): 724−736.

    Google Scholar

    [60] 付建刚, 李光明, 郭伟康, 张海, 张林奎, 董随亮, 周利敏, 李应栩, 焦彦杰, 石洪召. 2023. 喜马拉雅成矿带嘎波锂矿铌铁矿族矿物学特征及对岩浆–热液过程的指示[J]. 地学前缘, 30(5): 134−150.

    Google Scholar

    [61] 付建刚, 李光明, 王根厚, 董随亮, 张海, 郭伟康, 张林奎, 张小琼, 焦彦杰. 2021. 西藏拉隆穹窿地质特征和Be–Nb–Ta稀有金属矿化的厘定及其战略意义[J]. 大地构造与成矿学, 45(5): 913−933.

    Google Scholar

    [62] 付建刚, 李光明, 王根厚, 黄勇, 张林奎, 董随亮, 梁维. 2018. 北喜马拉雅双穹隆构造的建立: 来自藏南错那洞穹隆的厘定[J]. 中国地质, 45(4): 783−802.

    Google Scholar

    [63] 郭伟康, 李光明, 付建刚, 张海, 张林奎, 吴建阳, 董随亮, 杨玉林. 2023. 喜马拉雅成矿带嘎波伟晶岩型锂矿成矿时代、岩浆演化及成矿指示意义[J]. 地学前缘, 30(5): 275−297.

    Google Scholar

    [64] 侯增谦, 莫宣学, 杨志明, 王安建, 潘桂棠, 曲晓明, 聂凤军. 2006a. 青藏高原碰撞造山带成矿作用: 构造背景、时空分布和主要类型[J]. 中国地质, 33(2): 340−351.

    Google Scholar

    [65] 侯增谦, 曲晓明, 杨竹森, 孟祥金, 李振清, 杨志明, 郑绵平, 郑有业, 聂凤军, 高永丰, 江思宏, 李光明. 2006b. 青藏高原碰撞造山带: Ⅲ. 后碰撞伸展成矿作用[J]. 矿床地质, 25(6): 629−651.

    Google Scholar

    [66] 焦彦杰, 黄旭日, 李光明, 付建刚, 梁生贤, 郭镜. 2023. 喜马拉雅成矿带嘎波伟晶岩型锂矿的找矿方法与深部背景研究[J]. 地学前缘, 30(5): 255−264.

    Google Scholar

    [67] 李光明, 付建刚, 郭伟康, 张海, 张林奎, 董随亮, 李应栩, 吴建阳, 焦彦杰, 金灿海, 黄春梅. 2022. 西藏喜马拉雅成矿带东段嘎波伟晶岩型锂矿的发现及其意义[J]. 岩石矿物学杂志, 41(6): 1109−1119.

    Google Scholar

    [68] 李光明, 张林奎, 焦彦杰, 夏祥标, 董随亮, 付建刚, 梁维, 张志, 吴建阳, 董磊, 黄勇. 2017. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J]. 矿床地质, 36(4): 1003−1008.

    Google Scholar

    [69] 李光明, 张林奎, 张志, 夏祥标, 梁维, 侯春秋. 2021. 青藏高原南部的主要战略性矿产: 勘查进展、资源潜力与找矿方向[J]. 沉积与特提斯地质, 41(2): 351−360.

    Google Scholar

    [70] 梁维, 李光明, 巴桑元旦, 张林奎, 付建刚, 黄勇, 张志, 王艺云, 曹华文. 2021. 喜马拉雅带片麻岩穹窿成矿作用——以扎西康矿集区错那洞穹窿为例[J]. 矿床地质, 40(5): 932−948.

    Google Scholar

    [71] 刘晨, 王汝成, 吴福元, 谢磊, 刘小驰. 2021. 珠峰地区锂成矿作用: 喜马拉雅淡色花岗岩带首个锂电气石–锂云母型伟晶岩[J]. 岩石学报, 37(11): 3287−3300.

    Google Scholar

    [72] 刘小驰, 吴福元, 王汝成, 刘志超, 王佳敏, 刘晨, 胡方泱, 杨雷, 何少雄. 2021. 珠峰地区热曲锂辉石伟晶岩的发现及对喜马拉雅稀有金属成矿作用研究的启示[J]. 岩石学报, 37(11): 3295−3304.

    Google Scholar

    [73] 鲁如魁, 钟华明, 童劲松, 夏军, 李运怀. 2005. 西藏洛扎地区拆离断层构造变形特征[J]. 大地构造与成矿学, 29(2): 189−197.

    Google Scholar

    [74] 莫儒伟, 孙晓明, 翟伟, 周峰, 梁业恒. 2013. 藏南马扎拉金锑矿床成矿流体地球化学和成矿机制[J]. 岩石学报, 29(4): 1427−1438.

    Google Scholar

    [75] 聂凤军, 胡朋, 江思宏, 李振清, 刘妍, 周永章. 2005. 藏南地区金和锑矿床(点)类型及其时空分布特征[J]. 地质学报, 79(3): 373−385. doi: 10.3321/j.issn:0001-5717.2005.03.009

    CrossRef Google Scholar

    [76] 戚学祥, 李天福, 孟祥金, 于春林. 2008. 藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用[J]. 岩石学报, 24(7): 1638−1648.

    Google Scholar

    [77] 秦克章, 赵俊兴, 何畅通, 施睿哲. 2021. 喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义[J]. 岩石学报, 37(11): 3277−3286. doi: 10.18654/1000-0569/2021.11.02

    CrossRef Google Scholar

    [78] 卿成实, 丁俊, 李应栩, 董磊, 代作文. 2014. 马扎拉金锑矿元素组合异常及找矿方向[J]. 金属矿山, (12): 134−137.

    Google Scholar

    [79] 王汝成, 吴福元, 谢磊, 刘小池, 王佳敏, 杨雷, 赖文, 刘晨. 2017. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学: 地球科学, 47(8): 871−880.

    Google Scholar

    [80] 吴福元, 郭春丽, 胡方泱, 刘小驰, 赵俊兴, 李晓峰, 秦克章. 2023. 南岭高分异花岗岩成岩与成矿[J]. 岩石学报, 39(1): 1−36.

    Google Scholar

    [81] 吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 47(7): 745−765.

    Google Scholar

    [82] 吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩[J]. 岩石学报, 31(1): 1−36.

    Google Scholar

    [83] 吴福元, 王汝成, 刘小驰, 谢磊. 2021. 喜马拉雅稀有金属成矿作用研究的新突破[J]. 岩石学报, 37(11): 3261−3276. doi: 10.18654/1000-0569/2021.11.01

    CrossRef Google Scholar

    [84] 谢磊, 王汝成, 田恩农, 刘志超, 吴福元, 刘小驰, 程飞越, 胡欢, 车旭东, 刘晨. 2021. 喜马拉雅夏如渐新世淡色花岗岩铌钽钨成矿作用[J]. 科学通报, 66(35): 4574−4591.

    Google Scholar

    [85] 杨竹森, 侯增谦, 高伟, 王海平, 李振清, 孟祥金, 曲晓明. 2006. 藏南拆离系锑金成矿特征与成因模式[J]. 地质学报, 80(9): 1377−1391. doi: 10.3321/j.issn:0001-5717.2006.09.013

    CrossRef Google Scholar

    [86] 张进江, 郭磊, 张波. 2007. 北喜马拉雅穹隆带雅拉香波穹隆的构造组成和运动学特征[J]. 地质科学, 42(1): 16−30. doi: 10.3321/j.issn:0563-5020.2007.01.003

    CrossRef Google Scholar

    [87] 张进江, 杨雄英, 戚国伟, 王德朝. 2011. 马拉山穹窿的活动时限及其在藏南拆离系–北喜马拉雅片麻岩穹窿形成机制的应用[J]. 岩石学报, 27(12): 3535−3544.

    Google Scholar

    [88] 赵俊兴, 何畅通, 秦克章, 施睿哲, 刘小驰, 胡方泱, 余可龙, 孙政浩. 2021. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代、源区特征及分异特征[J]. 岩石学报, 37(11): 3325−3347. doi: 10.18654/1000-0569/2021.11.06

    CrossRef Google Scholar

    [89] 周起凤, 秦克章, 何畅通, 吴华英, 刘宇超, 牛向龙, 莫凌超, 刘小驰, 赵俊兴. 2021. 喜马拉雅东段库曲岩体锂、铍和铌钽稀有金属矿物研究及指示意义[J]. 岩石学报, 37(11): 3305−3324. doi: 10.18654/1000-0569/2021.11.05

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(1)

Article Metrics

Article views(18) PDF downloads(1) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint