2024 Vol. 51, No. 5
Article Contents

WEI Shuaichao, ZHANG Wei, FU Yong, LIU Feng, YUAN Ruoxi, YAN Xiaoxue, LIAO Yuzhong, WANG Guiling. 2024. Distribution characteristics and resource potential evaluation of lithium in geothermal water in China[J]. Geology in China, 51(5): 1527-1553. doi: 10.12029/gc20230214001
Citation: WEI Shuaichao, ZHANG Wei, FU Yong, LIU Feng, YUAN Ruoxi, YAN Xiaoxue, LIAO Yuzhong, WANG Guiling. 2024. Distribution characteristics and resource potential evaluation of lithium in geothermal water in China[J]. Geology in China, 51(5): 1527-1553. doi: 10.12029/gc20230214001

Distribution characteristics and resource potential evaluation of lithium in geothermal water in China

    Fund Project: Supported by the projects of China Geological Survey (No.DD20221676, No.DD20190379), National Key Research and Development Program (No.2021YFC2901905), Basic Research Fees of the Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences (No.sk202212).
More Information
  • Author Bio: WEI Shuaichao, male, born in 1992, assistant researcher, mainly engaged in geothermal geology and geochemistry; E-mail: chinascience@163.com
  • Corresponding author: WANG Guiling, male, born in 1964, researcher, mainly engaged in geothermal resources evaluation biomedical processing, utilization of geothermal water resources at deep crust; E-mail: guilingw@163.com.
  • This paper is the result of mineral exploration engineering.

    Objective

    In recent years, lithium has become a key mineral in the world's major economies, as demand has grown rapidly in the emerging and low−carbon technology industries. Especially under the "carbon peaking and carbon neutrality" goals, the demand for lithium resources is also becoming more urgent in China, but the security of lithium supply seriously restricts the development of new energy industry. At present, our lithium resources are mainly developed by the brine type and pegmatite type, but the geothermal brine type also has a certain resource potential. Therefore, it is necessary to study the distribution characteristics of lithium element in geothermal water.

    Methods

    Based on the results of investigation and study of geothermal water in China by predecessors, this paper introduces and discusses the distribution characteristics of lithium content in geothermal water, influencing factors, lithium extraction technology of geothermal water and geothermal exploration technology.

    Results

    We analyzed the lithium content of geothermal water in the main heat storage of 30 provinces and cities, and actually calculated that the annual discharge of lithium metal in the 1989 geothermal water was 789 t, and estimated that the annual discharge of lithium metal in the geothermal water was 3233 t, indicating that the geothermal water lithium resources have certain potential.

    Conclusions

    It is found that the main factors influencing the lithium content of geothermal water are the characteristics of surrounding rocks and thermal reservoir rocks, temperature, water−rock interaction, etc. It is also found that lithium isotopes have good potential in tracing the sources of geothermal systems, water−rock interactions, and material sources in continental areas. Lithium−rich geothermal water enrichment mechanism in China is mainly divided into the Himalayan geothermal belt type and Sichuan basin type, the former is related to the type in the crust remelting magma upwelling, while the latter is related to the dissolution and filtration of gypsum and halite in the strata. In addition, it is pointed out that the future prospecting direction of lithium−rich geothermal water in China will be concentrated in the Tibetan Plateau, Sichuan Basin, Jianghan Basin and oil (gas) field water. "Simultaneous exploration of geothermal water and lithium" and "simultaneous mining of geothermal water and lithium" to maximize the utilization of resources, and multiple geothermal exploration technologies will also contribute to the development of geothermal industry.

  • 加载中
  • [1] Alessia A, Alessandro B, Maria V, Carlos V, Francesca B. 2021. Challenges for sustainable lithium supply: A critical review[J]. Journal of Cleaner Production, 300(1): 126954.

    Google Scholar

    [2] Arnórsson S, Andrésdóttir A. 1995. Processes controlling the distribution of boron and chlorine in natural waters in Iceland[J]. Geochimica et Cosmochimica Acta, 59(20): 4125−4146. doi: 10.1016/0016-7037(95)00278-8

    CrossRef Google Scholar

    [3] Bernal N F, Gleeson S A, Dean A S, Liu Xiaoming, Hoskin P. 2014. The source of halogens in geothermal fluids from the Taupo Volcanic Zone, North Island, New Zealand[J]. Geochimica et Cosmochimica Acta, 126(2): 265−283.

    Google Scholar

    [4] Bloomquist G R. 2006. Economic benefits of mineral extraction from geothermal brines[J]. Geothermal Resources Council Transactions, 30: 579−582.

    Google Scholar

    [5] Brenan J M, Ryerson F J, Shaw H F. 1998. The role of aqueous fluids in the slab–to–mantle transfer of boron, beryllium, and lithium during subduction: Experiments and models[J]. Geochimica et Cosmochimica Acta, 62(19): 3337−3347.

    Google Scholar

    [6] Caciagli N, Brenan J M, Mcdonough W F, Phinney D. 2011. Mineral–fluid partitioning of lithium and implications for slab–mantle interaction[J]. Chemical Geology, 280(3/4): 384−398.

    Google Scholar

    [7] Cai Zhuang. 2020. Genetic Model Analysis of Paleogene Geothermal System in Yitong Basin[D]. Changchun: Jilin University, 1–61 (in Chinese with English abstract).

    Google Scholar

    [8] Chai Rui. 2006. A Study of Hydrochemistry and Tufa in Thermal Groundwater in the Zhouliangzhuang Geothermal Fileld, Tianjin[D]. Beijing: China University of Geosciences, 1–72 (in Chinese with English abstract).

    Google Scholar

    [9] Chen Gang, Wan Junwei, Guo Peng, Liu Hong. 2013. Analysis for the formation cause of Dongnaoke hot spring in Zhonglu Township, Lichuan, Hubei Province[J]. Geological Science and Technology Information, 32(4): 196−200 (in Chinese with English abstract).

    Google Scholar

    [10] Chen Moxiang. 1992. Advances of studies of geothermal resources in China[J]. Advance in Earth Sciences, 7(3): 9−14 (in Chinese with English abstract).

    Google Scholar

    [11] Chen Yanjing, Xue Lizhi, Wang Xiaolei, Zhao Zhongbao, Han Jinsheng, Zhou Kefa. 2021. Progress in geological study of pegmatite–type lithium deposits in the world[J]. Acta Geologica Sinica, 95(10): 2971−2995 (in Chinese with English abstract).

    Google Scholar

    [12] Chen Zhengshan. 2021. The Formation Mechanism of Physiotherapy Thermomineral Water (Hot Spring) in Guizhou and Its Effect on Human Health[D]. Guizhou: Guizhou University, 1–213 (in Chinese with English abstract).

    Google Scholar

    [13] Christmann P, Gloaguen E, Jean–Franois L, Piantone P. 2015. Global Lithium Resources and Sustainability Issues[M]. Lithium Process Chemistry, 1–40.

    Google Scholar

    [14] Clergue C, Dellinger M, Buss H L, Benedetti M F, Dessert C. 2015. Influence of atmospheric deposits and secondary minerals on Li isotopes budget in a highly weathered catchment, Guadeloupe (Lesser Antilles)[J]. Chemical Geology, 414: 28−41. doi: 10.1016/j.chemgeo.2015.08.015

    CrossRef Google Scholar

    [15] Craig H. 1961. Isotopic variations in meteoric waters[J]. Science, 133(3465): 1702−1703. doi: 10.1126/science.133.3465.1702

    CrossRef Google Scholar

    [16] Coogan L A, Kasemann S A, Chakraborty S. 2005. Rates of hydrothermal cooling of new oceanic upper crust derived from lithium–geospeedometry[J]. Earth and Planetary Science Letters, 240(2): 415−424. doi: 10.1016/j.jpgl.2005.09.020

    CrossRef Google Scholar

    [17] Cui Yugui. 2021. Geological Characteristics and Formation Mechanism of Geothermal Resources in Huanglin Area, Yudu, Jiangxi[D]. Beijing: China University of Geosciences, 1–76 (in Chinese with English abstract).

    Google Scholar

    [18] Cullen J T. 2020. Chemistry–Isotopes–Yellowstone[DB/OL]. Texas Data Repository. Retrieved from https://doi.org/10.18738/T8/ULLRE3.

    Google Scholar

    [19] Deng Junzu. 2022. Chemical Characteristics and Genetic Analysis of Geothermal Water in Carbonate Reservoir in the Northern Jizhong Depression[D]. Nanchang: East China University of Technology, 1–61 (in Chinese with English abstract).

    Google Scholar

    [20] Duo Ji. 2003. The basic characteristics of the Yangbajing geothermal field: A typical high temperature geothermal system[J]. Engineering Science, 5(1): 42−47 (in Chinese with English abstract).

    Google Scholar

    [21] Gao Juanqin, Wang Denghong, Wang Wei, Yu Feng, Yu Yang. 2019. Current status and prospects of lithium extraction in major domestic and foreign oil gas) field waters[J]. Acat Geologica Sinica, 93(6): 1489−1500 (in Chinese with English abstract).

    Google Scholar

    [22] Giggenbach W F. 1992. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin[J]. Earth and Planetary Science Letters, 113: 495−510. doi: 10.1016/0012-821X(92)90127-H

    CrossRef Google Scholar

    [23] Godfrey L V, Chan L H, Alonso R N, Lowenstein T K, McDonough W F, Houston J, Li J, Bobst A, Jordan T E. 2013. The role of climate in the accumulation of lithium–rich brine in the Central Andes[J]. Applied Geochemistry, 38: 92−102. doi: 10.1016/j.apgeochem.2013.09.002

    CrossRef Google Scholar

    [24] Gu Xiaomin. 2017. Geochemical Characteristics and Evolution Mechanism of Thermal and Mineral Springs in Arxan, North Eastern China[D]. Beijing: China University of Geosciences, 1–132 (in Chinese with English abstract).

    Google Scholar

    [25] Guo Q H, Wang Y X, Liu W. 2010. O, H, and Sr isotope evidences of mixing processes in two geothermal fluid reservoirs at Yangbajing, Tibet, China[J]. Environmental Earth Sciences, 59(7): 1589−1597. doi: 10.1007/s12665-009-0145-y

    CrossRef Google Scholar

    [26] Guo Q H, Liu M L, Li J X, Zhang X B, Guo W, Wang Y X. 2017. Fluid geochemical constraints on the heat source and reservoir temperature of the Banglazhang hydrothermal system, Yunnan–Tibet Geothermal Province, China[J]. Journal of Geochemical Exploration, 172: 109−119. doi: 10.1016/j.gexplo.2016.10.012

    CrossRef Google Scholar

    [27] Guo Qinghai. 2022. Definition of magma–impacted geothermal system[J]. Acta Geologica Sinica, 96(1): 208−214 (in Chinese with English abstract). doi: 10.1111/1755-6724.14801

    CrossRef Google Scholar

    [28] Guo Weiming, Ma Shengchao, Sun Yan, Zhao Zhi, Zhong Hairen, Yao Leishan. 2019. Characteristics and significance of rare metal mineralization in hot–springs of Tengchong area, Yunnan[J]. Acta Geologica Sinica, 93(6): 1321−1330 (in Chinese with English abstract).

    Google Scholar

    [29] He M Y, Luo C G, Yang H J, Kong F C, Li Y L, Deng L, Zhang X Y, Yang K Y. 2020. Sources and a proposal for comprehensive exploitation of lithium brine deposits in the Qaidam Basin on the northern Tibetan Plateau, China: Evidence from Li isotopes[J]. Ore Geology Reviews, 117: 103277. doi: 10.1016/j.oregeorev.2019.103277

    CrossRef Google Scholar

    [30] Huh Y, Chan L, Zhang Libo, Edmond J M. 1998. Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget[J]. Geochimica et Cosmochimica Acta, 62: 2039−2051. doi: 10.1016/S0016-7037(98)00126-4

    CrossRef Google Scholar

    [31] Ighalo J O, Amaku J F, Olisah C, Adeola A O, Iwuozor K O, Akpomie K G, Conradie J, Adegoke K A, Oyedotun K O. 2022. Utilisation of adsorption as a resource recovery technique for lithium in geothermal water[J]. Journal of Molecular Liquids, 365: 120107. doi: 10.1016/j.molliq.2022.120107

    CrossRef Google Scholar

    [32] Jeffers K, Renew J, Muto A, McCabe K. 2017. Lithium extraction from low temperature geothermal brines with integrated thermoelectric generation[J]. GRC Transactions, 41: 1−16.

    Google Scholar

    [33] Jiang H X, Yang Y, Sun S Y, Yu J G. 2019. Adsorption of lithium ions on lithium–aluminum hydroxides: Equilibrium and kinetics[J]. The Canadian Journal of Chemical Engineering, 98: 544−555.

    Google Scholar

    [34] Li Boyang, Jiang Dawei, Fu Xu, Wang Lei, Gao Shuqi, Fan Zhiyong, Wang Kexiang, Huge Jiletu. 2018. Geological characteristics and prospecting significance of Weilasituo li polymetallic deposit, Inner Mongolia[J]. Mineral Exploration, 9(6): 1185−1191 (in Chinese with English abstract).

    Google Scholar

    [35] Li Jiankang, Liu Xifang, Wang Denghong. 2014. The metallogenetic regularity of lithium deposit in China[J]. Acta Geologica Sinica, 88(12): 2269−2282 (in Chinese with English abstract).

    Google Scholar

    [36] Li L, Deshmane V G, Paranthaman M P, Bhave R, Moyer B A, Harrison S. 2018. Lithium recovery from aqueous resources and batteries: A brief review[J]. Johnson Matthey Technology Review, 62(2): 161−176. doi: 10.1595/205651317X696676

    CrossRef Google Scholar

    [37] Li Lele. 2016. Research on the Preservative Law and Genetic Model of Geothermal Resources in Guide Basin, Qinghai Province[D]. Nanchang: East China Institute of Technology, 1–59 (in Chinese with English abstract).

    Google Scholar

    [38] Li Mingli. 2018. Genesis and Efficacy of the Typical therapy Geothermal Mineral Spring, Tibet[D]. Chengdu: Chengdu University of Technology, 1–135 (in Chinese with English abstract).

    Google Scholar

    [39] Li Na. 2020. A Study of the Characteristics and Genesis of the Hot Springs and Salty Springs in the Xichang Area of Sichuan[D]. Beijing: China University of Geosciences, 1–81 (in Chinese with English abstract).

    Google Scholar

    [40] Li Xiaolu. 2017. Hydrochemical Characteristics and Formation of the Niujie Hot Springs in Eryuan County of Yunna[D]. Beijing: China University of Geosciences, 1–64 (in Chinese with English abstract).

    Google Scholar

    [41] Li Yiming. 2019. Characteristics and Resource Evaluation of Geothermal Resources in Zhaoxing Town, Luobei County, Heilongjiang Province[D]. Changchun: Jilin University, 1–77 (in Chinese with English abstract).

    Google Scholar

    [42] Li Yixin, Jiang Lili, Wang Chao, Wang Ying, Li Bonan, Zhang Yuan, Zhao Xiaoshu, Zhang Yanlong, Liu Maochuan, Zhang Yong. 2022. Application of 3D visualization technology in geothermal resources development in Shenbei basin[J]. Geology and Resources, 31(1): 76−80 (in Chinese with English abstract).

    Google Scholar

    [43] Li Yongge. 2016. Hydrogeochemical Characteristics and Its Origin Analysis of Geothermal Water in the Qia Bu−qia Area, GongHe Basin, QingHai Province[D]. Nanchang: East China Institute of Technology, 1–75 (in Chinese with English abstract).

    Google Scholar

    [44] Li Zhengqing, Hou Zengqian, Nie Fengjun, Meng Xiangjin. 2005. Characteristic and distribution of the partial melting layers in the upper crust: Evidence from active hydrothermal fluid in the South Tibet[J]. Acta Geologica Sinica, 79(1): 68−77 (in Chinese with English abstract).

    Google Scholar

    [45] Liu Chenglin, Yu Xiaocan, Yuan Xueying, Li Ruiqin, Yao Fojun, Shen Lijian, Li Qiang, Zhao Yuanyi. 2021. Characteristics, distribution regularity and formation model of brine–type Li deposits in salt lakes in the world[J]. Acta Geologica Sinica, 95(7): 2009−2029 (in Chinese with English abstract).

    Google Scholar

    [46] Liu Jie. 2013. The Geochemical Character of Geothermal Liquid in TianJin Area[D]. Beijing: China University of Geosciences, 1–72 (in Chinese with English abstract).

    Google Scholar

    [47] Liu Mingliang. 2015. A Comparison of Geochemistry in Geothermal System with Different Heat Source: As Gonghe Geothermal Field in Qinhai Province and Rehai Geothermal Field in Yunnan Province for Example[D]. Wuhan: China University of Geosciences, 1–73 (in Chinese with English abstract).

    Google Scholar

    [48] Liu Yu. 2020. A Study of the Hydrochemistry and Genesis of Hot Springs in the Mangshi–Ruili Area of Yunnan[D]. Beijing: China University of Geosciences, 1–78 (in Chinese with English abstract).

    Google Scholar

    [49] Liu Z, Deng Z, He G, Wang H L, Zhang X, Lin J, Qi Y, Liang X. 2022. Challenges and opportunities for carbon neutrality in China[J]. Nature Reviews Earth and Environment, 3: 141−155.

    Google Scholar

    [50] Liu Zhao. 2014. The Forming Mechanism of Typical High–temperature Geothermal Systems in Nimu–Naqu Geothermal Belt, Tibet[D]. Beijing: Chinese Academy of Geological Science, 1–102 (in Chinese with English abstract).

    Google Scholar

    [51] Lu Chang. 2019. Geochemical Characteristics of Fluid and Its Genesis in the Capital Area of China[D]. Beijing: Institute of Earthquake Science, China Earthquake Administration, 1–39 (in Chinese with English abstract).

    Google Scholar

    [52] Ma Rui. 2017. Water−rock Interaction and Genesis of Low−medium Temperature Thermal Groundwater in Carbonate Reservoir: A Case Study at Taiyuan, Shanxi[D]. Wuhan: China University of Geosciences, 1–144 (in Chinese with English abstract).

    Google Scholar

    [53] Ma Shengchao, Wang Denghong, Sun Yan, Li Chao, Zhong Hairen. 2019. Geochronology and geochemical characteristics of Lower–Middle Triassic clay rock and their significances for prospecting clay–type lithium deposit[J]. Earth Science, 44(2): 427−440 (in Chinese with English abstract).

    Google Scholar

    [54] Ma T T, Weynell M, Li S L, Liu Y S, Chetelat B, Zhong J, Xu S, Liu C Q. 2020. Lithium isotope compositions of the Yangtze River headwaters: Weathering in high–relief catchments[J]. Geochimica et Cosmochimica Acta, 280: 46−65. doi: 10.1016/j.gca.2020.03.029

    CrossRef Google Scholar

    [55] Ma Xin, Fu Lei, Li Tiefeng, Yan Jing, Liu Ting, Wang Mingguo, Shao Wei. 2021. Analysis of geothermal origin in eastern Himalayan syntaxis[J]. Geoscience, 35(1): 209−219 (in Chinese with English abstract).

    Google Scholar

    [56] Millot R, Négrel P. 2007. Multi–isotopic tracing (δ7Li, δ11B, 87Sr/86Sr) and chemical geothermometry: Evidence from hydro–geothermal systems in France[J]. Chemical Geology, 244(3/4): 664−678.

    Google Scholar

    [57] Millot R, Négrel P, Petelet–Giraud E. 2007. Multi–isotopic (Li, B, Sr, Nd) approach for geothermal reservoir characterization in the Limagne Basin (Massif Central, France)[J]. Applied Geochemistry, 22(11): 2307−2325. doi: 10.1016/j.apgeochem.2007.04.022

    CrossRef Google Scholar

    [58] Millot R, Scaillet B, Sanjuan B. 2010. Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach[J]. Geochimica Et Cosmochimica Acta, 74(6): 1852−1871. doi: 10.1016/j.gca.2009.12.007

    CrossRef Google Scholar

    [59] Millot R, Guerrot C, Innocent C, Négrel P, Sanjuan B. 2011. Chemical, multi–isotopic (Li–B–Sr–U–H–O) and thermal characterization of Triassic formation waters from the Paris Basin[J]. Chemical Geology, 283(3/4): 226−241.

    Google Scholar

    [60] Millot R, Hegan A, Négrel P. 2012. Geothermal waters from the Taupo volcanic zone, New Zealand: Li, B and Sr isotopes characterization[J]. Applied Geochemistry, 27(3): 677−688. doi: 10.1016/j.apgeochem.2011.12.015

    CrossRef Google Scholar

    [61] Misra S, Froelich P N. 2012. Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering[J]. Science, 335: 818−823. doi: 10.1126/science.1214697

    CrossRef Google Scholar

    [62] Nishio Y, Okamura K, Tanimizu M, Ishikawa T, Sano Y. 2010. Lithium and strontium isotopic systematics of waters around Ontake volcano, Japan: Implications for deep–seated fluids and earthquake swarms[J]. Earth and Planetary Science Letters, 74(3): 567−576.

    Google Scholar

    [63] Pang Z H, Kong Y L, Li J, Tian J. 2017. An isotopic geoindicator in the hydrological cycle[J]. Procedia Earth and Planetary Science, 17: 534−537. doi: 10.1016/j.proeps.2016.12.135

    CrossRef Google Scholar

    [64] Penniston–Dorland S, Liu X M, Rudnick R L. 2017. Lithium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 82(1): 165−217. doi: 10.2138/rmg.2017.82.6

    CrossRef Google Scholar

    [65] Qin Kezhang, Zhao Junxing, He Changtong, Shi Ruizhe. 2021. Discovery of the Qiongjiagang giant lithium pegmatite deposit in Himalaya, Tibet, China[J]. Acta Petrologica Sinica, 37(11): 3277−3286 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.02

    CrossRef Google Scholar

    [66] Razmjou A, Asadnia M, Hosseini E, Korayem A H, Chen V. 2019. Design principles of ion selective nanostructured membranes for the extraction of lithium ions[J]. Nature Communications, 10: 5793. doi: 10.1038/s41467-019-13648-7

    CrossRef Google Scholar

    [67] Sanjuan B, Millot R, Ásmundsson R, Brach M, Giroud N. 2014. Use of two new Na/Li geothermometric relationships for geothermal fluids in volcanic environments[J]. Chemical Geology, 389: 60−81. doi: 10.1016/j.chemgeo.2014.09.011

    CrossRef Google Scholar

    [68] Sanjuan B, Millot R, Innocent C, Dezayes C, Scheiber J, Brach M. 2016. Major geochemical characteristics of geothermal brines from the Upper Rhine Graben granitic basement with constraints on temperature and circulation[J]. Chemical Geology, 428: 27−47. doi: 10.1016/j.chemgeo.2016.02.021

    CrossRef Google Scholar

    [69] Sanjuan B, Gourcerol B, Millot R, Rettenmaier D, Jeandel E, Rombaut A. 2022. Lithium–rich geothermal brines in Europe: An up–date about geochemical characteristics and implications for potential Li resources[J]. Geothermics, 101: 102385. doi: 10.1016/j.geothermics.2022.102385

    CrossRef Google Scholar

    [70] Shi Zhuo. 2010. Resources Evaluation of Geothermal Field in Reshuizhen of Chifeng City, Inner Mongolia[M]. Changchun: Jilin University, 1–109 (in Chinese with English abstract).

    Google Scholar

    [71] Shu Liangshu, Zhu Wenbin, Xu Zhiqin. 2021. Geological settings and metallogenic conditions of the granite–type lithium ore deposits in South China[J]. Acta Geologica Sinica, 95(10): 3099−3114 (in Chinese with English abstract).

    Google Scholar

    [72] Somrani A, Hamzaoui A, Pontie M. 2013. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO)[J]. Desalination, 317(15): 184−192.

    Google Scholar

    [73] Song Liang, Sun Guoqiang, Cheng Jixing, Zhu Wanfeng, Wu Guodong, Xu Haizhou, Jiang Zhijun. 2022. Experimental study on soil geochemical method in the exploration of high temperature geothermal resources in Gulu geothermal field[J]. World Nuclear Geoscience, 39(2): 330−340 (in Chinese with English abstract).

    Google Scholar

    [74] Spasic A M, Manojlovic V, Jovanovic M. 2020. Solvent extraction and entrainment problem[J]. Metallurgical and Materials Engineering, 26(2): 163−175. doi: 10.30544/480

    CrossRef Google Scholar

    [75] Stringfellow W T, Dobson P F. 2021. Technology for the recovery of lithium from geothermal brines[J]. Energies, 14(20): 6805. doi: 10.3390/en14206805

    CrossRef Google Scholar

    [76] Su Pihui. 2020. Study on the Influence of Chongqing Dongquan Tunnel on Groundwater Envieonment of Tongjing Thermal Spring[D]. Chengdu: Southwest Jiaotong University, 1–107 (in Chinese with English abstract).

    Google Scholar

    [77] Sui Liai, Zhou Xun, Li Zhang, Xu Yanqiu, Jiang Zhe. 2022. Hydrochemical and isotopic characteristics and genesis of hot springs in the Chuhe fault zone, Anhui[J]. Geological Review, 68(3): 981−992 (in Chinese with English abstract).

    Google Scholar

    [78] Sun Hongli, Ma Feng, Lin Wenjing, Liu Zhao, Wang Guiling, Nan Dawa. 2015. Geochemical characteristics and geothermometer application in high temperature geothermal field in Tibet[J]. Geological Science and Technology Information, 34(3): 171−177 (in Chinese with English abstract).

    Google Scholar

    [79] Sun Yan, Gao Yun, Wang Denghong, Dai Hongzhang, Gu Wenshuai, Li Jian, Zhang Lihong. 2017. Zircon U–Pb dating of 'Mung Bean Rock' in the Tongliang area, Chongqing and its geological significance[J]. Rock and Mineral Analysis, 36(6): 649−658 (in Chinese with English abstract).

    Google Scholar

    [80] Tabelin C B, Dallas J, Casanova S, Pelech T, Bournival G, Saydam S, Canbulat I. 2021. Towards a low–carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives[J]. Minerals Engineering, 163: 106743. doi: 10.1016/j.mineng.2020.106743

    CrossRef Google Scholar

    [81] Tang Yanjie, Zhang Hongfu, Ying Jifeng. 2009. Discussion on fractionation mechanism of lithium isotopes[J]. Earth Science, 34(1): 43−55 (in Chinese with English abstract).

    Google Scholar

    [82] Tian Jiao, Li Yiman, Fan Yifan, Zhou Xiaocheng. 2022. Geochemical characteristics and circulation conceptual model of geothermal fluid in the Shenzao coastal hot springs in Guangdong Province[J]. Earth Science, 48(3): 894−907 (in Chinese with English abstract).

    Google Scholar

    [83] Tomascak P B, Hemming N G, Hemming S R. 2003. The lithium isotopic composition of waters of the Mono Basin, California[J]. Geochimica et Cosmochimica Acta, 67(4): 601−611. doi: 10.1016/S0016-7037(02)01132-8

    CrossRef Google Scholar

    [84] Tomascak P B. Magna T, Dohmen R. 2016. Advances in Lithium Isotope Geochemistry[M]. Springer, 1–194.

    Google Scholar

    [85] Tomaszewska B, Szczepański, A. 2014. Possibilities for the efficient utilisation of spent geothermal waters[J]. Environmental Science and Pollution Research, 21(19): 11409−11417. doi: 10.1007/s11356-014-3076-4

    CrossRef Google Scholar

    [86] Tong Wei, Zhang Mingtao. 1994. Thermal Springs in Hengduanshan Area[M]. Beijing: Science Press, 1–326 (in Chinese with English abstract).

    Google Scholar

    [87] Tong Wei, Liao Zhijie, Liu Shibin, Zhang Zhifei, Zhang Mingtao. 2000. Thermal Springs in Tibet[M]. Beijing: Science Press, 1–259 (in Chinese with English abstract).

    Google Scholar

    [88] Verney–Carron A, Vigier N, Millot R, Hardarson B S. 2015. Lithium isotopes in hydrothermally altered basalts from Hengill (SW Iceland)[J]. Earth and Planetary Science Letters, 411: 62−71. doi: 10.1016/j.jpgl.2014.11.047

    CrossRef Google Scholar

    [89] Wang Chenghui, Wang Denghong, Chen Chen, Liu Shanbao, Chen Zhenyu, Sun Yan, Zhao Chenhui, Cao Shenghua, Far Xiujun. 2019. Progress of research on the Shiziling rare meatals mineralization from Jiuling–type rock and its significance for prospecting[J]. Acta Geologica Sinica, 93(6): 1359−1373 (in Chinese with English abstract).

    Google Scholar

    [90] Wang D H, Dai H Z, Liu S B, Wang C H, Yang Y, Dai J J, Liu L J, Yang Y Q, Ma S C. 2020. Research and exploration progress on lithium deposits in China[J]. China Geology, 3(1): 137−152. doi: 10.31035/cg2020018

    CrossRef Google Scholar

    [91] Wang Denghong. Li Peigang, Qu Wenjun, Yin Lijuan, Zhao Zhi, Lei Zhiyuan, Wen Shenfu. 2013. Discovery and preliminary study of the high tungsten and lithium contents in the Dazhuyuan bauxite deposit, Guizhou, China[J]. Science China: Earth Sciences, 56: 145−152. doi: 10.1007/s11430-012-4504-2

    CrossRef Google Scholar

    [92] Wang Denghong, Sun Yan, Liu Xifang, Tian Shihong, Dai Jingjing, Liu Lijun, Ma Shengchao. 2018. Deep exploration technology and prospecting direction for lithium energy metal[J]. Geological Survey of China, 5(1): 1−9 (in Chinese with English abstract).

    Google Scholar

    [93] Wang Denghong, Sun Yan, Zhou Sichun, Liang Ting, Fu Yong, Fu Xiaofang, Hao Xuefeng, San Jinzhu, Liu Xifang, Hou Kejun, Guo Weiming, Tian Shihong, Li Chao, Kong Weigang, Ma Shengchao, Guo Xuji. 2021. Progress of the deep exploration technology demonstration project for lithium energy metal mineral base[J]. Mineral Deposits, 40(4): 641−654 (in Chinese with English abstract).

    Google Scholar

    [94] Wang Denghong, Dai Hongzhang, Liu Shanbao, Li Jiankang, Wang Chenghui, Lou Debo, Yang Yueqing, Li Peng. 2022. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade[J]. Journal of Geomechanics, 28(5): 1−24 (in Chinese with English abstract).

    Google Scholar

    [95] Wang Guiling. 2018a. China Geothermal Records, North China, Northwest, Northeast Volume[M]. Beijing: Science Press, 1–450 (in Chinese).

    Google Scholar

    [96] Wang Guiling. 2018b. China Geothermal Records, East China, Central China Volume[M]. Beijing: Science Press, 1–379 (in Chinese).

    Google Scholar

    [97] Wang Guiling. 2018c. China Geothermal Records, South China Volume[M]. Beijing: Science Press, 1–579 (in Chinese).

    Google Scholar

    [98] Wang Guiling. 2018d. China Geothermal Records, Southwest Volume I[M]. Beijing: Science Press, 1–278 (in Chinese).

    Google Scholar

    [99] Wang Guiling. 2018e. China Geothermal Records, Southwest Volume II[M]. Beijing: Science Press, 1–548 (in Chinese).

    Google Scholar

    [100] Wang Guiling. 2018f. China Geothermal Records, Southwest Volume III[M]. Beijing: Science Press, 1–172 (in Chinese).

    Google Scholar

    [101] Wang Guiling, Zhang Wei, Liang Jiyun, Lin Wenjing, Liu Zhiming, Wang Wanli. 2017. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 38(4): 449−459 (in Chinese with English abstract).

    Google Scholar

    [102] Wang Guiling. 2020. Develop new geothermal energy and build a clean, low–carbon, safe and efficient energy system[J]. Acta Geologica Sinica, 94(7): 1921−1922 (in Chinese with English abstract).

    Google Scholar

    [103] Wang Guiling, Lin Wenjing. 2020. Main hydro–geothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 94(7): 1923−1937 (in Chinese with English abstract).

    Google Scholar

    [104] Wang Guiling, Liu Yanguang, Zhu Xi, Zhang Wei. 2020. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 27(1): 1−9 (in Chinese with English abstract).

    Google Scholar

    [105] Wang Guiling, Lu Chuan. 2022. Progress of geothermal resources exploitation and utilization technology driven by carbon neutralization target[J]. Geology and Resources, 31(3): 412−341 (in Chinese with English abstract).

    Google Scholar

    [106] Wang He, Huang Liang, Bai Hongyang, Wang Kunyu, Wang Zhenhong, Gao Hao, Zhou Jinsheng, Qin Yan, Wang Yan[J]. 2022. Types, distribution, development and utilization of lithium mineral resources in China: Review and perspective[J]. Geotectonica et Metallogenia, 46(5): 848−866 (in Chinese with English abstract).

    Google Scholar

    [107] Wang Hua. 2020. Study on the Characteristics and Causes of High Temperature Hydrochemistry in Litang Geothermal Field in Western Sichuan[D]. Beijing: China University of Petroleum, 1–59 (in Chinese with English abstract).

    Google Scholar

    [108] Wang Siqi. 2017. Hydrogeochemical Processes and Genesis Mechanism of High–temperature Geothermal System in Gudui, Tibet[D]. Beijing: China University of Geosciences, 1–96 (in Chinese with English abstract).

    Google Scholar

    [109] Wang W, Wei H Z, Jiang S Y, Tan H B, Eastoe C J, Williams–Jones A E, Hohl S V, Wu H P. 2019. The origin of rare alkali metals in geothermal fluids of southern Tibet, China: A silicon isotope perspective[J]. Scientific Reports, 9(1): 7918. doi: 10.1038/s41598-019-44249-5

    CrossRef Google Scholar

    [110] Wang Xinyun. 2018. A Study of the Characteristics and Genesis of the Hot Springs in the Western Shandong Peninsula[D]. Beijing: China University of Geosciences, 1–83 (in Chinese with English abstract).

    Google Scholar

    [111] Wang Xueqiu, Liu Hanliang, Wang Wei, Zhou Jian, Zhang Bimin, Xu Shanfa. 2020. Geochemical abundance and spatial distribution of lithium in China: Implications for potential prospects[J]. Acta Geoscientica Sinica, 41(6): 797−806 (in Chinese with English abstract).

    Google Scholar

    [112] Wang Zhuo, Huang Ranxiao, Wu Datian, Xu Fengming, Sun Weil, Zhang Dehui, Zhao Yuandong. 2023. Basic characteristics and development potential evaluation of brine–type lithium deposits in salt lakes[J]. Geology in China, 50(1): 102−117 (in Chinese with English abstract).

    Google Scholar

    [113] Wen Hanjie, Luo Chongguang, Du Shengjiang, Yu Wenxiu, Gu Hannian, Ling Kunyue, Cui Yi, Li Yang Jihua. 2020. Carbonate–hosted clay–type lithium deposit and its prospecting significance[J]. Chinese Science Bulletin, 65(1): 53−59 (in Chinese with English abstract). doi: 10.1360/TB-2019-0179

    CrossRef Google Scholar

    [114] Wiśniewska M, Fijałkowska G, Ostolska I, France W, Nosal–Wiercińska A, Tomaszewska B, Goscianska J, Wójcik G. 2018. Investigations of the possibility of lithium acquisition from geothermal water using natural and synthetic zeolites applying poly (acrylic acid)[J]. Journal of Cleaner Production, 195: 821−830. doi: 10.1016/j.jclepro.2018.05.287

    CrossRef Google Scholar

    [115] Wu Rujie, Sun Guoqiang, Wan Hanping, Xie Yingchun, Zhao Dan, Wang Zongman, Li Ling, Li Bin. 2022. The application of soil radon measurement technology in the exploration of geothermal resources in Gulu, Tibet[J]. World Nuclear Geoscience, 39(1): 89−96 (in Chinese with English abstract).

    Google Scholar

    [116] Xiao Yingkai, Qi Haiping, Wang Yunhui, Jin Lin. 1994. Lithium isotopic compositions of brine, sediments and source water in Da Qaidam Lake, Qinghai, China[J]. Geochimica, 23(4): 329−338 (in Chinese with English abstract).

    Google Scholar

    [117] Xu Peng, Tan Hongbing, Zhang Yanfei, Zhang Wenjie. 2018. Geochemical characteristics and source mechanism of geothermal water in Tethys Himalaya belt[J]. Geology in China, 45(6): 1142−1154 (in Chinese with English abstract).

    Google Scholar

    [118] Xu Yanqiu. 2021. A study of the hydrochemical characteristics and geneses of geothermal water in the western edge of the Sichuan Basin in China[J]. Beijing: China University of Geosciences, 1–91 (in Chinese with English abstract).

    Google Scholar

    [119] Yang Yanyan. 2006. A Study of the Formation and Evolution of the Wenluo Hot Spring and Precipitation Mechanism for the Nearby Tufa in Bobai, Guangxi[D]. Beijing: China University of Geosciences, 1–81 (in Chinese with English abstract).

    Google Scholar

    [120] Yao Shuangqiu, Pang Chongjin, Wen Shunv, Liang Hang, Lu Guanghui1, Yin Benchun, Qin Feng, Luo Qiaohua. 2020. Li–rich claystone in the Upper Permian Heshan Formation in western Guangxi and its prospecting significance[J]. Geotectonica et Metallogenia, 45(5): 951−962 (in Chinese with English abstract).

    Google Scholar

    [121] Yu Feng, Yu Yang, Wang Denghong, Gao Juanqin, Wang Chenghui, Guo Weiming. 2022. Application of Li isotope in geothermal fluid–rock interaction: A case study of modern Li–rich geothermal water in western Sichuan[J]. Acta Petrologica Sinica, 38(2): 472−482 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.02.11

    CrossRef Google Scholar

    [122] Yu Jie, Mao Xumei, Peng Hui, Wen Meixia, Wang Xin, Fan Wei, Tang Wei. 2023. Mechanism of high salinity geothermal fluid in karst thermal system: A case study in Yanchang river geothermal field[J]. Carsologica Sinica, 42(4): 795−808 (in Chinese with English abstract).

    Google Scholar

    [123] Yu Xiaocan, Liu Chenglin, Wang Chunlian. 2020. Application of lithium isotope geochemistry to the study of the continental geothermal system[J]. Advances in Earth Science, 35(3): 246−258 (in Chinese with English abstract).

    Google Scholar

    [124] Yu Xiaocan, Liu Chenglin, Wang Chunlian, Xu Haiming, Zhao Yanjun, Huang Hua, Li Ruiqin. 2022. Genesis of lithium brine deposits in the Jianghan Basin and progress in resource exploration: A review[J]. Earth Science Frontiers, 29(1): 107−123 (in Chinese with English abstract).

    Google Scholar

    [125] Yunnan Provincial Geological Compilation Committee. 1999. Annals of Yunnan Province Vol. 25 Thermal Springs Record[M]. Kunming: Yunnan People’s Publishing House, 1–303 (in Chinese).

    Google Scholar

    [126] Zhang J W, Yan Y N, Zhao Z Q, Liu X M, Li X D, Zhang D, Ding H, Meng J L, Liu C Q. 2022a. Spatiotemporal variation of Li isotopes in the Yarlung Tsangpo River basin (upper reaches of the Brahmaputra River): Source and process[J]. Earth and Planetary Science Letters, 600: 117875. doi: 10.1016/j.jpgl.2022.117875

    CrossRef Google Scholar

    [127] Zhang B, Qi F Y, Gao X Z, Li X L, Shang Y T, Kong Z Y, Jia L Q, Meng J, Guo H, Fang F K, Liu Y B, Jiang X, Chai H, Liu Z, Ye X T, Wang G D. 2022b. Geological characteristics, metallogenic regularity, and research progress of lithium deposits in China[J]. China Geology, 5(4): 734−767.

    Google Scholar

    [128] Zhang Lei, Guo Lishuang, Liu Shuwen, Yang Yao, Shi Deyang. 2021. Characteristics of hydrogen and oxygen stable isotopes of hot springs in Xianshuihe–Anninghe fault zone, Sichuan Province, China[J]. Acta Petrologica Sinica, 37(2): 589−598 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.02.16

    CrossRef Google Scholar

    [129] Zhang Liang. 2022. Hydrogeochemical Characteristics and Genetic Model of Middle–deep Geothermal Reservoirs in Xiong’an New Area[D]. Nanchang: East China University of Technology, 1–55 (in Chinese with English abstract).

    Google Scholar

    [130] Zhang Mengzhao, Guo Qinghai, Liu Mingliang, Liu Qiang. 2023. Geochemical characteristics and formation mechanisms of the geothermal waters in the Xinzhou Basin, Shanxi Province[J]. Earth Science, 48(3): 973−987 (in Chinese with English abstract).

    Google Scholar

    [131] Zhang Senqi, Li Huidi, Xu Guocheng, Shi Weidong, Zhou Jinyuan, Shang Xiaogang. 2007. Geochemical characteristics of groundwater in the Dujiazhuang geothermal field in the south of Xining, Qinhai[J]. Geoscience, 21(1): 163−169 (in Chinese with English abstract).

    Google Scholar

    [132] Zhang Song, Xie Yingchun, Hao Weilin, Gao Honglei, Sun Guoqiang, Hu Xiancai. 2022. The characteristics of temperature field in Gulu geothermal field and its implications for further exploration[J]. World Nuclear Geoscience, 39(4): 733−745 (in Chinese with English abstract).

    Google Scholar

    [133] Zhang Wei, Wang Guiling, Liu Feng, Xing Linxiao, Li Man. 2019. Characteristics of geothermal resources in sedimentary basins[J]. Geology in China, 46(2): 255−268 (in Chinese with English abstract).

    Google Scholar

    [134] Zhang W J, Tan H B, Zhang Y F, Wei H Z, Dong T. 2015. Boron geochemistry from some typical Tibetan hydrothermal systems: Origin and isotopic fractionation[J]. Applied Geochemistry, 63: 436−445. doi: 10.1016/j.apgeochem.2015.10.006

    CrossRef Google Scholar

    [135] Zhang Xue. 2012. A Study of the Characteristics of Hot Springs of Low to Moderate Temperature in Chengde District of Northern Hebei[D]. Beijing: China University of Geosciences, 1–71 (in Chinese with English abstract).

    Google Scholar

    [136] Zhang Ying. 2019. A Study of the Characteristics and Formation of the Hot Springs in Hainan Island[D]. Beijing: China University of Geosciences, 1–64 (in Chinese with English abstract).

    Google Scholar

    [137] Zhang Yudao, Tan Hongbing, Cong Peixin, Shi Zhiwei, Yang Junying. 2024. Enrichment mechanism of B, Li, Rb, and Cs in the geothermal system of Yangbajin–Dangxiong rift, Tibet[J]. Acta Sedimentologica Sinica, 42(4): 1239−1251 (in Chinese with English abstract).

    Google Scholar

    [138] Zhang Yuqi. 2020. Hydrogeochemical Characteristics and Genesis of the Springs in the Simao Basin of Yunnan[D]. Beijing: China University of Geosciences, 1–100 (in Chinese with English abstract).

    Google Scholar

    [139] Zheng Mianping, Liu Xifang. 2010. Hydrochemistry and minerals assemblages of salt lakes in the Qinghai–Tibet Plateau, China[J]. Acta Geologica Sinica, 84(11): 1586−1660 (in Chinese with English abstract).

    Google Scholar

    [140] Zheng Shuhui, Hou Fagao, Ni Baoling. 1983. Stable isotope composition of precipitation in China[J]. Chinese Science Bulletin, 28(13): 801−806 (in Chinese with English abstract). doi: 10.1360/csb1983-28-13-801

    CrossRef Google Scholar

    [141] Zheng Wei, Wang Yangling, Xiao Yang, Gong Xu, Zuo Huancheng, Yang Tao. 2021. Frequency–band merging of AMT and MT data and the application to geothermal resources exploration[J]. Contributions to Geology and Mineral Resources Research, 36(3): 388−394 (in Chinese with English abstract).

    Google Scholar

    [142] Zhu Mingbo, Wu Zhongru, Wang Sixue, Wang Lixin, Peng Huiqing. 2022. Geological characteristics and genesis of Nanzhou lithium brine deposit in Jitai basin, Jiangxi Province[J]. Resources Environment and Engineering, 36(2): 142−148 (in Chinese with English abstract).

    Google Scholar

    [143] 蔡壮. 2020. 伊通盆地古近系地热系统成因模式分析[D]. 长春: 吉林大学, 1–61.

    Google Scholar

    [144] 柴蕊. 2006. 天津市周良庄地热田地下热水的水化学及钙华研究[D]. 北京: 中国地质大学(北京), 1–72.

    Google Scholar

    [145] 陈刚, 万军伟, 郭鹏, 刘洪. 2013. 湖北省利川市忠路镇洞脑壳温泉成因[J]. 地质科技情报, 32(4): 196−200.

    Google Scholar

    [146] 陈墨香. 1992. 中国地热资源研究的进展[J]. 地球科学进展, 7(3): 9−14.

    Google Scholar

    [147] 陈衍景, 薛莅治, 王孝磊, 赵中宝, 韩金生, 周可法. 2021. 世界伟晶岩型锂矿床地质研究进展[J]. 地质学报, 95(10): 2971−2995.

    Google Scholar

    [148] 陈正山. 2021. 贵州理疗热矿水(温泉)形成机理及其对人群健康的影响[D]. 贵阳: 贵州大学, 1–213.

    Google Scholar

    [149] 崔玉贵. 2021. 江西于都黄麟地区地热资源地质特征与形成机理[D]. 北京: 中国地质大学(北京), 1–76.

    Google Scholar

    [150] 邓俊祖. 2022. 冀中坳陷北部碳酸盐岩热储水化学特征及成因分析[D]. 南昌: 东华理工大学, 1–61.

    Google Scholar

    [151] 多吉. 2003. 典型高温地热系统—羊八井热田基本特征[J]. 中国工程科学, 5(1): 42−47.

    Google Scholar

    [152] 高娟琴, 王登红, 王伟, 于沨, 于扬. 2019. 国内外主要油(气)田水中锂提取现状及展望[J]. 地质学报, 93(6): 1489−1500.

    Google Scholar

    [153] 顾晓敏. 2017. 阿尔山泉群地球化学特征及成因演化机制研究[D]. 北京: 中国地质大学(北京), 1–132.

    Google Scholar

    [154] 郭清海. 2022. 岩浆热源型地热系统释义[J]. 地质学报, 96(1): 208−214.

    Google Scholar

    [155] 郭唯明, 马圣钞, 孙艳, 赵芝, 钟海仁, 姚垒珊. 2019. 云南腾冲热泉中稀有金属矿化特征及其意义[J]. 地质学报, 93(6): 1321−1330.

    Google Scholar

    [156] 李泊洋, 姜大伟, 付旭, 王磊, 高树起, 樊志勇, 王可祥, 胡格吉乐吐. 2018. 内蒙古维拉斯托矿区锂多金属矿床地质特征及找矿意义[J]. 矿产勘查, 9(6): 1185−1191.

    Google Scholar

    [157] 李建康, 刘喜方, 王登红. 2014. 中国锂矿成矿规律概要[J]. 地质学报, 88(12): 2269−2282.

    Google Scholar

    [158] 李乐乐. 2016. 青海贵德盆地地热资源赋存规律及成因模式研究[D]. 南昌: 东华理工大学, 1–59.

    Google Scholar

    [159] 李明礼. 2018. 西藏典型理疗地热矿泉的成因及功效研究[D]. 成都: 成都理工大学, 1–135.

    Google Scholar

    [160] 李娜. 2020. 四川西昌地区温泉及盐泉的特征及成因[D]. 北京: 中国地质大学(北京), 1–81.

    Google Scholar

    [161] 李晓露. 2017. 云南洱源县牛街温泉的水化学特征与成因[D]. 北京: 中国地质大学(北京), 1–64.

    Google Scholar

    [162] 李一鸣. 2019. 黑龙江省萝北县肇兴镇地热资源特征及资源量评价[D]. 长春: 吉林大学, 1–77.

    Google Scholar

    [163] 李祎昕, 蒋丽丽, 王超, 王营, 李伯男, 张媛, 赵晓恕, 张言珑, 刘茂川, 张勇. 2022. 三维可视化技术在沈北盆地地热资源开发中的应用[J]. 地质与资源, 31(1): 76−80.

    Google Scholar

    [164] 李永革. 2016. 青海省共和盆地恰卜恰地区地下热水水文地球化学特征及成因分析[D]. 南昌: 东华理工大学, 1–75.

    Google Scholar

    [165] 李振清, 侯增谦, 聂凤军, 孟祥金. 2005. 藏南上地壳低速高导层的性质与分布: 来自热水流体活动的证据[J]. 地质学报, 79(1): 68−77.

    Google Scholar

    [166] 刘成林, 余小灿, 袁学银, 李瑞琴, 姚佛军, 沈立建, 李强, 赵元艺. 2021. 世界盐湖卤水型锂矿特征、分布规律与成矿动力模[J]. 地质学报, 95(7): 2009−2029.

    Google Scholar

    [167] 刘杰. 2014. 天津地区地热流体地球化学特征[D]. 北京: 中国地质大学(北京), 1–72.

    Google Scholar

    [168] 刘明亮. 2015. 不同热源类型地热系统的地球化学对比—以青海共和地热区和云南热海热田为例[D]. 武汉: 中国地质大学(武汉), 1–73.

    Google Scholar

    [169] 刘宇. 2020. 云南芒市–瑞丽地区温泉水化学和成因研究[D]. 北京: 中国地质大学(北京), 1–78.

    Google Scholar

    [170] 刘昭. 2014. 西藏尼木–那曲地热带典型高温地热系统形成机理研究[D]. 北京: 中国地质科学院, 1–102.

    Google Scholar

    [171] 路畅. 2019. 首都圈地区流体地球化学特征及成因分析[D]. 北京: 中国地震局地震预测研究所, 1–39.

    Google Scholar

    [172] 马瑞. 2017. 碳酸盐岩热储隐伏型中低温热水的成因与水−岩相互作用研究[D]. 武汉: 中国地质大学(武汉), 1–144.

    Google Scholar

    [173] 马圣钞, 王登红, 孙艳, 李超, 钟海仁. 2019. 我国西南部T1/T2粘土岩地质年代学、地球化学特征及其对粘土型锂矿的找矿意义[J]. 地球科学, 44(2): 427−440.

    Google Scholar

    [174] 马鑫, 付雷, 李铁锋, 闫晶, 刘廷, 王明国, 邵炜. 2021. 喜马拉雅东构造结地区地热成因分析[J]. 现代地质, 35(1): 209−219.

    Google Scholar

    [175] 秦克章, 赵俊兴, 何畅通, 施睿哲. 2021. 喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义[J]. 岩石学报, 37(11): 3277−3286.

    Google Scholar

    [176] 石卓. 2010. 内蒙古赤峰市热水镇地热田热资源评价[D]. 长春: 吉林大学, 1–109.

    Google Scholar

    [177] 舒良树, 朱文斌, 许志琴. 2021. 华南花岗岩型锂矿地质背景与成矿条件[J]. 地质学报, 95(10): 3099−3114.

    Google Scholar

    [178] 宋亮, 孙国强, 程纪星, 朱万锋, 吴国东, 许海州, 蒋执俊. 2022. 土壤化探在谷露地热田高温地热资源勘查中的应用研究[J]. 世界核地质科学, 39(2): 330−340.

    Google Scholar

    [179] 苏丕辉. 2020. 重庆东泉隧道对统景温泉地下水环境影响研究[D]. 成都: 西南交通大学, 1–107.

    Google Scholar

    [180] 隋丽嫒, 周训, 李状, 徐艳秋, 姜哲. 2022. 安徽滁河断裂带温泉的水化学和同位素特征及成因分析[J]. 地质论评, 68(3): 981−992.

    Google Scholar

    [181] 孙红丽, 马峰, 蔺文静, 刘昭, 王贵玲, 男达瓦. 2015. 西藏高温地热田地球化学特征及地热温标应用[J]. 地质科技情报, 34(3): 171−177.

    Google Scholar

    [182] 孙艳, 高允, 王登红, 代鸿章, 顾文帅, 李建, 张丽红. 2017. 重庆铜梁地区“绿豆岩”中碎屑锆石U–Pb年龄及其地质意义[J]. 岩矿测试, 36(6): 649−658.

    Google Scholar

    [183] 汤艳杰, 张宏福, 英基风. 2009. 锂同位素分馏机制讨论[J]. 地球科学—中国地质大学学报, 34(1): 43−55.

    Google Scholar

    [184] 天娇, 李义曼, 范翼帆, 周晓成. 2022. 广东神灶海上温泉的流体地球化学特征及循环模式[J]. 地球科学, 48(3): 894−907.

    Google Scholar

    [185] 佟伟, 廖志杰, 刘时彬, 张知非, 由懋正, 章铭陶. 2000. 西藏温泉志[M]. 北京: 科学出版社, 1–259.

    Google Scholar

    [186] 佟伟, 章铭陶. 1994. 横断山区温泉志[M]. 北京: 科学出版社, 1–326.

    Google Scholar

    [187] 王成辉, 王登红, 陈晨, 刘善宝, 陈振宇, 孙艳, 赵晨辉, 曹圣华, 凡秀君. 2019. 九岭式狮子岭岩体型稀有金属成矿作用研究进展及其找矿意义[J]. 地质学报, 93(6): 1359−1373.

    Google Scholar

    [188] 王登红, 李沛刚, 屈文俊, 雷志远, 廖友常. 2013. 贵州大竹园铝土矿中钨和锂的发现和综合评价[J]. 中国科学: 地球科学, 43(1): 44−51.

    Google Scholar

    [189] 王登红, 孙艳, 刘喜方, 田世洪, 代晶晶, 刘丽君, 马圣钞. 2018. 锂能源金属矿产深部探测技术方法与找矿方向[J]. 中国地质调查, 5(1): 1−9.

    Google Scholar

    [190] 王登红, 孙艳, 周四春, 梁婷, 付勇, 付小方, 郝雪峰, 三金柱, 刘喜方, 侯可军, 郭唯明, 田世洪, 李超, 孔维刚, 马圣钞, 郭旭吉. 2021. 锂能源金属矿产基地深部探测技术示范项目进展[J]. 矿床地质, 40(4): 641−654.

    Google Scholar

    [191] 王登红, 代鸿章, 刘善宝, 李建康, 王成辉, 娄德波, 杨岳清, 李鹏. 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势[J]. 地质力学学报, 28(5): 1−24.

    Google Scholar

    [192] 王贵玲, 张薇, 梁继运, 蔺文静, 刘志明, 王婉丽. 2017. 中国地热资源潜力评价[J]. 地球学报, 38(4): 449−459.

    Google Scholar

    [193] 王贵玲等. 2018a. 中国地热志·华北东北西北卷[M]. 北京: 科学出版社, 1–450.

    Google Scholar

    [194] 王贵玲等. 2018b. 中国地热志·华南卷[M]. 北京: 科学出版社, 1–379.

    Google Scholar

    [195] 王贵玲等. 2018c. 中国地热志·华中卷[M]. 北京: 科学出版社, 1–579.

    Google Scholar

    [196] 王贵玲等. 2018d. 中国地热志·西南卷一[M]. 北京: 科学出版社, 1–278.

    Google Scholar

    [197] 王贵玲等. 2018e. 中国地热志·西南卷二[M]. 北京: 科学出版社, 1–548.

    Google Scholar

    [198] 王贵玲等. 2018f. 中国地热志·西南卷三[M]. 北京: 科学出版社, 1–172.

    Google Scholar

    [199] 王贵玲. 2020. 开发地热新能源, 构建清洁低碳、安全高效的能源体系[J]. 地质学报, 94(7): 1921−1922.

    Google Scholar

    [200] 王贵玲, 蔺文静. 2020. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 94(7): 1923−1937.

    Google Scholar

    [201] 王贵玲, 刘彦广, 朱喜, 张薇. 2020. 中国地热资源现状及发展趋势[J]. 地学前缘, 27(1): 1−9.

    Google Scholar

    [202] 王贵玲, 陆川. 2022. 碳中和目标驱动下地热资源开采利用技术进展[J]. 地质与资源, 31(3): 412−341.

    Google Scholar

    [203] 王核, 黄亮, 白洪阳, 王堃宇, 王振宏, 高昊, 周金胜, 秦艳, 王焰. 2022. 中国锂资源的主要类型、分布和开发利用现状: 评述和展望[J]. 大地构造与成矿学, 46(5): 848−866.

    Google Scholar

    [204] 王花. 2020. 川西理塘地热田高温水化学特征及成因研究[D]. 北京: 中国石油大学(北京), 1–59.

    Google Scholar

    [205] 王思琪. 2017. 西藏古堆高温地热系统水文地球化学过程与形成机理[D]. 北京: 中国地质大学(北京), 1–96.

    Google Scholar

    [206] 王昕昀. 2018. 山东半岛西部温泉水化学特征及成因研究[D]. 北京: 中国地质大学(北京), 1–83.

    Google Scholar

    [207] 王学求, 刘汉粮, 王玮, 周建, 张必敏, 徐善法. 2020. 中国锂矿地球化学背景与空间分布: 远景区预测[J]. 地球学报, 41(6): 797−806.

    Google Scholar

    [208] 王卓, 黄冉笑, 吴大天, 许逢明, 孙巍, 张德会, 赵院冬. 2023. 盐湖卤水型锂矿基本特征及其开发利用潜力评价[J]. 中国地质, 50(1): 102−117.

    Google Scholar

    [209] 温汉捷, 罗重光, 杜胜江, 于文修, 顾汉念, 凌坤跃, 崔燚, 李阳, 杨季华. 2020. 碳酸盐黏土型锂资源的发现及意义[J]. 科学通报, 65(1): 53−59.

    Google Scholar

    [210] 吴儒杰, 孙国强, 万汉平, 谢迎春, 赵丹, 王宗满, 李玲, 李斌. 2022. 土壤氡气测量技术在西藏谷露地热田资源勘查中的应用[J]. 世界核地质科学, 39(1): 89−96.

    Google Scholar

    [211] 肖应凯, 祁海平, 王蕴慧, 金琳. 1994. 青海大柴达木湖卤水, 沉积物和水源水中的锂同位素组成[J]. 地球化学, 23(4): 329−338.

    Google Scholar

    [212] 许鹏, 谭红兵, 张燕飞, 张文杰. 2018. 特提斯喜马拉雅带地热水化学特征与物源机制[J]. 中国地质, 45(6): 1142−1154.

    Google Scholar

    [213] 徐艳秋. 2021. 四川盆地西部边缘地下热水水化学特征及成因研究[D]. 北京: 中国地质大学(北京), 1–91.

    Google Scholar

    [214] 杨妍妍. 2006. 广西博白温罗温泉形成演化与钙华沉积机制研究[D]. 北京: 中国地质大学(北京), 1–81.

    Google Scholar

    [215] 姚双秋, 庞崇进, 温淑女, 梁航, 卢光辉, 尹本纯, 覃丰, 罗桥花. 2020. 桂西上二叠统合山组富锂黏土岩的发现及意义[J]. 大地构造与成矿学, 45(5): 951−962.

    Google Scholar

    [216] 于沨, 于扬, 王登红, 高娟琴, 王成辉, 郭唯明. 2022. 锂同位素地球化学在地热流体水岩反应中的应用—以川西现代富锂热泉研究为例[J]. 岩石学报, 38(2): 472−482.

    Google Scholar

    [217] 余杰, 毛绪美, 彭慧, 文美霞, 王辛, 范威, 汤伟. 2023. 岩溶热储高矿化度地热流体成因机制研究—以巴东县盐场河地热田为例[J]. 中国岩溶, 42(4): 795−808.

    Google Scholar

    [218] 余小灿, 刘成林, 王春连. 2020. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 35(3): 246−258.

    Google Scholar

    [219] 余小灿, 刘成林, 王春连, 徐海明, 赵艳军, 黄华, 李瑞琴. 2022. 江汉盆地大型富锂卤水矿床成因与资源勘查进展: 综述[J]. 地学前缘, 29(1): 107−123.

    Google Scholar

    [220] 云南省地质志编纂委员会. 1999. 云南省志卷二十五温泉志[M]. 昆明: 云南人民出版社, 1–303.

    Google Scholar

    [221] 张磊, 郭丽爽, 刘树文, 杨耀, 施得旸. 2021. 四川鲜水河–安宁河断裂带温泉氢氧稳定同位素特征[J]. 岩石学报, 37(2): 589−598.

    Google Scholar

    [222] 张良. 2022. 雄安新区中深层热储水文地球化学特征及成因模式分析[D]. 南昌: 东华理工大学, 1–55.

    Google Scholar

    [223] 张梦昭, 郭清海, 刘明亮, 刘强. 2023. 山西忻州盆地地热水地球化学特征及其成因机制[J]. 地球科学, 48(3): 973−987.

    Google Scholar

    [224] 张森琦, 李惠娣, 许国成, 石维栋, 周金元, 尚小刚. 2007. 青海西宁城南新区杜家庄地热田地下水的地球化学特征[J]. 现代地质, 21(1): 163−169.

    Google Scholar

    [225] 张松, 谢迎春, 郝伟林, 高洪雷, 孙国强, 胡先才. 2022. 谷露地热田温度场特征及对下一步勘查的启示[J]. 世界核地质科学, 39(4): 733−745.

    Google Scholar

    [226] 张薇, 王贵玲, 刘峰, 邢林啸, 李曼. 2019. 中国沉积盆地型地热资源特征[J]. 中国地质, 46(2): 255−268.

    Google Scholar

    [227] 张雪. 2012. 河北省北部承德地区中低温温泉特征研究[D]. 北京: 中国地质大学(北京), 1–71.

    Google Scholar

    [228] 张颖. 2019. 海南岛温泉特征及成因研究[D]. 北京: 中国地质大学(北京), 1–64.

    Google Scholar

    [229] 张煜道, 谭红兵, 丛培鑫, 石智伟, 杨俊颖. 2024. 西藏羊八井—当雄断裂带地热系统B、Li、Rb、Cs富集机制[J]. 沉积学报, 42(4): 1239−1251.

    Google Scholar

    [230] 张彧齐. 2020. 云南思茅盆地泉水水文地球化学特征及成因研究[D]. 北京: 中国地质大学(北京), 1–100.

    Google Scholar

    [231] 郑绵平, 刘喜方. 2010. 青藏高原盐湖水化学及其矿物组合特征[J]. 地质学报, 84(11): 1586−1660.

    Google Scholar

    [232] 郑淑蕙, 侯发高, 倪葆龄. 1983. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 28(13): 801−806.

    Google Scholar

    [233] 郑伟, 王阳玲, 肖扬, 龚旭, 左焕成, 杨涛. 2021. MT和MT数据频带拼接技术及其在地热资源勘探中的应用[J]. 地质找矿论丛, 36(3): 388−394.

    Google Scholar

    [234] 朱明波, 吴忠如, 王思学, 王立新, 彭惠卿. 2022. 江西省吉泰盆地南洲含锂卤水矿床地质特征及成因探讨[J]. 资源环境与工程, 36(2): 142−148.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(2)

Article Metrics

Article views(1017) PDF downloads(67) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint