2023 Vol. 50, No. 1
Article Contents

YANG Yuzhen, GAO Baolong, HUANG Yi, XIAO Dechang, CHEN Fei, LUO Heng, LI Lifen, WU Gang. 2023. The adsorption characteristics of Pb2+ and Cd2+ by straw based biochars generated at medium-high pyrolysis temperatures[J]. Geology in China, 50(1): 52-60. doi: 10.12029/gc20220509001
Citation: YANG Yuzhen, GAO Baolong, HUANG Yi, XIAO Dechang, CHEN Fei, LUO Heng, LI Lifen, WU Gang. 2023. The adsorption characteristics of Pb2+ and Cd2+ by straw based biochars generated at medium-high pyrolysis temperatures[J]. Geology in China, 50(1): 52-60. doi: 10.12029/gc20220509001

The adsorption characteristics of Pb2+ and Cd2+ by straw based biochars generated at medium-high pyrolysis temperatures

    Fund Project: Supported by Natural Resources Science and Technology project of Hubei Province (No.ZRZY2020KJ05)
More Information
  • Author Bio: YANG Yuzhen, male, born in 1986, bachelor, senior engineer, engaged in mineral and environmental geochemical survey; E-mail: 527657213@qq.com
  • Corresponding author: GAO Baolong, male, born in 1979, doctor, professor level senior engineer, engaged in mineral exploration and applied geophysics; E-mail: 45371309@qq.com 
  • This paper is the result of environmental geological survey engineering.

    Objective

    Effect of pyrolysis temperature and raw materials on adsorption of heavy metals by straw-based biochar.

    Methods

    Corn straw and rice straw were used as raw materials to prepare straw based biochars (i.e. S450, S600, Y450, Y600) under anoxic conditions at 450℃ and 600℃. And the differences in their surface characteristics and their adsorption capacity for Pb2+ and Cd2+ in solutions were studied.

    Results

    The results showed that the pyrolysis temperature had a significant effect on the physicochemical properties of different biochars. With the increase of pyrolysis temperature, the C contents of biochars increased, but N, H, O contents decreased. Besides, their specific surface area, total pore volume and average pore diameter all showed a decreased tendency. As the result of the increase of pyrolysis temperature, the adsorption capacity and rate of Pb2+ and Cd2+ increased. Meanwhile, the adsorption capacity of Pb2+ and Cd2+ of corn straw biochar was significantly higher than that of rice straw biochar. The adsorption of Pb2+ and Cd2+ by the four biochars was dominated by chemical precipitation.

    Conclusions

    The adsorption of Pb2+ and Cd2+ was mainly multilayer and monolayer adsorption, respectively. Straw based biochars with higher pyrolysis temperature had higher adsorption capacity for Pb2+ and Cd2+. This study is useful for straw resource utilization and heavy metal pollution remediation.

  • 加载中
  • Baig S A, Zhu J, Muhammad N, Sheng T T, Xu X H. 2014. Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(Ⅲ, Ⅴ) adsorption from aqueous solutions[J]. Biomass and Bioenergy, 71: 299-310. doi: 10.1016/j.biombioe.2014.09.027

    CrossRef Google Scholar

    Chen B L, Johnson E J, Chefetz B, Zhu L Z, Xing B S. 2005. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: Role of polarity and accessibility[J]. Environmental Science & Technology, 39(16): 6138-6146.

    Google Scholar

    Chen T, Zhang Y X, Wang H T, Lu W J, Zhou Z Y, Zhang Y C, Ren L L. 2014. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge[J]. Bioresource Technology, 164(7): 47-54.

    Google Scholar

    Cheng S, Zhao S D, Guo H, Xing B L, Liu Y Z, Zhang C X, Ma M J. 2022. High-efficiency removal of lead/cadmium from wastewater by MgO modified biochar derived from crofton weed[J]. Bioresource Technology, 343: 126081. doi: 10.1016/j.biortech.2021.126081

    CrossRef Google Scholar

    Dong L H, Hou L A, Wang Z S, Gu P, Chen G Y, Jiang R F. 2018. A new function of spent activated carbon in BAC process: Removing heavy metals by ion exchange mechanism[J]. Journal of Hazardous Materials, 359(5): 76-84.

    Google Scholar

    Dong X L, Ma L Q, Li Y C. 2011. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing[J]. Journal of Hazardous Materials, 190(1/3): 909-915.

    Google Scholar

    Gunasekara A S, Simpson M J, Xing B S. 2003. Identification and characterization of sorption domains in soil organic matter using structurally modified humic acids[J]. Environmental Science & Technology, 37(5): 852-858.

    Google Scholar

    Guo Wenjuan, Liang Xuefeng, Lin Dasong, Xu Yingming, Wang Lin, Sun Yuebing, Qin Xu. 2013. Adsorption of Cd2+ on biochar from aqueous solution[J]. Environmental Science, 34(9): 3716-3721 (in Chinese with English abstract).

    Google Scholar

    Huang Hua, Wang Yaxiong, Tang Jingchun, Zhu Wenying. 2014. Properties of maize stalk biochar produced under different pyrolysis temperatures and its sorption capability to naphthalene[J]. Environmental Science, 35(5): 1884-1890 (in Chinese with English abstract).

    Google Scholar

    Inyang M, Gao B, Ding W C, Pullammanappallil P, Zimmerman A R, Gao X D. 2011. Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse[J]. Separation Science & Technology, 46(12): 1950-1956.

    Google Scholar

    Inyang M, Gao B, Yao Y, Xue Y W, Zimmerman A R, Pullammanappallil P, Gao X D. 2012. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass[J]. Bioresoure Technology, 110: 50-56. doi: 10.1016/j.biortech.2012.01.072

    CrossRef Google Scholar

    Kaur M, Tewatia P, Rattan G, Singhal S, Kaushik A. 2021. Diamidoximated cellulosic bioadsorbents from hemp stalks for elimination of uranium (Ⅵ) and textile waste in aqueous systems[J]. Journal of Hazardous Materials, 417(5): 126060.

    Google Scholar

    Keiluweit M, Nico P S, Johnson M G, Kleber M. 2010. Dynamic molecular structure of plant biomass-derived black carbon(biochar)[J]. Environmental Science & Technology, 44(4): 1247-1253.

    Google Scholar

    Knudsen J N, Jensen P A, Lin W G, Frandsen F J, Johansen K D. 2004. Sulfur transformations during thermal conversion of herbaceous biomass[J]. Energy Fuels, 18(3): 810-819. doi: 10.1021/ef034085b

    CrossRef Google Scholar

    Kruk M, Jaroniec M, Gadkaree K P. 1999. Determination of the specific surface srea and the pore size of microporous carbons from adsorption potential distributions[J]. Langmuir, 15(4): 1442-1448. doi: 10.1021/la980789f

    CrossRef Google Scholar

    Lehmann J, Gaunt J, Rondon M. 2006. Bio-char sequestration in terrestrial ecosystems: A review[J]. Mitigation and Adaptation Strategies for Global Change, 11(2): 403-427. doi: 10.1007/s11027-005-9006-5

    CrossRef Google Scholar

    Lehmann J, Rillig M C, Thies J, Masiello C A, Hockaday W C, Crowley D. 2011. Biochar effects on soil biota: A review[J]. Soil Biology and Biochemistry, 43(9): 1812-1836. doi: 10.1016/j.soilbio.2011.04.022

    CrossRef Google Scholar

    Li Ruiyue, Chen De, Li Lianqing, Pan Genxing, Chen Jianqing, Guo Hu. 2015. Adsorption of Pb2+ and Cd2+ in aqueous solution by biochars derived from different crop residues[J]. Journal of AgroEnvironment Science, 34(5): 1001-1008 (in Chinese with English abstract).

    Google Scholar

    Liao Xikai, Man Xiaoyuan, Ning Xunan, Wu Junji, Wang Yujie, Sun Jian. 2015. Effects of carbonization temperature on characteristics of activated carbon from waste filter bag[J]. Acta Science Circumstantiae, 35(11): 3775-3780 (in Chinese with English abstract).

    Google Scholar

    Lin S W, Yang X, Liu L H, Li A Y, Qiu G H. 2022. Electrosorption of cadmium and arsenic from wastewaters using nitrogen-doped biochar: Mechanism and application[J]. Journal of Environmental Management, 301: 113921. doi: 10.1016/j.jenvman.2021.113921

    CrossRef Google Scholar

    Liu R P, Xu Y N, Zhang J H, Wang W K, Elwardany R M. 2020. Effects of heavy metal pollution on farmland soils and crops: A case study of the Xiaoqinling Gold Belt, China[J]. China Geology, 3: 402-410.

    Google Scholar

    Liu Yignying, Qin Haizhi, Li Lianqing, Pan Genxing, Zhang Xuhui, Zheng Jinwei, Han Xiaojun, Yu Xinyan. 2012. Adsorption of Cd2+ and Pb2+ in aqueous solution by biochars produced from the pyrolysis of different crop feedstock[J]. Ecology and Environmental Sciences, 21(1): 146-152 (in Chinese with English abstract).

    Google Scholar

    Lü D, Liu Y, Zhou J S, Yang K L, Lou Z M, Baig S A, Xu X H. 2018. Application of EDTA-functionalized bamboo activated carbon(BAC) for Pb(Ⅱ) and Cu(Ⅱ) removal from aqueous solutions[J]. Applied Surface Science, 428: 648-658. doi: 10.1016/j.apsusc.2017.09.151

    CrossRef Google Scholar

    Mohan D, Pittman C U, Bricka M, Smith F, Yancey B, Mohammad J, Steele P H, Alexandre-Franco M F, Gómez S V, Gong H. 2007. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during Bio-Oil production[J]. Journal of Colloid and Interface Science, 310(1): 57-73. doi: 10.1016/j.jcis.2007.01.020

    CrossRef Google Scholar

    Mukherjee A, Zimmerman A R, Harris W. 2011. Surface chemistry variations among a series of laboratory-produced biochars[J]. Geoderma, 163(3/4): 247-255.

    Google Scholar

    Peng W J, Li H Q, Liu Y Y, Song S X. 2017. A review on heavy metal ions adsorption from water by graphene oxide and its composites[J]. Journal of Molecular Liquids, 230: 496-504. doi: 10.1016/j.molliq.2017.01.064

    CrossRef Google Scholar

    Poucke R V, Ainsworth J, Maeseele M, Ok Y S, Meers E, Tack F M G. 2018. Chemical stabilization of Cd-contaminated soil using biochar[J]. Applied Geochemistry, 88: 122-130. doi: 10.1016/j.apgeochem.2017.09.001

    CrossRef Google Scholar

    Ro K S, Cantrell K B, Hunt P G. 2010. High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar[J]. Industrial & Engineering Chemistry Research, 49(20): 10125-10131.

    Google Scholar

    Sánchez-Polo M, Rivera-Utrilla J. 2002. Adsorbent-adsorbate interactions in the adsorption of Cd(Ⅱ) and Hg(Ⅱ) on ozonized activated carbons[J]. Environmental Science & Technology, 36(17): 3850-3854.

    Google Scholar

    Sarfraz R, Li S W, Yang W H, Zhou B Q, Xing S H. 2019. Assessment of physicochemical and nutritional characteristics of waste mushroom substrate biochar under various pyrolysis temperatures and times[J]. Sustainability, 11(1): 1-14.

    Google Scholar

    Tansel B, Sager J, Rector T, Garland J, Strayer R F, Levine L, Roberts M, Hummerick M, Bauer J. 2006. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes[J]. Separation & Purification Technology, 51(1): 40-47.

    Google Scholar

    Wang Changyu, Zhang Surong, Liu Jihong, Xing Yi, Li Mingze, Liu Qingxue. 2021. Pollution level and risk assessment of heavy metals in a metal smelting area of Xiong'an New District[J]. Geology in China, 48(6): 1697-1709 (in Chinese with English abstract).

    Google Scholar

    Wang H T, Keller A A, Clark K K. 2011. Natural organic matter removal by adsorption onto magnetic permanently confined micelle arrays[J]. Journal of Hazardous Materials, 194: 156-161. doi: 10.1016/j.jhazmat.2011.07.093

    CrossRef Google Scholar

    Wang X D, Li C X, Li Z W, Yu G W, Yang Y. 2019. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge[J]. Ecotoxicology and Environmental Safety, 168: 45-52. doi: 10.1016/j.ecoenv.2018.10.022

    CrossRef Google Scholar

    Wu Min, Ning Ping Wu Di. 2013. Heavy metal sorption characteristics of biochars derived from Dianchi Lake sediment[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2: 102-106 (in Chinese with English abstract).

    Google Scholar

    Yang H, Xu R, Xue X M, Li F T, Li G T. 2008. Hybrid surfactanttemplated mesoporous silica formed in ethanol and its application for heavy metal removal[J]. Journal of Hazardous Materials, 152(2): 690-698. doi: 10.1016/j.jhazmat.2007.07.060

    CrossRef Google Scholar

    Yang X D, Wan Y S, Zheng Y L, He F, Yu Z B, Huang J, Wang H L, Ok Y S, Jiang Y S, Gao B. 2019. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review[J]. Chemical Engineering Journal, 366(15): 608-621.

    Google Scholar

    Yang Yuzhen, Liu Senrong, Fei Xinqiang, Li Lifen, Xiao Mingshun, Gao Baolong. 2020. Study on the occurrence and transformation of cadmium in soil-rice around the Daye Tonglushan mining area[J]. Resources Environment & Engineering, 34(1): 46-49 (in Chinese with English abstract).

    Google Scholar

    Yang Yuzhen, Liu Senrong, Yang Yong, Li Lifen, Liu Shenghua, Kang Yihua, Fei Xinqiang, Gao Yunliang, Gao Baolong. 2021. Heavy metals in peri-urban soil of Huangshi: Their distribution, risk assessment, and source identification[J]. Geophysical & Geonchemical Exploration, 45(5): 1147-1156 (in Chinese with English abstract).

    Google Scholar

    Ye L Y, Zhang J M, Zhao J, Luo Z M, Tu S, Yin Y W. 2015. Properties of biochar obtained from pyrolysis of bamboo shoot shell[J]. Journal of Analytical and Applied Pyrolysis, 114: 172-178. doi: 10.1016/j.jaap.2015.05.016

    CrossRef Google Scholar

    Yin Dechao, Qi Xiaofan, Wang Yushan, Xu Rongzhen, An Yonghui, Wang Xuqing, Geng Hongjie. 2022. Geochemical characteristics and ecological risk assessment of heavy metals in surface sediments of Baiyangdian Lake, Xiong'an New Area[J]. Geology in China, 49(3): 979-992(in Chinese with English abstract).

    Google Scholar

    Yoon K, Cho D W, Tsang D C W, Bolan N, Rinklebe J, Song H. 2017. Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water[J]. Bioresource Technology, 246: 69-75. doi: 10.1016/j.biortech.2017.07.020

    CrossRef Google Scholar

    Zuo S. 2018. A review of the control of pore texture of phosphoric acid-activated carbons[J]. Xinxing Tan Cailiao/New Carbon Materials, 33(4): 289-302.

    Google Scholar

    郭文娟, 梁学峰, 林大松, 徐应明, 王林, 孙约兵, 秦旭. 2013. 土壤重金属钝化修复剂生物炭对镉的吸附特性研究[J]. 环境科学, 34(9): 3716-3721.

    Google Scholar

    黄华, 王雅雄, 唐景春, 朱文英. 2014. 不同烧制温度下玉米秸秆生物炭的性质及对萘的吸附性能[J]. 环境科学, 35(5): 1884-1890.

    Google Scholar

    李瑞月, 陈德, 李恋卿, 潘根兴, 陈建清, 郭虎. 2015. 不同作物秸秆生物炭对溶液中Pb2+、Cd2+的吸附[J]. 农业环境科学学报, 34(5): 1001-1008.

    Google Scholar

    廖希凯, 满小媛, 宁寻安, 巫俊楫, 王玉洁, 孙健. 2015. 炭化温度对废旧布袋制备活性炭性能的影响及其表征[J]. 环境科学学报, 35(11): 3775-3780.

    Google Scholar

    刘莹莹, 秦海芝, 李恋卿, 潘根兴, 张旭辉, 郑金伟, 韩晓君, 俞欣研. 2012. 不同作物原料热裂解生物质炭对溶液中Cd2+和Pb2+的吸附特性[J]. 生态环境学报, 21(1): 146-152.

    Google Scholar

    王昌宇, 张素荣, 刘继红, 邢怡, 李名则, 刘庆学. 2021. 雄安新区某金属冶炼区土壤重金属污染程度及风险评价[J]. 中国地质, 48(6): 1697-1709.

    Google Scholar

    吴敏, 宁平, 吴迪. 2013. 滇池底泥制备的生物炭对重金属的吸附研究[J]. 昆明理工大学学报(自然科学版), (2): 102-106.

    Google Scholar

    杨育振, 刘森荣, 费新强, 李丽芬, 肖明顺, 高宝龙. 2020. 大冶铜绿山矿区周边土壤-水稻中镉赋存状态及转化迁移规律研究[J]. 资源环境与工程, 34(1): 46-49.

    Google Scholar

    杨育振, 刘森荣, 杨勇, 李丽芬, 刘圣华, 亢益华, 费新强, 高云亮, 高宝龙. 2021. 黄石市城市边缘区土壤重金属分布特征、风险评价及溯源分析[J]. 物探与化探, 45(5): 1147-1156.

    Google Scholar

    尹德超, 祁晓凡, 王雨山, 徐蓉桢, 安永会, 王旭清, 耿红杰. 2022. 雄安新区白洋淀表层沉积物重金属地球化学特征及生态风险评价[J]. 中国地质, 49(3): 979-992.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(4)

Article Metrics

Article views(3113) PDF downloads(164) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint