2024 Vol. 51, No. 1
Article Contents

TONG Yunxiao, YANG Junquan, WANG Xue, TAN Kun. 2024. Land subsidence monitoring and spatiotemporal evolution characteristics analysis of Datong coalfield,Shanxi Province based on time series InSAR[J]. Geology in China, 51(1): 170-183. doi: 10.12029/gc20221215001
Citation: TONG Yunxiao, YANG Junquan, WANG Xue, TAN Kun. 2024. Land subsidence monitoring and spatiotemporal evolution characteristics analysis of Datong coalfield,Shanxi Province based on time series InSAR[J]. Geology in China, 51(1): 170-183. doi: 10.12029/gc20221215001

Land subsidence monitoring and spatiotemporal evolution characteristics analysis of Datong coalfield,Shanxi Province based on time series InSAR

    Fund Project: Supported by the project of China Geological Survey “Dynamic Monitoring and Risk Assessment of Natural Resources in North China” (No. DD20211388).
More Information
  • Author Bio: TONG Yunxiao, male, born in 1994, master, engineer, mainly engaged in the research of InSAR deformation monitoring and natural resources survey monitoring; E-mail: tyunxiao@126.com
  • Corresponding author: YANG Junquan, male, born in 1980, doctor, senior engineer, mainly engaged in the research of petrology and natural resources survey monitoring; E-mail: dap-yangjunquan@163.com
  • This paper is the result of environmental geological survey engineering.

    Objective

    Land subsidence is one of the main geological hazards in coal mine area, which seriously affects the sustainable development of mining economy and the safety and stability of residents' life. It is necessary to conduct rapid and efficient monitoring of land subsidence in the mining area.

    Methods

    Taking Datong coalfield as an example, the 31 scenes Sentinel-1 images acquired from January 2020 to December 2021 were used to monitor the land subsidence based on Small Baseline Subset InSAR (SBAS−InSAR) technology. The land subsidence rate and cumulative subsidence results of Datong coalfield were obtained. Moreover, the reliability of the monitoring results was verified using existing research results, and the spatiotemporal variation characteristics and evolution laws of subsidence were analyzed.

    Results

    The results indicate that the land subsidence in the Datong coalfield is extensively distributed, and its overall distribution of subsidence is basically consistent with the trend of mining management data. The subsidence is mainly distributed in the west of Nanjiao County of Datong City and the junction of Datong City, Huairen City and Shanyin County, among which the land subsidence of Tashan mine is the most severe. The subsidence characteristics of Datong coalfield mainly include the maximum subsidence rate of 168.03 mm/a, the maximum cumulative subsidence amount of 329.12 mm, and the total subsidence area of 270.95 km2. Overall, there is a continuous increase in subsidence, and it takes a significant amount of time to achieve relative stability in surface activities in accordance with this trend.

    Conclusions

    This study shows the feasibility of InSAR technology in subsidence monitoring in coal mine area, which can provide a new technical for mineral resources management work, and the research results can provide scientific basis for subsidence monitoring and warning, disaster prevention and control, and rational development and utilization of resources in coal mine area.

  • 加载中
  • [1] Berardino P, Fornaro G, Lanari R, Sansosti E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience Remote Sensing, 40(11): 2375−2383. doi: 10.1109/TGRS.2002.803792

    CrossRef Google Scholar

    [2] Casu F, Manzo M, Lanari R. 2006. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data[J]. Remote Sensing of Environment, 102(3/4): 195−210.

    Google Scholar

    [3] Chaussard E, Wdowinski S, Cabral−Cano E, Amelung F. 2014. Land subsidence in central Mexico detected by ALOS InSAR time−series[J]. Remote Sensing of Environment, 140: 94−106. doi: 10.1016/j.rse.2013.08.038

    CrossRef Google Scholar

    [4] Chen Qi. 2013. Research on the Imaging Technology of Spaceborne Multimode Synthetic Aperture Radar Research on Rpaceborne Multimode Synthetic Aperture Radar Imaging Technology [D]. Changsha: National University of Defense Technology, 1−158 (in Chinese with English abstract).

    Google Scholar

    [5] Chen Y, Remy D, Froger J L, Peltier A, Villeneuve N, Darrozes J, Bonvalot S. 2017. Long−term ground displacement observations using InSAR and GNSS at Pitondela Fournaise volcano between 2009 and 2014[J]. Remote Sensing of Environment, 194: 230−247. doi: 10.1016/j.rse.2017.03.038

    CrossRef Google Scholar

    [6] Chen Y, Tan K, Yan S, Zhang K, Zhang H, Liu X, Sun Y. 2019. Monitoring land surface displacement over Xuzhou (China) in 2015–2018 through PCA−based correction applied to SAR interferometry[J]. Remote Sensing, 11(12): 1494. doi: 10.3390/rs11121494

    CrossRef Google Scholar

    [7] Chen Y, Tong Y, Tan K. 2020. Coal mining deformation monitoring using SBAS−InSAR and offset tracking: A case study of Yu County, China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 6077−6087. doi: 10.1109/JSTARS.2020.3028083

    CrossRef Google Scholar

    [8] Dai K, Li Z, Tomás R, Liu G, Yu B, Wang X, Stockamp J. 2016. Monitoring activity at the Daguangbao mega−landslide (China) using Sentinel−1 TOPS time series interferometry[J]. Remote Sensing of Environment, 186: 501−513. doi: 10.1016/j.rse.2016.09.009

    CrossRef Google Scholar

    [9] Dong J, Zhang L, Tang M, Liao, M, Xu Q, Gong J, Ao M. 2018. Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: A case study of Jiaju landslide in Danba, China[J]. Remote Sensing of Environment, 205: 180−198. doi: 10.1016/j.rse.2017.11.022

    CrossRef Google Scholar

    [10] Du Y, Zhang L, Feng G, Lu Z, Sun Q. 2016. On the accuracy of topographic residuals retrieved by MTInSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 55(2): 1053−1065.

    Google Scholar

    [11] Ferretti A, Prati C, Rocca F. 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience Remote Sensing, 38(5): 1685−1701.

    Google Scholar

    [12] Jiang L, Lin H, Ma J, Ma J, Kong B, Wang Y. 2011. Potential of small−baseline SAR interferometry for monitoring land subsidence related to underground coal fires: Wuda (Northern China) case study[J]. Remote Sensing of Environment, 115(2): 257−268. doi: 10.1016/j.rse.2010.08.008

    CrossRef Google Scholar

    [13] Lanari R, Mora O, Manunta M, Mallorquí J J, Berardino P, Sansosti E. 2004. A small−baseline approach for investigating deformations on full−resolution differential SAR interferograms[J]. Geoscience & Remote Sensing IEEE Transactions on, 42(7): 1377−1386.

    Google Scholar

    [14] Lee W J, Lu Z, Jung H S, Ji L. 2017. Measurement of small co−seismic deformation field from multi−temporal SAR interferometry: Application to the 19 September 2004 Huntoon Valley earthquake[J]. Geomatics, Natural Hazards and Risk, 8(2): 1241−1257.

    Google Scholar

    [15] Li G, Lin H, Ye Q. 2018. Heterogeneous decadal glacier downwasting at the Mt. Everest (Qomolangma) from 2000 to~ 2012 based on multi−baseline bistatic SAR interferometry[J]. Remote Sensing of Environment, 206: 336−349. doi: 10.1016/j.rse.2017.12.032

    CrossRef Google Scholar

    [16] Lippl S, Vijay S, Braun M. 2018. Automatic delineation of debris−covered glaciers using InSAR coherence derived from X−, C−and L−band radar data: A case study of Yazgyl Glacier[J]. Journal of Glaciology, 64(247): 811−821. doi: 10.1017/jog.2018.70

    CrossRef Google Scholar

    [17] Liu C, Zhou F, Gao J, Wang J. 2012. Some problems of GPS RTK technique application to mining subsidence monitoring[J]. International Journal of Mining Science and Technology, 22(2): 223−228. doi: 10.1016/j.ijmst.2012.03.001

    CrossRef Google Scholar

    [18] Liu Huan, Zhang Yun, Huang Xuhong, Chen Donglei, Yang Junquan, Gao Xuesheng. 2021. Application of remote sensing technology in mining monitoring in midwest major mining area of Inner Mongolia[J]. North China Geology, 44(4): 55−60 (in Chinese with English abstract).

    Google Scholar

    [19] Liu Qi, Yue Guosen, Ding Xiaobing, Yang Kun, Feng Guangcai, Xiong Zhiqiang. 2019. Temporal and spatial characteristics analysis of deformation along foshan subway using time series InSAR[J]. Geomatics and Information Science of Wuhan University (Information Science Edition), 44(7): 1099−1106 (in Chinese with English abstract).

    Google Scholar

    [20] Liu Tongyao. 2019. Research on Ground Subsidence Monitoring in Mining Area Based on SBAS−DInSAR Technology [D]. Taiyuan: Taiyuan University of Technology, 1−65 (in Chinese with English abstract).

    Google Scholar

    [21] Lu Y Y, Ke C Q, Jiang H J, Chen D L. 2019. Monitoring urban land surface deformation (2004–2010) from InSAR, groundwater and levelling data: A case study of Changzhou city, China[J]. Journal of Earth System Science, 128(6): 1−15.

    Google Scholar

    [22] Ou D, Tan K, Du Q, Chen Y, Ding J. 2018. Decision fusion of D−InSAR and pixel offset tracking for coal mining deformation monitoring[J]. Remote Sensing, 10(7): 1055. doi: 10.3390/rs10071055

    CrossRef Google Scholar

    [23] Pan Liangyun, Meng Lingjian, Sun Fuli, Yang Wenjun, Zhang Wei, Ren Lu, Xue Hui, Zhou Bo, Yang Hui. 2023. Geothermal geological characteristics and resource potential in the north of Datong Basin, Shanxi Province[J]. Geology in China, 50(6): 1632–1645 (in Chinese with English abstract).

    Google Scholar

    [24] Pavez A, Remy D, Bonvalot S, Diament M, Gabalda G, Froger J L, Moisset D. 2006. Insight into ground deformations at Lascar volcano (Chile) from SAR interferometry, photogrammetry and GPS data: Implications on volcano dynamics and future space monitoring[J]. Remote Sensing of Environment, 100(3): 307−320.

    Google Scholar

    [25] Qi Xiahng. 2007. The Application of RS in Shanxi Datong Coalfield Geooqic Hazard Investigation [D]. Taiyuan: Taiyuan University of Technology, 1−69 (in Chinese with English abstract).

    Google Scholar

    [26] Qu Xiaorong. 2019. Distribution characteristics of associated el lements in Middle Jurassic coal in the north of Datong coalfield and their geological significance[J]. Coal Field Geology and Exploration, 47(1): 64−72 (in Chinese with English abstract).

    Google Scholar

    [27] Tong Yunxiao, Huang Yan, Chen Yu, Tan Kun, Ou Depin, Han Fushun. 2020. Surface subsidence monitoring and spatio−temporal analysis in mining area based on D−InSAR monitoring and space−time analysis of surface subsidence in D−InSAR mining area[J]. Science of Surveying and Mapping, 45(3): 67−73 (in Chinese with English abstract).

    Google Scholar

    [28] Tong Yunxiao. 2020. Study on Surface Deformation Monitoring in Mining Area and Multi−model Atmospheric Delay Correction of InSAR[D]. Xuzhou: China University of Mining and Technology, 1−85 (in Chinese with English abstract).

    Google Scholar

    [29] Wang Dongchen. 2015. Analyzing and Evaluating the Changes of Land Cover and Eco−environment of Datong City by Remote Sensing Images City [D]. Nanjing: Nanjing University, 1−84 (in Chinese with English abstract).

    Google Scholar

    [30] Wang J, Feng L, Davidsson S, Höök, M. 2013. Chinese coal supply and future production outlooks[J]. Energy, 60: 204−214. doi: 10.1016/j.energy.2013.07.031

    CrossRef Google Scholar

    [31] Wang Penghui, Xu Yan, Jiao Minglian. 2017. Application of three track method D−InSAR technology in mine settlement monitoring[J]. Mine Surveying, 45(6): 12−14, 18 (in Chinese with English abstract).

    Google Scholar

    [32] Wang Tao, Liu Jiamei, Li Zetong, Xin Peng, Shi Jusong, Wu Shuren. 2021. Seismic landslide hazard assessment of China and its impact on national territory spatial planning[J]. Geology in China, 48(1): 21−39 (in Chinese with English abstract).

    Google Scholar

    [33] Wang Z, Zhang R, Wang X, Liu G. 2018. Retrieving three−dimensional co−seismic deformation of the 2017 MW7.3 Iraq earthquake by multi−sensor SAR images[J]. Remote Sensing, 10(6): 857. doi: 10.3390/rs10060857

    CrossRef Google Scholar

    [34] Werner C, Wegmuller U, Strozzi T, Wiesmann A. 2003. Interferometric point target analysis for deformation mapping[C]// IEEE International Geoscience & Remote Sensing Symposium. IEEE, 7: 4362−4364.

    Google Scholar

    [35] Xia Y, Wang Y, Du S, Liu X, Zhou H. 2018. Integration of D−InSAR and GIS technology for identifying illegal underground mining in Yangquan District, Shanxi Province, China[J]. Environmental Earth Sciences, 77: 1−19. doi: 10.1007/s12665-017-7169-5

    CrossRef Google Scholar

    [36] Xue Shengsheng, Lin Wei, Liu Hongzhe, Zhang Lu, Zhou Xinpeng, Yin Daojin, Zhang Shuangkui. 2021. Geological characteristics and significance of sandstone−shale copper deposits in the northern section of Taihang Mountain [J]. North China Geology, 44(4): 15−22(in Chinese with English abstract).

    Google Scholar

    [37] Yang Jiantu, Jiang Yanxiang, Zhou Jun, Huang Liren, Lu Xu. 2006. Analysis on reliability and accuracy of subsidence measurement with GPS technique[J]. Journal of Geodesy and Geodynamics, (1): 70−75 (in Chinese with English abstract).

    Google Scholar

    [38] Yang Kui, Yang Jianbing, Jiang Bingru. 2015. Sentinel−1 satellite overview[J]. Urban Geotechnical Investigation & Surveying, (2): 24−27 (in Chinese with English abstract).

    Google Scholar

    [39] Yang Z F, Li Z W, Zhu J J, Hu J, Wang Y J, Chen G L. 2016. InSAR−based model parameter estimation of probability integral method and its application for predicting mining−induced horizontal and vertical displacements[J]. IEEE Transactions On Geoscience And Remote Sensing, 54(8): 4818−4832. doi: 10.1109/TGRS.2016.2551779

    CrossRef Google Scholar

    [40] Zhang L, Lu Z, Ding X, Jung H S, Feng G, Lee C W. 2012. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin[J]. Remote Sensing of Environment, 117: 429−439. doi: 10.1016/j.rse.2011.10.020

    CrossRef Google Scholar

    [41] Zhang Wei. 2021. A Research on Time−Series InSAR Method for Monitoring Land Subsidence in Mining Areas [D]. Beijing: China University of Geosciences (Beijing), 1−70 (in Chinese with English abstract).

    Google Scholar

    [42] Zhang Wenzhe. 2020. Research on Surface Subsidence Monitoring of Tianjin Based on SBAS−InSAR Technology[D]. Changchun: Jilin University, 1−50 (in Chinese with English abstract).

    Google Scholar

    [43] Zhang Yao. 2020. Monitoring and Recognition of Datong Coalfield Subsidence Area Based on InSAR Technology [D]. Beijing: China University of Geosciences (Beijing) , 1−66(in Chinese with English abstract).

    Google Scholar

    [44] Zhao C, Lu Z, Zhang Q, Yang C, Zhu W. 2014. Mining collapse monitoring with SAR imagery data: A case study of Datong mine, China[J]. Journal of Applied Remote Sensing, 8(1): 083574. doi: 10.1117/1.JRS.8.083574

    CrossRef Google Scholar

    [45] Zhao F, Mallorqui J, Iglesias R, Gili J A, Corominas J. 2018. Landslide monitoring using multi−temporal SAR interferometry with advanced persistent scatterers identification methods and super high−spatial resolution TerraSAR−X images[J]. Remote Sensing, 10(6): 921. doi: 10.3390/rs10060921

    CrossRef Google Scholar

    [46] Zhao Feng. 2016. Study on the Method of Multi−platform SAR Datasets and MTInSAR Technique Based Ground Deformation Monitoring[D]. Xuzhou: China University of Mining and Technology, 1−83 (in Chinese with English abstract).

    Google Scholar

    [47] Zhu Jianjun, Li Zhiwei, Hu Jun. 2017. InSAR deformation monitoring methods and research progress[J]. Acta Geodaetica et Cartographica Sinica, 46(10): 1717−1733 (in Chinese with English abstract).

    Google Scholar

    [48] 陈祺. 2013. 星载多模式合成孔径雷达成像技术研究[D]. 长沙: 国防科学技术大学, 1−158.

    Google Scholar

    [49] 刘欢, 张云, 黄旭红, 陈东磊, 杨俊泉, 高学生. 2021. 遥感技术在内蒙古自治区中西部重点矿区开采监测中的应用[J]. 华北地质, 44(4): 55−60.

    Google Scholar

    [50] 刘琦, 岳国森, 丁孝兵, 杨坤, 冯光财, 熊志强. 2019. 佛山地铁沿线时序InSAR形变时空特征分析[J]. 武汉大学学报(信息科学版), 44(7): 1099−1106.

    Google Scholar

    [51] 刘童谣. 2019. 基于SBAS−DInSAR技术的煤矿地表沉降监测研究[D]. 太原: 太原理工大学, 1−65.

    Google Scholar

    [52] 潘良云, 孟令箭, 孙福利, 杨文军, 张玮, 任路, 薛慧, 周博, 杨慧. 2023. 山西大同盆地北部地热地质特征及资源潜力[J]. 中国地质, 50(6): 1632–1645.

    Google Scholar

    [53] 齐香玲. 2007. 遥感在山西大同煤田地质灾害调查中的应用[D]. 太原: 太原理工大学, 1−69.

    Google Scholar

    [54] 屈晓荣. 2019. 大同煤田北部中侏罗统煤中伴生元素分布特征及其地质意义[J]. 煤田地质与勘探, 47(1): 64−72.

    Google Scholar

    [55] 仝云霄, 黄岩, 陈宇, 谭琨, 欧德品, 韩福顺. 2020. D−InSAR矿区地表沉降监测及时空分析[J]. 测绘科学, 45(3): 67−73.

    Google Scholar

    [56] 仝云霄. 2020. InSAR矿区地表形变监测及大气延迟校正研究[D]. 徐州: 中国矿业大学, 1−85.

    Google Scholar

    [57] 王冬辰. 2015. 大同市土地覆盖与生态环境变化遥感分析与评价[D]. 南京: 南京大学, 1−84.

    Google Scholar

    [58] 王鹏辉, 徐妍, 焦明连. 2017. 三轨法D−InSAR技术在矿区沉降监测中的应用[J]. 矿山测量, 45(6): 12−14, 18.

    Google Scholar

    [59] 王涛, 刘甲美, 栗泽桐, 辛鹏, 石菊松, 吴树仁. 2021. 中国地震滑坡危险性评估及其对国土空间规划的影响研究[J]. 中国地质, 48(1): 21−39.

    Google Scholar

    [60] 薛生升, 林伟, 刘宏哲, 张璐, 周新鹏, 尹道瑾, 张双奎. 2021. 太行山北段砂页岩型铜矿地质特征及其意义[J]. 华北地质, 44(4): 15−22.

    Google Scholar

    [61] 杨建图, 姜衍祥, 周俊, 黄立人, 路旭. 2006. GPS测量地面沉降的可靠性及精度分析[J]. 大地测量与地球动力学, (1): 70−75.

    Google Scholar

    [62] 杨魁, 杨建兵, 江冰茹. 2015. Sentinel−1卫星综述[J]. 城市勘测, (2): 24−27.

    Google Scholar

    [63] 张玮. 2021. 时序InSAR方法监测矿区地面沉降的研究[D]. 北京: 中国地质大学(北京) , 1−70.

    Google Scholar

    [64] 张文哲. 2020. 基于SBAS−InSAR技术的天津市地表沉降监测研究[D]. 长春: 吉林大学, 1−50.

    Google Scholar

    [65] 张堯. 2020. 基于InSAR技术大同煤田沉陷区的监测与识别[D]. 北京: 中国地质大学(北京) , 1−66.

    Google Scholar

    [66] 赵峰. 2016. 多平台时序InSAR技术的地表形变联合监测方法研究[D]. 徐州: 中国矿业大学, 1−83.

    Google Scholar

    [67] 朱建军, 李志伟, 胡俊. 2017. InSAR变形监测方法与研究进展[J]. 测绘学报, 46(10): 1717−1733.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(561) PDF downloads(18) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint