Citation: | LIU Han, SUN Xianfeng, GUO Jing, ZHANG Shizhen, GOU Zhengbin, LI Jun, WANG Baodi. 2025. North−south−trending structure in Jilong Valley, Xizang and its effect on engineering geological safety[J]. Geology in China, 52(3): 1149-1164. doi: 10.12029/gc20220825004 |
This paper is the result of geological survey engineering.
Jilong Valley will serve as an important segment for significant engineering construction across the Himalayas in Xizang in the coming years. However, the systematic understanding of the fundamental geological characteristics of this area remains insufficient, especially the inadequate comprehension of N−S−trending structures, which may cause unexpected risks during the engineering construction.
This article systematically delineates the structural characteristics of the N−S−trending faults and joints in Jilong Valley through a combination of field geological surveys, joint statistics, audio−frequency magnetotellurics, geothermal investigations, and calcite U−series dating, in order to analyze the primary engineering geological risks associated with these N−S−trending structures.
The N−S−trending faults in Jilong Valley are generally small in scale, with a few cutting through the high Himalayan belt, and are also basin−controlling faults in the Jilong Basin. The formation and sedimentary evolution of the Jilong Basin are controlled by four N−S−trending normal faults in its eastern boundary and interior. The presence of seismic rocks near the eastern boundary faults and a large number of syn−sedimentary faults indicate intermittent activity in the basin. The N−S−trending joints exhibit a regional penetrative distribution, and the stress analysis reveals that they are controlled by a stress field similar to that of the N−S−trending rift.
The potential engineering geological risk sources associated with the N−S−trending structure in Jilong Valley encompass Holocene activity, as well as the control exerted over regional geothermal activity and geological disasters, including landslide, debris flows and related hazards. It is proposed that the N−S oriented structure represents one of the key focal points for geological safety risk assessment in the planning and construction of major engineering projects in Jilong Valley.
[1] | Cottle J M, Searle M P, Jessup M J, Crowley J L, Law R D. 2015. Rongbuk re−visited: Geochronology of leucogranites in the footwall of the South Tibetan detachment system, Everest Region, Southern Tibet[J]. Lithos, 227: 94−106. doi: 10.1016/j.lithos.2015.03.019 |
[2] | Du Yuansheng, Yu Wenchao. 2017. Earthquake−caused and non−earthquake−caused soft−sediment deformations[J]. Jouranl of Palaeogeography, 19(1): 65−72 (in Chinese with English abstract). |
[3] | Feng Yu, Ma Fengshan, Gong Chengcheng, Guo Jie, Wang Shanfei, Liu Ziceng. 2011. Data analysis method for optimized and dominant orientations of joints in rock mass[J]. Journal of Engineering Geology, 19(6): 887−892 (in Chinese with English abstract). |
[4] | Gao Lie, Zeng Lingsen, Hou Kejun, Guo Chunli, Tang Suohan, Xie Kejia, Hu Guyue. 2013. Episodic crustal anatexis and the formation of Paiku composite leucogranitic pluton in the Malashan Gneiss Dome, Southern Tibet[J]. Chinese Science Bulletin, 58(27): 2810−2822 (in Chinese with English abstract). doi: 10.1360/csb2013-58-27-2810 |
[5] | Gao Yanchao, Gong Linfeng, Cao Jiawen, Tie Yongbo, Lu Jiayan. 2024. The distribution and risk assessment of geo−hazards in the border areas of Xizang[J]. Sedimentary Geology and Tethyan Geology, 44(3): 467−477. |
[6] | Guo Jing, Li Wenchang, Li Guangming, Jiao Yanjie, Liang Shengxian. 2019. Application of multi−scale integrated geophysical method in prospecting prediction of Zhaxikang Pb−Zn−Sb−Au polymetallic deposit[J]. Earth Science, 44(6): 2129−2142 (in Chinese with English abstract). |
[7] | Lei Qiyun, Chai Chizhang, Meng Guangkui, Du Peng. 2015. Study on active fault engineering avoidance based on tectonic activity history[J]. Journal of Engineering Geology, 23(1): 161−169 (in Chinese with English abstract). |
[8] | Leloup P H, Maheo G, Arnaud N, Kali E, Boutonnet, E., Liu, D Y, Liu X H, Li H B. 2010. The South Tibet Detachment shear zone in the Dinggye area: Time constraints on extrusion models of the Himalayas[J]. Earth and Planetary Science Letters, 292: 1−16. doi: 10.1016/j.jpgl.2009.12.035 |
[9] | Liu Chunling, Qi Shengwen, Tong Liqiang, An Guoying, Li Xiaohui. 2010. Great landslides in Himalaya Mountain area and their occurrence with lithology[J]. Journal of Engineering Geology, 18(5): 669−676 (in Chinese with English abstract). |
[10] | Liu Chunling, Qi Shengwen, Tong Liqiang, Zhang Shishu, Zou Yu. 2016. Development characteristics of debris flows in Himalayas using remote sensing technology[J]. Journal of Engineering Geology, 24(3): 435−451 (in Chinese with English abstract). |
[11] | Liu Han, Li Fenqi, Zhou Fang, Li Jun, Gou Zhengbin, Yang Yang, Wang Baodi. 2018. Late Paleozoic earthquake events in the Nixiong area and its geological significance, western Lhasa block[J]. Earth Science, 43(8): 2767−2779 (in Chinese with English abstract). |
[12] | Liu Xiaobing, Liu Xiaohan, Leloup P H, Maheo G, Paquetie J L, Zhang Xingang, Zhou Xuejun. 2012. Ductile deformation within upper Himalaya crystalline sequence and geological implications, in Nyalam area, Southern Tibet.[J]. Chinese Science Bulletin, 57(17): 1562−1574 (in Chinese with English abstract). doi: 10.1360/csb2012-57-17-1562 |
[13] | Marco S, Agnon A. 1995. Prehistoric earthquake deformations near Masada, Dead Sea graben[J]. Geology, 23(8): 695−698. doi: 10.1130/0091-7613(1995)023<0695:PEDNMD>2.3.CO;2 |
[14] | Niu Xinsheng, Liu Xifang, Lü Yuanyuan, Wu Qian. 2023. Origin mechanism of thermal springs and their supply of minerals to the salt lake(Li−Rb−Cs) in the Tangqung Co watershed of Tibet. Geology in China, 50(4): 1163−1175 (in Chinese with English abstract). |
[15] | Pan G T, Wang L Q, Li R S, Yuan S H, Ji W H, Yin F G, Zhang W P, Wang B D. 2012. Tectonic evolution of the Qinghai−Tibet Plateau[J]. Journal of Asian Earth Sciences, 53: 3−14. doi: 10.1016/j.jseaes.2011.12.018 |
[16] | Pan Guitang, Wang Liquan, Li Xxingzhen, Wang Jiemin, Xu Qiang. 2001. The tectonic framework and spatial allocation of the archipelagic arc−basin systems on the Qinghai−Xizang Plateau[J]. Sedimentary Geology and Tethyan Geology, 21(3): 1−26 (in Chinese with English abstract). |
[17] | Peng Jianbing, Ma Ruiyong, Shao Tiequan. 2004. Basic relation between structural geology and engineering geology[J]. Earth Science Frontiers, 11(4): 535−549 (in Chinese with English abstract). |
[18] | Qiao Xiufu, Jiang Mei, Li Haibing, Guo Xianpu, Su Dechen, Xu Lehong. 2016. Soft−sediment defomation stuctures and their implication for tectonic evolution from Mesozoic to Cenozoic in the Longmen Shen[J]. Earth Science Frontiers, 23(6): 80−106 (in Chinese with English abstract). |
[19] | Shen T Y, Wang G C, Leloup P H, Van der Beek P, Bernet M, Cao K, Wang A, Liu C, Zhang K X. 2016. Controls on Cenozoic exhumation of the Tethyan Himalaya from fission−track thermochronology and detrital zircon U−Pb geochronology in the Gyirong basin area, southern Tibet [J]. Tectonics. 35(7): 1713−1734. |
[20] | Wang Chaode. 2008. Tectonic and Environmental Evolution of the Gyirong Basin, and its Relationship to the Uplift of Tibetan Plateau [D]. Beijing: Peking University, 1−69 (in Chinese with English abstract). |
[21] | Wang Peng, Chen Xiaohong, Shen Licheng, Xiao Qiong, Wu Xiaoqing. 2016. Reservoir temperature of geothermal anomaly area and its environmental effect in Tibet[J]. Geology in China, 43(4): 1429−1438 (in Chinese with English abstract). |
[22] | Wu Z H, Ye P S, Barosh P J, Wu Z H. 2011. The October 6, 2008 Mw 6.3 magnitude Damxung earthquake, Yadong−Gulu rift, Tibet, and implications for present−day crustal deformation within Tibet[J]. Journal of Asian Earth Sciences, 40(4): 943−957. doi: 10.1016/j.jseaes.2010.05.003 |
[23] | Wu Zhenhan, Zhao Liguo, Ye Peisheng, Hu Daogong, Zhou Chunjing. 2011. Oligocene thrust systems in central Tibetan Plateau[J]. Geology in China, 38(3): 522−536 (in Chinese with English abstract). |
[24] | Wu Zhonghai, Ha Guanghao, Zhao Genmo, He Lin. 2018. Tectonic analysis on abnormal dried up of Duoqing Co Lake of southern section of Yadong−Gulu rift in South Tibet during April, 2016[J]. Earth Science, 43(S2): 243−255 (in Chinese with English abstract). |
[25] | Xu Yadong, Zhang Kexin, Wang Guocan, Xiang Shuyuan, Jiang Shangsong Chen Fenning. 2010. Geological significance of Miocene−Early Pleistocene palynological zones in the Gyirong Basin, Southern Tibet [J]. Earth Science (Journal of China University of Geosciences), 35(5): 759−773 (in Chinese with English abstract). |
[26] | Yang Xiongying, Zhang Jinjiang, Qi Guowei, Wang Chaode, Guo Lei, Li Pengyuan, Liu Jiang. 2009. Structure and deformation around the Gyirong basin, northern Himalaya, and onset of the South Tibetan detachment system[J]. Science China: Earth Science, 52(8): 1046−1058 (in Chinese with English abstract). doi: 10.1007/s11430-009-0111-2 |
[27] | Yao Zhiyong, Meng Xianglian, Li Xiang, Miao Xiaoqi, Zhao Wen. 2019. Research on engineering geological environment characteristics and engineering geological problems of China−Nepal cross−border railway[J]. Railway Standard Design, 63(7): 28−34 (in Chinese with English abstract). |
[28] | Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogeny as constrained by along−strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth−Science Review, 76(1−2): 1−131. doi: 10.1016/j.earscirev.2005.05.004 |
[29] | Zhang J J, Santosh M, Wang X X, Guo L, Yang X Y, Zhang B. 2012. Tectonics of the northern Himalaya since the India−Asia collision[J]. Gondwana Research, 21(4): 939−960. doi: 10.1016/j.gr.2011.11.004 |
[30] | Zhang Jinjiang. 2007. A review on the extensional structures in the northern Himalaya and southern Tibet[J]. Geological Bulletin of China, 26(6): 639−649 (in Chinese with English abstract). |
[31] | Zhang Yongshuang, Guo Changbao, Yao Xin, Yang Zhihua, Wu Ruian, Du Guangliang. 2016. Research on the geohazard effect of active fault on the eastern margin of the Tibetan Plateau[J]. Acta Geoscientica Sinica, 37(3): 277−286 (in Chinese with English abstract). |
[32] | Zhang Yongshuang, Wu Ruian, Guo Changbao, Li Xiangquan, Li Xue, Ren Sanshao, Li Jinqiu. 2022. Geological safety evaluation of railway engineering construction in plateau mountainous region: Ideas and methods[J]. Acta Geologica Sinica, 96(5): 1736−1751 (in Chinese with English abstract). |
[33] | Zhang Zhenli, Sun Xiao, Li Guangdong, Zhang Jidong, Liu Hongzhang, Zhuan Shaopeng, Wei Wentong. 2006. New explanation of detachment structures in the Burang and Gyironggou regions, southern Xizang [J]. Sedimentary Geology and Tethyan Geology, 26(2): 1−6 (in Chinese with English abstract). |
[34] | Zhong Yan, Liu Qiao, Liao Haijun, Liu Shiyin. 2020. Glaciers and glacial lakes status and their related geo−hazards along three main China−Nepal corridors[J]. Mountain Reserrch, 38(2): 314−327 (in Chinese with English abstract). |
[35] | Zhou Bengang, Ran Hongliu. 2002. Discussion on the time criterion for identifying engineering active faults[J]. Journal of Engineering Geology, 10(3): 274−278 (in Chinese with English abstract). |
[36] | Zhu Jian, Wu Zhenlin, Lei Shuhui. 2017. Formation process and mechanism analysis of the super large−scale landslide at K81km of the national highway G216 in Tibet Jilong port[J]. Geotechnical Investigation & Surveying, 45(7): 20−24 (in Chinese with English abstract). |
[37] | 杜远生, 余文超. 2017. 地震和非地震引发的软沉积物变形[J]. 古地理学报, 19(1): 65−72. doi: 10.7605/gdlxb.2017.01.005 |
[38] | 冯羽, 马凤山, 巩城城, 郭捷, 王善飞, 刘自成. 2011. 节理岩体结构面优势产状确定方法研究[J]. 工程地质学报, 19(6): 887−892. doi: 10.3969/j.issn.1004-9665.2011.06.014 |
[39] | 高利娥, 曾令森, 侯可军, 郭春丽, 唐索寒, 谢克家, 胡古月, 王莉. 2013. 藏南马拉山穹窿佩枯错复合淡色花岗岩体的多期深熔作用[J]. 科学通报, 58(27): 2810−2822. |
[40] | 高延超, 龚凌枫, 曹佳文, 铁永波, 卢佳燕. 2024. 西藏边境地区地质灾害分布规律与危险性分析[J]. 沉积与特提斯地质, 44(3): 467−477. |
[41] | 郭镜, 李文昌, 李光明, 焦彦杰, 梁生贤. 2019. 多尺度综合地球物理方法在扎西康铅锌锑金多金属矿找矿预测中的应用[J]. 地球科学, 44(6): 2129−2142. |
[42] | 雷启云, 柴炽章, 孟广魁, 杜鹏. 2015. 基于构造活动历史的活断层工程避让研究[J]. 工程地质学报, 23(1): 161−169. |
[43] | 刘春玲, 祁生文, 童立强, 安国英, 李小慧. 2010. 喜马拉雅山地区重大滑坡灾害及其与地层岩性的关系研究[J]. 工程地质学报, 18(5): 669−676. doi: 10.3969/j.issn.1004-9665.2010.05.010 |
[44] | 刘春玲, 祁生文, 童立强, 张世殊, 邹宇. 2016. 喜马拉雅山地区泥石流发育特征研究[J]. 工程地质学报, 24(3): 435−451. |
[45] | 刘函, 李奋其, 周放, 李俊, 苟正彬, 杨洋, 王保弟. 2018. 拉萨地块西段尼雄地区晚古生代地震事件及其地质意义[J]. 地球科学. 43(8): 2767−2779. |
[46] | 刘小兵, 刘小汉, Leloup P H, Maheo G, Paquette J L, 张鑫刚, 周学君. 2012. 藏南聂拉木高喜马拉雅结晶岩系上部韧性变形年代学及地质意义[J]. 科学通报, 57(17): 1562−1574. |
[47] | 牛新生, 刘喜方, 吕苑苑, 伍倩. 2023. 西藏当雄错流域热泉成因机制及其对盐湖成矿物质(Li−Rb−Cs)的供给[J]. 中国地质, 50(4): 1163−1175. doi: 10.12029/gc20220527001 |
[48] | 潘桂棠, 王立全, 李兴振, 王洁民, 徐强. 2001. 青藏高原区域构造格局及其多岛弧盆系的空间配置[J]. 沉积与特提斯地质, 21(3): 1−26. doi: 10.3969/j.issn.1009-3850.2001.03.001 |
[49] | 彭建兵, 马润勇, 邵铁全. 2004. 构造地质与工程地质的基本关系[J]. 地学前缘, 11(4): 535−549. doi: 10.3321/j.issn:1005-2321.2004.04.020 |
[50] | 乔秀夫, 姜枚, 李海兵, 郭宪璞, 苏德辰, 许乐红. 2016. 龙门山中、新生界软沉积物变形及构造演化[J]. 地学前缘, 23(6): 80−106. |
[51] | 王朝德. 2008. 吉隆盆地构造、环境演化与青藏高原隆升[D]. 北京: 北京大学, 1−69. |
[52] | 王鹏, 陈晓宏, 沈立成, 肖琼, 吴孝情. 2016. 西藏地热异常区热储温度及其地质环境效应[J]. 中国地质, 43(4): 1429−1438. doi: 10.12029/gc20160426 |
[53] | 吴珍汉, 赵立国, 叶培盛, 胡道功, 周春景. 2011. 青藏高原中段渐新世逆冲推覆构造[J]. 中国地质, 38(3): 522−536. doi: 10.3969/j.issn.1000-3657.2011.03.002 |
[54] | 吴中海, 哈广浩, 赵根模, 何林. 2018. 西藏亚东−谷露裂谷南段多庆错2016年4月异常干涸的构造成因[J]. 地球科学, 43(S2): 243−255. |
[55] | 徐亚东, 张克信, 王国灿, 向树元, 江尚松, 陈奋宁. 2010. 西藏南部吉隆盆地中新世−早更新世孢粉组合带及其地质意义[J]. 地球科学(中国地质大学学报), 35(5): 759−773. |
[56] | 杨雄英, 张进江, 戚国伟, 王德朝, 郭磊, 李鹏远, 刘江. 2009. 吉隆盆地周缘构造变形特征及藏南拆离系启动年龄[J]. 中国科学: 地球科学, 52(8): 1046−1058. |
[57] | 姚志勇, 孟祥连, 李响, 苗晓岐, 赵文. 2019. 中尼跨境铁路工程地质环境特征及主要工程地质问题研究[J]. 铁道标准设计, 63(7): 28−34. |
[58] | 张进江. 2007. 北喜马拉雅及藏南伸展构造综述[J]. 地质通报, 26(6): 639−649. doi: 10.3969/j.issn.1671-2552.2007.06.003 |
[59] | 张永双, 郭长宝, 姚鑫, 杨志华, 吴瑞安, 杜国梁. 2016. 青藏高原东缘活动断裂地质灾害效应研究[J]. 地球学报, 37(3): 277−286. doi: 10.3975/cagsb.2016.03.03 |
[60] | 张永双, 吴瑞安, 郭长宝, 李向全, 李雪, 任三绍, 李金秋. 2022. 高原山区铁路工程建设地质安全评价: 思路与方法[J]. 地质学报, 96(5): 1736−1751. doi: 10.3969/j.issn.0001-5717.2022.05.014 |
[61] | 张振利, 孙肖, 李广栋, 张计东 刘洪章, 专少鹏, 魏文通. 2006. 西藏普兰、吉隆沟一带藏南拆离构造新认识[J]. 沉积与特提斯地质, 26(2): 1−6. doi: 10.3969/j.issn.1009-3850.2006.02.001 |
[62] | 钟妍, 刘巧, 廖海军, 刘时银. 2020. 中喜马拉雅山中—尼通道沿线冰川/冰湖变化及其相关灾害初步调查[J]. 山地学报, 38(2): 314−327. |
[63] | 周本刚, 冉洪流. 2002. 工程活动断裂鉴定的时限标准讨论[J]. 工程地质学报, 10(3): 274−278. doi: 10.3969/j.issn.1004-9665.2002.03.009 |
[64] | 祝建, 吴臻林, 雷曙辉. 2017. 西藏吉隆口岸G216国道K81特大型滑坡形成过程和机理分析[J]. 工程勘察, 45(7): 20−24. |
Division of structural units in southern Xizang (a) and simplified geological map of Jilong Valley (b), showing the polar stereographic projection and rose diagram of joints, travertine (hot spring) locations and inferred faults
North−south−trending fault outcrop of the Jilong Valley (a), North−south−trending linear image of the Donglinzangbu River (b)
East-west-trending magnetotelluric cectioin of the Jilong Basin (a), paleogeographic sketch map of fault−controlled basin (b)
Typical soft sedimentary deformation outcrop of Woma Formation in Jilong Basin
Field characteristics of typical north−south trending faults from Wengadong to Xiacun, Jilong Valley
Field characteristics of north−south trending joints of Jilong Valley
Relationship between north−south trending faults and geothermal spots of Jilong Valley
Field outcrop of geological hazards controlled by north−south trending structures of Jilong Valley