2024 Vol. 51, No. 4
Article Contents

PANG Yajie, LI Chunhui, HAN Zhantao, ZHANG Zhaoji, KONG Xiangke. 2024. Migration simulation and pollution assessment of Cr (III) and ammonia from tannery wastewater in typical vadose zone in North China Plain[J]. Geology in China, 51(4): 1280-1289. doi: 10.12029/gc20220518003
Citation: PANG Yajie, LI Chunhui, HAN Zhantao, ZHANG Zhaoji, KONG Xiangke. 2024. Migration simulation and pollution assessment of Cr (III) and ammonia from tannery wastewater in typical vadose zone in North China Plain[J]. Geology in China, 51(4): 1280-1289. doi: 10.12029/gc20220518003

Migration simulation and pollution assessment of Cr (III) and ammonia from tannery wastewater in typical vadose zone in North China Plain

    Fund Project: Supported by Natural Science Foundation of Hebei Province (No. D2020504003).
More Information
  • Author Bio: PANG Yajie, born in 1987, senior engineer, doctor candidate, majors in hydrogeology; E-mail: pangyajie@mail.cgs.gov.cn
  • Corresponding author: KONG Xiangke, born in 1987, associated researcher, engaged in soil and groundwater contamination mechanisms and remediation; E-mail: kongxiangke@mai.cgs.gov.cn.
  • This paper is the result of environmental geological survey engineering.

    Objective

    This study aims to elucidate the migration patterns of characteristic pollutants, i.e., chromium (Cr(III)) and ammonium nitrogen (NH4+–N), from tannery wastewater in the vadose zone of the North China Plain and to assess the potential risks of soil and groundwater contamination.

    Methods

    The adsorption and transport characteristics of Cr(III) and NH4+–N in typical silts were examined using soil column leaching experiments. Additionally, the vadose zone water flow and solute transport model established by Hydrus−1D was utilized to simulate and predict the time required for NH4+–N to reach the groundwater table at a depth of 0.5 m under continuous infiltration conditions, along with changes in concentrations at various depths.

    Results

    Under a constant head of 3 cm and a pollutant solution concentration (Cr(III) 20 mg/L and NH4+–N 250 mg/L) maintained for 120 d, the vertical migration distance of Cr(III) in the soil column was less than 10 cm, predominantly in the residual form (73%), with no detection of Cr(VI). By contrast, NH4+–N exhibited a stronger migration capability, penetrating a 50 cm thick silt column within 40 d. Under high salinity conditions (EC: 10.08 ms/cm), the migration of NH4+–N was controlled by adsorption, with a Kd of 25.87 L/kg, and no nitrification occurred. After 150 d of continuous leaching, NH4+–N migrated to the groundwater table (18 m depth) with concentrations exceeding the Class III Groundwater Quality Standard (0.5 mg/L, GB/T 14848–2017). By 223 d, it completely penetrated the vadose zone, severely contaminating the groundwater.

    Conclusions

    In high–salinity tannery wastewater, Cr (III) exhibits limited migration capacity in silt and is difficult to oxidize to Cr (VI), posing a lesser threat to groundwater. Conversely, NH4+–N rapidly migrates to the groundwater surface with water flow, posing a serious threat to groundwater safety.

  • 加载中
  • [1] Alibardi L, Cossu R. 2016. Pre–treatment of tannery sludge for sustainable landfilling[J]. Waste Management, 52: 202−211. doi: 10.1016/j.wasman.2016.04.008

    CrossRef Google Scholar

    [2] Barajas–Aceves M, Rios–Berber J, Oropeza–Mota J, Rodríguez–Vázquez R. 2014. Assessment of tannery waste in semi–arid soils under a simulated rainfall system[J]. Soil and Sediment Contamination: An International Journal, 23: 954−964. doi: 10.1080/15320383.2014.896861

    CrossRef Google Scholar

    [3] Chen Pei, Zhang Yongbo, Zheng Xiuqing, Zhao Xuehua. 2016. Prediction of the migration of ammonia nitrogen in vadose zone by using HYDRUS–1D model[J]. Water Power, 42(4): 10−12,30 (in Chinese with English abstract).

    Google Scholar

    [4] Chidambaram S, Karmegam U, Prasanna M, Sasidhar P. 2012. A study on evaluation of probable sources of heavy metal pollution in groundwater of Kalpakkam region, South India[J]. The Environmentalist, 32: 371−382. doi: 10.1007/s10669-012-9398-1

    CrossRef Google Scholar

    [5] China C R, Maguta M M, Nyandoro S S, Hilonga A, Kanth S V, Njau K N. 2020. Alternative tanning technologies and their suitability in curbing environmental pollution from the leather industry: A comprehensive review[J]. Chemosphere, 254: 1−18.

    Google Scholar

    [6] Cyrus J S, Reddy G. 2011. Sorption and desorption of ammonium by zeolite: Batch and column studies[J]. Journal of Environmental Science and Health Part A, 46: 408−414. doi: 10.1080/02773813.2010.542398

    CrossRef Google Scholar

    [7] Ding Shaolan, Li Ling, Zhao Mengjun. 2009. Investigation on the characteristic of COD and nitrogen in waste water from making cattle leather[J]. Leather Science and Engineering, 19(2): 19−21 (in Chinese with English abstract).

    Google Scholar

    [8] Du Hangtao, Xu Rui, Xu Hui, Shi Wenqing, Deng Haoyuan, He Junlong, Zhu Lin. 2022. Ammonia nitrogen removal by nitrifying bacteria from different habitats[J]. Journal of Environmental Engineering Technology, 12(1): 81−91 (in Chinese with English abstract).

    Google Scholar

    [9] Evanylo G, Sukkariyah B, Anderson Eborall M, Zelazny L. 2006. Bioavailability of heavy metals in biosolids−amended soil[J]. Communications in Soil Science and Plant Analysis, 37: 2157−2170. doi: 10.1080/00103620600817309

    CrossRef Google Scholar

    [10] Fu Xuezhong. 2012. Progress in resource utilization of tannery solid wastes[J]. Leather and Chemicals, 29(1): 19−22 (in Chinese with English abstract).

    Google Scholar

    [11] Guo Huaming, Gao Zhipeng, Xiu Wei. 2022. Research status and trend of coupling between nitrogen cycle and arsenic migration and transformation in groundwater systems[J]. Hydrogeology & Engineering Geology, 49(3): 153−163 (in Chinese with English abstract).

    Google Scholar

    [12] He Z, Hu Y, Yin Z, Hu Y, Zhong H. 2016. Microbial diversity of chromium–contaminated soils and characterization of six chromium–removing bacteria[J]. Environmental Management, 57: 1319−1328.

    Google Scholar

    [13] Hu Shuyan. 2008. Adsorption and Competitive Adsorption of Heavy Metals on Humic Acid and Fulvic Acid [D]. Nanjing: Nanjing Forestry University, 1−63 (in Chinese with English abstract).

    Google Scholar

    [14] Huang Xuefen, Meng Min, Xie Gang, Luo Yuchen, Li Lei, Wang Weisheng. 2017. Study on speciation distribution of Cr and reduction of Cr (VI) in tannery sludge[J]. Journal of Guangxi University(Natural Science Edition), 42(5): 1930−1936 (in Chinese with English abstract).

    Google Scholar

    [15] Jellali S, Diamantopoulos E, Kallali H, Bennaceur S, Anane M, Jedidi N. 2010. Dynamic sorption of ammonium by sandy soil in fixed bed columns: Evaluation of equilibrium and non–equilibrium transport processes[J]. Journal of Environmental Management, 91: 897−905.

    Google Scholar

    [16] Kong Xiangke, Huang Guanxing, Han Zhantao, Li Zhitao, Wand Pping, Xu Youming. 2017. Vertical distribution characteristics of pollutants in a typical soil profile in the tannery sludge landfill site[J]. South–to–North Water Transfers and Water Science & Technology, 15(6): 96−100 (in Chinese with English abstract).

    Google Scholar

    [17] Kong X, Li C, Wang P, Huang G, Li Z, Han Z. 2019. Soil pollution characteristics and microbial responses in a vertical profile with long–term tannery sludge contamination in Hebei, China[J]. International Journal of Environmental Research and Public Health, 16: 563. doi: 10.3390/ijerph16040563

    CrossRef Google Scholar

    [18] Kong X, Wang Y, Ma L, Li H, Han Z. 2022. Impact of δ–MnO2 on the chemical speciation and fractionation of Cr (III) in contaminated soils[J]. Environmental Science and Pollution Research, 29: 45328–45337.

    Google Scholar

    [19] Kotaś J, Stasicka Z. 2000. Chromium occurrence in the environment and methods of its speciation[J]. Environmental Pollution, 107: 263−283. doi: 10.1016/S0269-7491(99)00168-2

    CrossRef Google Scholar

    [20] Li Wei, He Jiangtao, Liu Liya, Gao Peng, Ji Yaping. 2013. Application of Hydrus–1D software in groundwater contamination risk assessment[J]. China Environmental Science, 33(4): 639−647 (in Chinese with English abstract).

    Google Scholar

    [21] Liu Gang, Gao Zhipeng, Qu Jihong. 2017. Effects of hydraulic parameters in the unsaturated zones on pressure head and solute transport under the influence of river[J]. North China Institute of Water Conservancy and Hydroelectric Power, 38(2): 72−76 (in Chinese with English abstract).

    Google Scholar

    [22] Ma Hongrui, Xi Yinyin, Chen Zhanguang. 2010. Emision Factor of Ammonia Nitrogen and Total Nitrogen from Leather Process[J]. China Leather, 39(1): 6−10 (in Chinese with English abstract).

    Google Scholar

    [23] Mao Jiajun, Liu Qing. 2019. Study on the migration of chromiun (Ⅵ) in the vadose zone of coal ash stacking yard based on Hydrus–1D[J]. Energy Environmental Protection, 33(1): 13−18 (in Chinese with English abstract).

    Google Scholar

    [24] Pang Yajie, Liu Changli, Wang Cuiling, Zhang Yun, Pei Lixin, Hou Hongbing, Wang Zhiliang. 2013. A study of the migration of factory pollutants COD_Cr in the vasose zone using numerical simulation methods[J]. Hydrogeology & Engineering Geology, 40(3): 115−120 (in Chinese with English abstract).

    Google Scholar

    [25] Pantazopoulou E, Zouboulis A. 2018. Chemical toxicity and ecotoxicity evaluation of tannery sludge stabilized with ladle furnace slag[J]. Journal of Environmental Management, 216: 257−262. doi: 10.1016/j.jenvman.2017.03.077

    CrossRef Google Scholar

    [26] Reijonen I, Hartikainen H. 2016. Oxidation mechanisms and chemical bioavailability of chromium in agricultural soil–pH as the master variable[J]. Applied Geochemistry, 74: 84−93. doi: 10.1016/j.apgeochem.2016.08.017

    CrossRef Google Scholar

    [27] Sungur A, Soylak M, Yilmaz S, Özcan H. 2014. Determination of heavy metals in sediments of the Ergene River by BCR sequential extraction method[J]. Environmental Earth Sciences, 72: 3293−3305. doi: 10.1007/s12665-014-3233-6

    CrossRef Google Scholar

    [28] Wang C, Liu C, Pei L, Pang Y, Zhang Y, Hou H. 2015. Experimental and modeling study of pure terephthalic acid (PTA) wastewater transport in the vadose zone[J]. Environmental Science: Processes & Impacts, 17: 389–397.

    Google Scholar

    [29] Wang D, He S, Shan C, Ye Y, Ma H, Zhang X, Zhang W, Pan B. 2016. Chromium speciation in tannery effluent after alkaline precipitation: Isolation and characterization[J]. Journal of Hazardous Materials, 316: 169−177. doi: 10.1016/j.jhazmat.2016.05.021

    CrossRef Google Scholar

    [30] Wu Yanqing. 2007. Dynamics of Fluid Folw and Contaminant Transport in Porous Media [M]. Shanghai: Shanghai Jiao Tong University Press (in Chinese with English abstract).

    Google Scholar

    [31] Xia Xing, Yang Jianjun. 2019. Molecular sequestration mechanisms of heavy metals by iron oxides in soils using synchrotron–based techniques: A review[J]. Chinese Journal of Applied Ecology, 30(1): 348−358 (in Chinese with English abstract).

    Google Scholar

    [32] Xiao Wendan. 2014. Migration and Transformation Characteristics of Chromium in Typical Soil and Pollution Diagnosis Index [D]. Hangzhou: Zhejiang University, 1−141 (in Chinese with English abstract).

    Google Scholar

    [33] Xu Chengbin, Meng Xuelian, Ma Xiping, Zhang Lihong, Li Yaoyao, Bao Kun. 2012. Research on influence of Cr pollution on index for biological characteristics of soil quality[J]. Environmental Science and Management, 37(8): 1−3 (in Chinese with English abstract).

    Google Scholar

    [34] Zhang Dazheng, Li Haiming, Zhan Xiaoyan, Xia Yuezhen. 2014. Characteristics of groundwater salt pollution in a typical leather–contaminated site[J]. Hydrogeology & Engineering Geology, 41(2): 18−23 (in Chinese with English abstract).

    Google Scholar

    [35] Zhou Jianjun, Ma Hongrui, Dong Hexiang, Du Kai, Li Ka. 2018. Research progress on resourceful treatment and disposal of tannery sludge[J]. China Leather, 47(4): 44−49 (in Chinese with English abstract).

    Google Scholar

    [36] 陈佩, 张永波, 郑秀清, 赵雪花. 2016. 氨氮在包气带中迁移的HYDRUS–1D预测模型[J]. 水力发电, 42(4): 10−12. doi: 10.3969/j.issn.0559-9342.2016.04.003

    CrossRef Google Scholar

    [37] 丁绍兰, 李玲, 赵梦君. 2009. 牛皮制革废水COD和氮素排放特征研究[J]. 皮革科学与工程, 19(2): 19−21. doi: 10.3969/j.issn.1004-7964.2009.02.003

    CrossRef Google Scholar

    [38] 杜杭涛, 徐睿, 徐慧等, 施文卿, 邓皓元, 何俊龙, 朱琳. 2022. 不同生境来源硝化细菌群对氨氮的去除性能[J]. 环境工程技术学报, 12(1): 81−91. doi: 10.12153/j.issn.1674-991X.20210380

    CrossRef Google Scholar

    [39] 傅学忠. 2012. 制革固体废弃物的资源化利用进展[J]. 皮革与化工, 29(1): 19−22. doi: 10.3969/j.issn.1674-0939.2012.01.006

    CrossRef Google Scholar

    [40] 郭华明, 高志鹏, 修伟. 2022. 地下水氮循环与砷迁移转化耦合的研究现状和趋势[J]. 水文地质工程地质, 49(3): 153−163.

    Google Scholar

    [41] 胡书燕. 2008. 腐殖酸对重金属的吸附作用及金属竞争吸附特征[D]. 南京: 南京林业大学, 1−63.

    Google Scholar

    [42] 黄雪芬, 蒙敏, 谢刚, 罗宇晨, 李磊, 王维生. 2017. 制革污泥中Cr形态分布及Cr(Ⅵ)还原性研究[J]. 广西大学学报(自然科学版), 42(5): 1930−1936.

    Google Scholar

    [43] 孔祥科, 黄国鑫, 韩占涛, 李志涛, 王平, 许有明. 2017. 制革污泥堆存场地典型土壤剖面中污染物的垂向分布特征[J]. 南水北调与水利科技, 15(6): 96−100.

    Google Scholar

    [44] 李玮, 何江涛, 刘丽雅, 高鹏, 纪亚萍. 2013. Hydrus–1D软件在地下水污染风险评价中的应用[J]. 中国环境科学, 33(4): 639−647. doi: 10.3969/j.issn.1000-6923.2013.04.009

    CrossRef Google Scholar

    [45] 刘钢, 高志鹏, 屈吉鸿. 2017. 河流影响下包气带水力参数对压力水头及溶质运移的影响[J]. 华北水利水电大学学报(自然科学版), 38(2): 72−76.

    Google Scholar

    [46] 马宏瑞, 郗引引, 陈占光. 2010. 制革过程中氨氮和总氮产污系数的试验模拟核算[J]. 中国皮革, 39(1): 6−10.

    Google Scholar

    [47] 茅佳俊, 刘清. 2019. 基于Hydrus–1D的粉煤灰堆场Cr(Ⅵ)在包气带中迁移规律的研究[J]. 能源环境保护, 33(1): 13−18. doi: 10.3969/j.issn.1006-8759.2019.01.003

    CrossRef Google Scholar

    [48] 庞雅婕, 刘长礼, 王翠玲, 张云, 裴丽欣, 侯宏冰, 王志良. 2013. 某化工厂废液COD_(Cr)在包气带中的迁移规律及数值模拟[J]. 水文地质工程地质, 40(3): 115−120.

    Google Scholar

    [49] 仵彦卿. 2007. 多孔介质污染物迁移动力学[M]. 上海: 上海交通大学出版社.

    Google Scholar

    [50] 夏星, 杨建军. 2019. 基于同步辐射技术研究土壤铁氧化物固定重金属分子机制的进展[J]. 应用生态学报, 30(1): 348−358.

    Google Scholar

    [51] 肖文丹. 2014. 典型土壤中铬迁移转化规律和污染诊断指标[D]. 杭州: 浙江大学, 1−141.

    Google Scholar

    [52] 徐成斌, 孟雪莲, 马溪平, 张利红, 李瑶瑶, 包坤. 2012. 铬污染对土壤环境质量生物特征指标的影响研究[J]. 环境科学与管理, 37(8): 1−3. doi: 10.3969/j.issn.1673-1212.2012.08.001

    CrossRef Google Scholar

    [53] 张达政, 李海明, 詹晓燕, 夏跃珍. 2014. 典型制革污染场地地下水盐污染特征[J]. 水文地质工程地质, 41(2): 18−23.

    Google Scholar

    [54] 周建军, 马宏瑞, 董贺翔, 杜凯, 李卡. 2018. 制革污泥资源化处理与处置研究进展[J]. 中国皮革, 47(4): 44−49.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(5)

Article Metrics

Article views(551) PDF downloads(66) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint