2022 Vol. 49, No. 4
Article Contents

SHANG Yongming, LI Xiaowei, ZHU Xinyou, ZOU Tao, HUANG Xingkai, CHENG Xiyin, WANG Li, WANG Shuxing. 2022. Petrogenesis and its implications for the lithospheric thinning of the Wushijiazi pluton in Chifeng, Inner Mongolia[J]. Geology in China, 49(4): 1323-1345. doi: 10.12029/gc20220421
Citation: SHANG Yongming, LI Xiaowei, ZHU Xinyou, ZOU Tao, HUANG Xingkai, CHENG Xiyin, WANG Li, WANG Shuxing. 2022. Petrogenesis and its implications for the lithospheric thinning of the Wushijiazi pluton in Chifeng, Inner Mongolia[J]. Geology in China, 49(4): 1323-1345. doi: 10.12029/gc20220421

Petrogenesis and its implications for the lithospheric thinning of the Wushijiazi pluton in Chifeng, Inner Mongolia

    Fund Project: Supported by Subjects of Key Special Projects of National Key R&D Program "Exploration and Exploitation of Deep Earth Resources" (No. 2017YFC0601305, No. 2017YFC0602403), National Natural Science Foundation of China (No. 41602098), the Project of China Geological Survey (No. DD20160072)
More Information
  • Author Bio: SHANG Yongming, male, born in 1994, master candidate, engaged in magmatism and mineral resources-environment; E-mail: shangyongming@outlook.com
  • Corresponding author: ZHU Xinyou, male, born in 1965, professorate senior engineer, engaged in mineral geology; E-mai: zhuxinyou@outlook.com 
  • This paper is the result of geological survey engineering.

    Objective

    The Wushijiazi pluton in Chifeng area, Inner Mongolia, is located in the southwestern part of the metallogenic belt of the southern Great Xing'an Range. A systematic geochronological and geochemical study can provide insights into understanding of regional tectonic-magmatic evolution and metallogenic regularity.

    Methods

    Based on the petrological and geochemistry study, this paper uses LA-ICP-MS zircon U−Pb dating, major and trace element analysis and Zircon Hf isotopic analysis methods to analyze the genesis of the pluton.

    Results

    LA-ICP-MS zircon U−Pb dating results show that the porphyritic biotite-bearing monzogranite, porphyritic biotite-bearing syenogranite and porphyritic biotite syenogranite in the Wushijiazi pluton were formed at (150.3±1.3) Ma, (145.9±1.8)Ma and (137.1±2.2)Ma, respectively, which are the magmatic products during the Late Jurassic to Early Cretaceous. The pluton is geochemically characterized by high contents of silica and alkalis, but low contents of aluminium and calcium, belonging to alkaline and quasi aluminous-weakly peraluminous A-type granites. Zircon Hf isotopic analysis displays that the porphyritic biotite-bearing syenogranite has positive εHf(t) values (+7.5-+14.3) and juvenile two-stage (tDM2) Hf model ages (tDM2=285-718 Ma), which was consistent with those of Late Mesozoic granites in the southern of Great Xingan Range. Therefore, it is suggested that the contribution of the juvenile lower crust is dominant in the source region. The occurrence of mafic microgranular enclaves in porphyritic biotite-bearing monzogranite indicates magma critical role of mantle-crust interaction.

    Conclusions

    Combined with regional geological background, our study suggests that the asthenosphere upwelling resulted in partial melting of the juvenile lower crust and formed the primitive magma mush under the late Mesozoic lithospheric extension and thinning environment, and then the magma mush mixed with the mantle-derived magma. The highly fractionated mixed magma was emplaced in the shallow level, and finally formed the Wushijiazi granitic pluton. Wushijiazi pluton is characterized by the high degree of differentiation, as well as deep-source but shallow-emplacement, which is closely related to the tin-polymetallic mineralization in this area.

  • 加载中
  • Albarède F, Scherer E E, Blichert-Toft J, Rosing M, Simionovici A, Bizzarro M. 2006. γ-ray irradiation in the early Solar System and the conundrum of the 176Lu decay constant[J]. Geochimica et Cosmochimica Acta, 70(5): 1261-1270. doi: 10.1016/j.gca.2005.09.027

    CrossRef Google Scholar

    Andersen T. 2002. Correction of common lead in U−Pb analyses that do not report 204Pb[J]. Chemical Geology, 192(1): 59-79.

    Google Scholar

    Bakker R J, Elburg M A. 2006. A magmatic-hydrothermal transition in Arkaroola (northern Flinders Ranges, South Australia): From diopside-titanite pegmatites to hematite-quartz growth[J]. Contributions to Mineralogy & Petrology, 152(5): 541-569.

    Google Scholar

    Bau M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect[J]. Contributions to Mineralogy & Petrology, 123(3): 323-333.

    Google Scholar

    Blicherttoft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth & Planetary Science Letters, 148(1/2): 243-258.

    Google Scholar

    Chen Jianlin, Guo Yuansheng, Fu Shanming. 2004. Research progress of ISMA granite granite classification review[J]. Journal of Gansu Geology, 13(1): 67-73(in Chinese with English abstract).

    Google Scholar

    Chen Zhenghui, Wang Denghong, Sheng Jifu, Ying Lijuan, Liang Ting, Wang Chenghui, Liu Lijun, Wang Yonglei. 2015. The metallogenic regularity of tin deposits in China[J]. Acta Geologica Sinica, 89(6): 1038-1050(in Chinese with English abstract).

    Google Scholar

    Chen Zhiguang, Zhang Lianchang, Wu Huaying, Wan Bo, Zeng Qingdong. 2008. Geochemistry study and tectonic background of A style host granite in Nianzigou molybdenum deposit in Xilamulun molybdenum metallogenic belt, Inner Mongolia[J]. Acta Petrologica Sinica, 24(4): 879-889(in Chinese with English abstract).

    Google Scholar

    Clemens J D, Stevens G, Farina F. 2011. The enigmatic sources of I-type granites: The peritectic connexion[J]. Lithos, 126(3): 174-181.

    Google Scholar

    Davis G A, Xu Bei, Zheng Yadong, Zhang Weijie. 2004. Indosinian extension in the Solonker suture zone: The Sonid Zuoqi metamorphiccore complex, Inner Mongolia, China[J]. Earth Science Frontiers, 11(3): 135-144.

    Google Scholar

    Dill H G. 2015. Pegmatites and aplites: Their genetic and applied ore geology[J]. Ore Geology Reviews, 69: 417-561. doi: 10.1016/j.oregeorev.2015.02.022

    CrossRef Google Scholar

    Ding Chengwu, Dai Pan, Bagas Leon, Nie Fengjun, Jiang Sihong, Wei Junhao, Ding Chengzhen, Zuo Pengfei, Zhang Ke. 2016. Geochemistry and Sr-Nd-Pb isotopes of the granites from the Hashitu Mo Deposit of Inner Mongolia, China: Constraints on their origin and tectonic setting[J]. Acta Geologica Sinica, 90(1): 106-120. doi: 10.1111/1755-6724.12645

    CrossRef Google Scholar

    Donskaya T V, Windley B F, Mazukabzov A M, Kroöner A, Sklyarov E V, Gladkochub D P, Ponomarchuk V A, Badarch G, Reichow M K, Hegner E. 2008. Age and evolution of late Mesozoic metamorphic core complexes in southern Siberia and northern Mongolia[J]. Journal of the Geological Society, 165(1): 405-421. doi: 10.1144/0016-76492006-162

    CrossRef Google Scholar

    Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    Fan Weiming, Guo Feng, Wang Yuejun, Ge Lin. 2003. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, northeastern China[J]. Journal of Volcanology and Geothermal Research, 121(1): 115-135.

    Google Scholar

    Frost C D, Frost B R. 2011. On Ferroan (A-type) granitoids: Their compositional variability and modes of origin[J]. Journal of Petrology, 52(1): 39-53. doi: 10.1093/petrology/egq070

    CrossRef Google Scholar

    Fu Lebing, Wei Junhao, Tan Jun, Santosh M, Zhang Daohan, Chen Jiajie, Li Yanjun, Zhao Shaoqing, Peng Lina. 2016. Magma mixing in the Kalaqin core complex, northern North China Craton: Linking deep lithospheric destruction and shallow extension[J]. Lithos, 260: 390-412. doi: 10.1016/j.lithos.2016.06.018

    CrossRef Google Scholar

    Griffin W L, Pearson N J, Belousova E A, Jackson S E, Van Achterbergh E, O'Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9

    CrossRef Google Scholar

    Guan Qi, Zhu Dicheng, Zhao Zhidan, Zhang Liangliang, Liu Min, Li Xiaowei, Yu Feng, Mo Xuanxue. 2010. Late Cretaceous adakites in the eastern segment of the Gangdese Belt, southern Tibet: Products of Neo-Tethyan ridge subduction?[J]. Acta Petrologica Sinica, 26(7): 2165-2179(in Chinese with English abstract).

    Google Scholar

    Guan Yuchun, Yang Zongfeng, Zhu Xinyou, Zou Tao, Cheng Xiyin, Tang Lei, Deng Haihui. 2017. Petrogenesis and geological significance of the Beidashan complex rockmass, Inner Mongolia[J]. Geotechnical Engineering World, 8(6): 1054-1068(in Chinese with English abstract).

    Google Scholar

    Guo Feng, Fan Weiming, Wang Yuejun, Lin Ge. 2001. Petrogenesis of the late Mesozoic bimodal volcanic rocks in the southern Da Hinggan Mts, China[J]. Acta Petrologica Sinica, 17(1): 161-168(in Chinese with English abstract).

    Google Scholar

    Han Guoqing, Liu Yongjiang, Wen Quanbo, Li Wei, Wu Linna, Zhao Yingli, Ding Ling, Zhao Limin, Liang Chenyue. 2011. LA-ICP-MS U−Pb dating of detrital zircons from the Permian sandstones in north side of Xar Moron River suture belt and its tectonic implications[J]. Earth Science——Journal of China University of Geosciences, 36(4): 687-702(in Chinese with English abstract).

    Google Scholar

    Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust[J]. Earth & Planetary Science Letters, 90(3): 297-314.

    Google Scholar

    Jia Xiaohui, Wang Qiang, Tang gongjian. 2009. A-type granites: Research progress and implications[J]. Geotectonicaet Metalbgenia, 33(3): 465-480(in Chinese with English abstract).

    Google Scholar

    Kontak D J, Clark A H. 2002. Genesis of the Giant, Bonanza San Rafael Lode Tin Deposit, Peru: Origin and significance of pervasive alteration[J]. Economic Geology, 97(8): 1741-1777. doi: 10.2113/gsecongeo.97.8.1741

    CrossRef Google Scholar

    Li J Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 26(3): 207-224.

    Google Scholar

    Li Jingyan, Guo Feng, Li Chaowen, Li Hongxia, Zhao Liang. 2014. Neodymium isotopic variations of Late Paleozoic to Mesozoic I- and A-type granitoids in NE China: Implications for tectonic evolution[J]. Acta Petrologica Sinica, 30(7): 1995-2008(in Chinese with English abstract).

    Google Scholar

    Li Xianhua, Li Zhengxiang, Li Wuxian, Liu Ying, Yuan Chao, Wei Gangjian, Qi Changshi. 2007. U−Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A- type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab?[J]. Lithos, 96(1): 186-204.

    Google Scholar

    Li Yu, Xu Wenliang, Wang Feng, Pei Fuping, Tang Jie, Zhao Shuo. 2017. Triassic volcanism along the eastern margin of the Xing'an Massif, NE China: Constraints on the spatial-temporal extent of the Mongol-Okhotsk tectonic regime[J]. Gondwana Research, 48: 205-223. doi: 10.1016/j.gr.2017.05.002

    CrossRef Google Scholar

    Li Zhenzhen, Qin Kezhang, Zhao Junxing, Li Guangming, Su shiqiang. 2019. Basic characteristics, research progresses and prospects of Sn-Ag-base metal metallogenic system[J]. Acta Petrologica Sinica, 35(7): 1979-1998(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.07.03

    CrossRef Google Scholar

    Li Zhengxiang, Li Xianhua. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 35(2): 179-182. doi: 10.1130/G23193A.1

    CrossRef Google Scholar

    Lin Qiang, Ge Wenchun, Cao Lin, Sun Deyou, Lim Kyunggook. 2003. Geochemistry of Mesozoic volcanic rocks in Da Hinggan Ling: The bimodal volcanic rocks[J]. Geochimica, 32(3): 208-222(in Chinese with English abstract).

    Google Scholar

    Lin Qiang, Ge Wenchun, Wu Fuyuan, Sun Deyou, Cao Lin. 2004. Geochemistry of Mesozoic granites in Da Hinggan Ling ranges[J]. Acta Petrologica Sinica, 20(3): 403-412(in Chinese with English abstract).

    Google Scholar

    Linnen R L, Keppler H. 2002. Melt composition control of Zr/Hf fractionation in magmatic processes[J]. Geochimica et Cosmochimica Acta, 66(18): 3293-3301. doi: 10.1016/S0016-7037(02)00924-9

    CrossRef Google Scholar

    Liu Jiayuan. 2003. Compound massif and complex massif——The two basic forms of the massif association of granitoid and their significance[J]. Contributions to Geology and Mineral Resources Research, 18(3): 143-148(in Chinese with English abstract).

    Google Scholar

    Liu Junlai, Davis G A, Lin Zhiyong, Wu Fuyuan. 2005. The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China: A likely contributor to Cretaceous rotation of Eastern Liaoning, Korea and contiguous areas[J]. Tectonophysics, 407(1): 65-80.

    Google Scholar

    Liu Rui, Yang Zhen, Xu Qidong, Zhang Xiaojun, Yao Chunliang. 2016. Zircon U−Pb ages, elemental and Sr-Nd-Pb isotopic geochemistry of the Hercynian granitoids from the southern segment of the Da-Hinggan Mts: Petrogenesis and tectonic implications[J]. Acta Petrologica Sinica, 32(5): 1505-1528(in Chinese with English abstract).

    Google Scholar

    Liu Yongjiang, Li Weiming, Feng Zhiqiang, Wen Quanbo, Neubauer F, Liang Chenyue. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123-148. doi: 10.1016/j.gr.2016.03.013

    CrossRef Google Scholar

    Loiselle M C, Wones D R. 1979. Characteristics and origin of anorogenic granites[J]. Abstracts with Programs-Geological Society of America, 11(7): 468.

    Google Scholar

    Ludwig K R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel[M]. California: Berkeley Geochronology Center Special Publication, 1-70.

    Google Scholar

    Ma Xinghua, Chen Bin, Lai Yong, Lu Yinghuai. 2009. Petrogenesis and mineralization chronology study on the Aolunhua porphyry Mo deposit, inner Mongolia, and its geological implications[J]. Acta Petrologica Sinica, 25(11): 2939-2950(in Chinese with English abstract).

    Google Scholar

    Maniard P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. 101(5): 635-643.

    Google Scholar

    Mao Jingwen, Zhang Zuoheng, Yu Jinjie, Wang Yitian, Niu Baogui. 2003. Mesozoic tectonic setting of large scale ore-forming in east China and adjacent areas: Revealed by precise ages of metallic deposits[J]. Science in China(series D), 33(4): 289-299(in Chinese).

    Google Scholar

    Mao Jingwen, Xie Guiqing, Zhang Zuoheng, Li Xiaofeng, Wang Yitian, Zhang Changqing, Li Yongfeng. 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings[J]. Acta Petrologica Sinica, 21(1): 169-88(in Chinese with English abstract).

    Google Scholar

    Mao J W, Xie G Q, Pirajno F, Ye H S, Wang Y B, Li Y F, Xiang J F, Zhao H J. 2010. Late Jurassic-Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China: SHRIMP zircon U−Pb ages and tectonic implications[J]. Journal of the Geological Society of Australia, 57(1): 51-78.

    Google Scholar

    Meng Qingren. 2003. What drove late Mesozoic extension of the northern China-Mongolia tract?[J]. Tectonophysics, 369(3): 155-174.

    Google Scholar

    Mo Shenguo, Han Meilian, Li Tiejin. 2005. Composition and orogenic processes of Mongolia-Okhotsk Orogen[J]. Journal of Shandong University of Science and Technology(Nature Science), 24(3): 50-53(in Chinese with English abstract).

    Google Scholar

    Ouyang Hegen, Mao Jingwen, Zhou Zhenhua, Su Huiming. 2015. Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing'an Range, northeastern China[J]. Gondwana Research, 27(3): 1153-1172. doi: 10.1016/j.gr.2014.08.010

    CrossRef Google Scholar

    Pearce J A. 1996. Sources and settings of granitic rocks[J]. Episodes, 19(4): 120-125. doi: 10.18814/epiiugs/1996/v19i4/005

    CrossRef Google Scholar

    Petro W L, Vogel T A, Wilband J T. 1979. Major-element chemistry of plutonic rock suites from compressional and extensional plate boundaries[J]. Chemical Geology, 26(3/4): 217-235.

    Google Scholar

    Qiu Jiansheng, Xiao Er, Hu Jian, Xu Xisheng, Jiang Shaoyong, Li Zhen. 2008. Petrogenesis of highly fractionated I-type granites in the coastal area of northeastern Fujian Province: Constraints from zircon U−Pb geochronology, geochemistry and Nd-Hf isotopes[J]. Acta Petrologica Sinica, 24(11): 2468-2484(in Chinese with English abstract).

    Google Scholar

    Romer R L, Kroner U. 2016. Phanerozoic tin and tungsten mineralization—Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting[J]. Gondwana Research, 31: 60-95. doi: 10.1016/j.gr.2015.11.002

    CrossRef Google Scholar

    Rudnick R L, Gao S. 2003. Composition of the Continental Crust[M]. Oxford: Elsevier-Pergamon, 1-64.

    Google Scholar

    Shao Ji'an, Zhang Lüqiao, Mou Baolei. 1998. Thermo-tectonic evolution in middle and south part of Dahinggan[J]. Science in China (Series D), 28(3): 193-200(in Chinese).

    Google Scholar

    Shao Ji'an, Li Xianhua, Zhang Lüqiao, Mou Baolei, Liu Yulin. 2001a. Geochemical condition for genetic mechanism of the Mesozoic bimodal dike swarms in Nankou-Guyaju[J]. Geochimica, 30(6): 517-524(in Chinese with English abstract).

    Google Scholar

    Shao Ji'an, Liu Futian, Chen Hui, Han Qingjun. 2001b. Relationship between Mesozoic Magmatism and Subduction in Da Hinggan-Yanshan Area[J]. Acta Geologica Sinica, 75(1): 56-63(in Chinese with English abstract).

    Google Scholar

    Shao Ji'an, Zhang Lüqiao. 2002. Mesozoic dyke swarms in the north of Northern China[J]. Acta Petrologica Sinica, 18(3): 312-318(in Chinese with English abstract).

    Google Scholar

    Shao Ji'an, Mu Baolei, Zhu Huizhong, Zhang Lüqiao. 2010. Material source and tectonic settings of the Mesozoic mineralization of the Da Hinggan Mountains[J]. Acta Petrologica Sinica, 26(3): 649-656(in Chinese with English abstract).

    Google Scholar

    Shi Changyi, Yan Mingcai, Liu Chongmin, Chi Qinghua, Hu Shuqi, Gu Tiexin, Bu Wei, Yan Weidong. 2005. Abundances of chemical elements in granitoids of China and their characteristics[J]. Geochimica, 34(5): 470-482(in Chinese with English abstract).

    Google Scholar

    Shu Qihai, Chang Zhaoshan, Lai Yong, Zhou Yitao, Sun Yi, Yan Cong. 2016. Regional metallogeny of Mo-bearing deposits in Northeastern China, with new Re-Os dates of porphyry Mo deposits in the Northern Xilamulun District[J]. Economic Geology, 111(7): 1783-1798. doi: 10.2113/econgeo.111.7.1783

    CrossRef Google Scholar

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    Sun Weidong, Ding Xing, Hu Yanhua, Li Xianhua. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific[J]. Earth and Planetary Science Letters, 262(3/4): 533-542.

    Google Scholar

    Tang Jie, Xu Wenliang, Wang Feng, Zhao Shuo, Li Yu. 2015. Geochronology, geochemistry, and deformation history of Late Jurassic-Early Cretaceous intrusive rocks in the Erguna Massif, NE China: Constraints on the late Mesozoic tectonic evolution of the Mongol-Okhotsk orogenic belt[J]. Tectonophysics, 658: 91-110. doi: 10.1016/j.tecto.2015.07.012

    CrossRef Google Scholar

    Wakita K, Metcalfe I. 2005. Ocean Plate Stratigraphy in East and Southeast Asia[J]. Journal of Asian Earth Sciences, 24(6): 679-702. doi: 10.1016/j.jseaes.2004.04.004

    CrossRef Google Scholar

    Wan Le, Liu Zhenghong, Li Gang, Xin Houtian. 2016. Zircon U−Pb dating, geochemistry and their significance of the Early Cretaceous Chaoyanggou granites in Linxi, Inner Mongolia[J]. Geology and Resources, 25(1): 1-10(in Chinese with English abstract).

    Google Scholar

    Wan Le, Lu Chengdong, Zeng Zuoxun, Mohammed Adil S, Liu Zhenghong, Dai Qingqin, Chen Kangli. 2019. Nature and significance of the late Mesozoic granitoids in the southern Great Xing'an range, eastern Central Asian Orogenic Belt[J]. International Geology Review, 61(5): 584-606. doi: 10.1080/00206814.2018.1440645

    CrossRef Google Scholar

    Wang Fei, Zhou Xinhua, Zhang Lianchang, Ying Jifeng, Zhang Yutao, Wu Fuyuan, Zhu Rixiang. 2006. Late Mesozoic volcanism in the Great Xing'an Range (NE China): Timing and implications for the dynamic setting of NE Asia[J]. Earth and Planetary Science Letters, 251(1): 179-198.

    Google Scholar

    Wang Jingbin, Wang Yuwang, Wang Lijuan. 2002. Mesozoic extension-metallogenic system in suthern part of Da Hinggan Mountains, China[J]. Mineral Deposits, 21(S1): 241-244(in Chinese).

    Google Scholar

    Wang Pujun, Liu Wanzhu, Wang Shuxue, Song Weihei. 2002. 40Ar/39Ar and K/Ar dating on the volcanic rocks in the Songliao basin, NE China: Constraints on stratigraphy and basin dynamics[J]. International Journal of Earth Sciences, 91(2): 331-340. doi: 10.1007/s005310100219

    CrossRef Google Scholar

    Wang Tao, Zheng Yadong, Zhang Jinjiang, Zeng Lingsen, Donskaya T, Guo Lei, Li Jianbo. 2011. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes[J]. Tectonics, 30(6).

    Google Scholar

    Wang Yang. 2009. Geochemistry of the Baicha A-type granite in Beijing municipality: Petrogenetic and tectonic implications[J]. Acta Petrologica Sinica, 25(1): 13-24(in Chinese with English abstract).

    Google Scholar

    Wang Yonglei, Wang Denghong, Zhang Changqing, Hou Kejun, Wang Chenghui. 2011. LA-ICP-MS zircon U−Pb dating of the Qinjia granite in Guangxi Province and its geologic significance[J]. Acta Geologica Sinica, 85(4): 475-481(in Chinese with English abstract).

    Google Scholar

    Wedepohl K H. 1994. The composition of the continental crust[J]. Mineralogical Magazine, 58(7): 1217-1232.

    Google Scholar

    Wei Shaogang, Tang Juxing, Song Yang, Liu Zhibo, Wang Qin, Lin Bin, He Wen, Feng Jun. 2017. Petrogenesis, zircon U−Pb geochronology and Sr-Nd-Hf isotopes of the mid-acidic volcanic rocks from the Duolong deposit in the Bangonghu-Nujiang suture zone, Tibet, and its tectonic significance[J]. Acta Geologica Sinica, 91(1): 132-150(in Chinese with English abstract).

    Google Scholar

    Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy & Petrology, 95(4): 407-419.

    Google Scholar

    Wright J B. 1969. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine, 106(4): 370-384. doi: 10.1017/S0016756800058222

    CrossRef Google Scholar

    Wu Fuyuan, Sun Deyou, Li Huimin, Jahn B M, Wilde S. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 187(1): 143-173.

    Google Scholar

    Wu Fuyuan, Jahn B M, Wilde S A, Lo Chinghua, Yui T F, Lin Qiang, Ge Wenchun, Sun Deyou. 2003. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis[J]. Lithos, 66(3): 241-273.

    Google Scholar

    Wu Fuyuan, Li Xianhua, Yang Jinhui, Zheng Yongfei. 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6): 1217-1238(in Chinese with English abstract).

    Google Scholar

    Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granites: Recognition and research[J]. Science China: Earth Sciences, 47(7): 745-765 (in Chinese).

    Google Scholar

    Xiao W J, Windley B F, Huang B C, Han C M, Yuan C, Chen H L, Sun M, Sun S, Li J L. 2009. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. International Journal of Earth Sciences, 98(6): 1189-1217. doi: 10.1007/s00531-008-0407-z

    CrossRef Google Scholar

    Xu Wenliang, Pei Fuping, Wang Feng, Meng En, Ji Weiqiang, Yang Debin, Wang Wei. 2013. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes[J]. Journal of Asian Earth Sciences, 74: 167-193. doi: 10.1016/j.jseaes.2013.04.003

    CrossRef Google Scholar

    Yan Shengwu, Bai Xianzhou, Wu Wenxiang, Zhu Bing, Zhan Qiongyao, Wen Long, Yang Hui, Wang Yuting. 2017. Genesis and geological implications of the Neoproterozoic A-type granite from the Lugu area, western Yangtze block[J]. Geology in China, 44(1): 136-150(in Chinese with English abstract).

    Google Scholar

    Yang Jinhui, Wu Fuyuan, Chung Sunlin, Wilde S A, Chu Meifei. 2006. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 89(1): 89-106.

    Google Scholar

    Yang Jinhui, Wu Fuyuan, Chung Sunlin, Lo Chinghua, Wilde S A, Davis G A. 2007. Rapid exhumation and cooling of the Liaonan metamorphic core complex: Inferences from 40Ar/39Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton[J]. Geological Society of America, 119(11/12): 1405-1414.

    Google Scholar

    Yang Qidi, Guo Lei, Wang Tao, Zeng Tao, Zhang Lei, Tong Ying, Shi Xingjun, Zhang Jianjun. 2014. Geochronology, origin, sources and tectonic settings of Late Mesozoic two-stage granites in the Ganzhuermiao region, central and southern Da Hinggan Range, NE China[J]. Acta Petrologica Sinica, 30(7): 1961-1981(in Chinese with English abstract).

    Google Scholar

    Yao Lei, Lü Zhicheng, Ye Tianzhu, Pang Zhenshan, Jia Hongxiang, Zhang Zhihui, Wu Yunfeng, Li Ruihua. 2017. Zircon U−Pb age, geochemical and Nd-Hf isotopic characteristics of quartz porphyry in the Baiyinchagan Sn polymetallic deposit, Inner Mongolia, southern Great Xing'an Range, China[J]. Acta Petrologica Sinica, 33(10): 3183-3199(in Chinese with English abstract).

    Google Scholar

    Yuan Honglin, Wu Fuyuan, Gao Shan, Liu Xiaoming, Xu Ping, Sun Deyou. 2003. Determination of U−Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS[J]. Chinese Science Bulletin, 48(22): 2411-2421.

    Google Scholar

    Yuan Honglin, Gao Shan, Dai Mengning, Zong Chunlei, Günther D, Fontaine G H, Liu Xiaoming, Diwu C R. 2008. Simultaneous determinations of U−Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 247(1): 100-118.

    Google Scholar

    Zeng Qingdong, Guo Weikang, Chu Shaoxiong, Duan Xiaoxia. 2016. Late Jurassic granitoids in the Xilamulun Mo belt, Northeastern China: geochronology, geochemistry, and tectonic implications[J]. International Geology Review, 58(5): 588-602. doi: 10.1080/00206814.2015.1099479

    CrossRef Google Scholar

    Zhai Degao, Liu Jiajun, Wang Jianping, Yang Yongqiang, Liu Xingwang, Wang Gongwen, Liu Zhenjiang, Wang Xilong, Zhang Qibin. 2012. Characteristics of melt-fluid inclusions and sulfur isotopic compositions of the Hashitu molybdenum deposit, Inner Mongolia[J]. Earth Science——Journal of China University of Geosciences, 37(6): 1279-1290(in Chinese with English abstract).

    Google Scholar

    Zhai Degao, Liu Jiajun, Wang Jianping, Yang Yongqiang, Zhang Hongyu, Wang Xilong, Zhang Qibin, Wang Gongwen, Liu Zhenjiang. 2014. Zircon U−Pb and molybdenite Re-Os geochronology, and whole-rock geochemistry of the Hashitu molybdenum deposit and host granitoids, Inner Mongolia, NE China[J]. Journal of Asian Earth Sciences, 79(2): 144-160.

    Google Scholar

    Zhai Degao, Liu Jiajun, Stylianos Tombros, Anthony E Williams-Jones. 2017. The genesis of the Hashitu porphyry molybdenum deposit, Inner Mongolia, NE China: Constraints from mineralogical, fluid inclusion, and multiple isotope (H, O, S, Mo, Pb) studies[J]. Mineralium Deposita, 53(3): 377-397.

    Google Scholar

    Zhang Jiheng, Ge Wenchun, Wu Fuyuan, Liu Xiaoming. 2006. Mesozoic bimodal volcanic suite in Zhalantun of the Da Hinggan Range and its geological significance: Zircon U−Pb age and Hf isotopic constraints[J]. Acta Geologica Sinica, 80(1): 58-69. doi: 10.1111/j.1755-6724.2006.tb00796.x

    CrossRef Google Scholar

    Zhang Jiheng, Gao Shan, Ge Wenchun, Wu Fuyuan, Yang Jinhui, Wilde S, Li Ming. 2010. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China: Implications for subduction-induced delamination[J]. Chemical Geology, 276(3): 144-165.

    Google Scholar

    Zhang Ke, Nie Fengjun, Hou Wanrong, Li Chao, Liu Yong. 2012. Re-Os isotopic age dating of molybdenite separates from Hashitu Mo deposit in Linxi County of Inner Mongolia and its geological significance[J]. Mineral Deposits, 31(1): 129-138 (in Chinese with English abstract).

    Google Scholar

    Zhang Xuebing. 2017. Pb-Zn Polymetallic Deposits Metallogenic Series and Prospecting Direction of the West Slope of southern Great Xing'an Range[D]. Changchun: Jilin University, 1-169(in Chinese with English abstract).

    Google Scholar

    Zhang Yutao, Zhang Lianchang, Ying Jifeng, Zhou Xinhua. 2006. Geochemistry of Zhalantun dyke swarm in north Da Hinggan Mountain and its geological implication[J]. Acta Petrologica Sinica, 22(11): 2733-2742(in Chinese with English abstract).

    Google Scholar

    Zhang Zhaochong, Mao Jingwen, Wang Yanbin, Pirajno F, Liu Junlai, Zhao Zhidan. 2010. Geochemistry and geochronology of the volcanic rocks associated with the Dong'an adularia-sericite epithermal gold deposit, Lesser Hinggan Range, Heilongjiang Province, NE China: Constraints on the metallogenesis[J]. Ore Geology Reviews, 37(3): 158-174.

    Google Scholar

    Zhao Yiming, Wu Liangshi, Bai Ge, Yuan Zhongxin, Ye Qingtong, Huang Minzhi, Rui Zongyao, Sheng Jifu, Lin Wenwei, Deng Songping, Mao Jingwen, Bi Chengsi, Dang Zefa, Wang Longsheng, Zhang Zuoheng, Chen Weishi. 2004. Metallogeny of the Major Metallic Ore Deposits in China[M]. Beijing: Geological Publishing House, 1-411(in Chinese).

    Google Scholar

    Zhou Xinmin, Sun Tao, Shen Weizhou, Shu Liangshu, Niu Yaoling. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A Response to Tectonic Evolution[J]. Episodes, 29(1): 26-33. doi: 10.18814/epiiugs/2006/v29i1/004

    CrossRef Google Scholar

    Zhou Zhenhua, Lü Linsu, Yang Yongjun, Li Tao. 2010. Petrogenesis of the Early Cretaceous A-type granite in the Huanggang Sn-Fe deposit, Inner Mongolia: Constraints from zircon U−Pb dating and geochemistry[J]. Acta Petrologica Sinica, 26(12): 3521-3537(in Chinese with English abstract).

    Google Scholar

    Zhu Rixiang, Xu Yigang. 2019. The subduction of the west Pacific plate and the destruction of the North China Craton[J]. Science China: Earth Sciences, 49(9): 1346-1356(in Chinese).

    Google Scholar

    Zhu Xinyou, Wang Jingbin, Wang Yanli, Cheng Xiyin, He Peng, Fu Qibin, Li Shunting. 2012. Characteristics of alkali feldspar granite in tungsten(tin) deposits of Nanling region[J]. Geology in China, 39(2): 359-381(in Chinese with English abstract).

    Google Scholar

    Zhu Xinyou, Zhang Zhihui, Fu Xu, Li Baiyang, Wang Yanli, Jiao Shoutao, Sun Yalin. 2016. Geological and geochemical characteristics of the Weilasito Sn-Zn deposit, Inner Mongolia[J]. Geology in China, 43(1): 188-208(in Chinese with English abstract).

    Google Scholar

    Zonenshain L P, Kuzmin M L, Natapov L M, Page B M. 1990. Geology of the USSR: A Plate-tectonic Synthesis[M]. Washington DC: American Geophysical Union, 1-242.

    Google Scholar

    Zorin Y A. 1999. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia[J]. Tectonophysics, 306(1): 33-56. doi: 10.1016/S0040-1951(99)00042-6

    CrossRef Google Scholar

    陈建林, 郭原生, 付善明. 2004. 花岗岩研究进展——ISMA花岗岩类分类综述[J]. 甘肃地质, (1): 67-73.

    Google Scholar

    陈郑辉, 王登红, 盛继福, 应立娟, 梁婷, 王成辉, 刘丽君, 王永磊. 2015. 中国锡矿成矿规律概要[J]. 地质学报, 89(6): 1038-1050. doi: 10.3969/j.issn.0001-5717.2015.06.004

    CrossRef Google Scholar

    陈志广, 张连昌, 吴华英, 万博, 曾庆栋. 2008. 内蒙古西拉木伦成矿带碾子沟钼矿区A型花岗岩地球化学和构造背景[J]. 岩石学报, 24(4): 257-267.

    Google Scholar

    管琪, 朱弟成, 赵志丹, 张亮亮, 刘敏, 李小伟, 于枫, 莫宣学. 2010. 西藏南部冈底斯带东段晚白垩世埃达克岩: 新特提斯洋脊俯冲的产物?[J]. 岩石学报, 26(7): 2165-2179.

    Google Scholar

    管育春, 杨宗锋, 祝新友, 邹滔, 程细音, 唐雷, 邓海辉. 2017. 内蒙古北大山杂岩体成因及其地质意义[J]. 矿产勘查, 8(6): 1054-1068. doi: 10.3969/j.issn.1674-7801.2017.06.014

    CrossRef Google Scholar

    郭锋, 范蔚茗, 王岳军, 林舸. 2001. 大兴安岭南段晚中生代双峰式火山作用[J]. 岩石学报, 17(1): 161-168.

    Google Scholar

    韩国卿, 刘永江, 温泉波, 李伟, 吴琳娜, 赵英利, 丁凌, 赵立敏, 梁琛岳. 2011. 西拉木伦河缝合带北侧二叠纪砂岩碎屑锆石LA-ICP-MS U−Pb年代学及其构造意义[J]. 地球科学——中国地质大学学报, 36(4): 687-702.

    Google Scholar

    贾小辉, 王强, 唐功建. 2009. A型花岗岩的研究进展及意义[J]. 大地构造与成矿学, 33(3): 465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017

    CrossRef Google Scholar

    李竞妍, 郭锋, 李超文, 李红霞, 赵亮. 2014. 东北地区晚古生代—中生代I型和A型花岗岩Nd同位素变化趋势及其构造意义[J]. 岩石学报, 30(7): 1995-2008.

    Google Scholar

    李真真, 秦克章, 赵俊兴, 李光明, 苏仕强. 2019. 锡-银多金属成矿系统的基本特征、研究进展与展望[J]. 岩石学报, 35(7): 1979-1998.

    Google Scholar

    林强, 葛文春, 曹林, 孙德有, 林经国. 2003. 大兴安岭中生代双峰式火山岩的地球化学特征[J]. 地球化学, 32(3): 208-222. doi: 10.3321/j.issn:0379-1726.2003.03.002

    CrossRef Google Scholar

    林强, 葛文春, 吴福元, 孙德有, 曹林. 2004. 大兴安岭中生代花岗岩类的地球化学[J]. 岩石学报, 20(3): 403-412.

    Google Scholar

    刘家远. 2003. 复式岩体和杂岩体——花岗岩类岩体组合的两种基本形式及其意义[J]. 地质找矿论丛, 18(3): 143-148. doi: 10.3969/j.issn.1001-1412.2003.03.001

    CrossRef Google Scholar

    刘锐, 杨振, 徐启东, 张晓军, 姚春亮. 2016. 大兴安岭南段海西期花岗岩类锆石U−Pb年龄、元素和Sr-Nd-Pb同位素地球化学: 岩石成因及构造意义[J]. 岩石学报, 32(5): 1505-1528.

    Google Scholar

    马星华, 陈斌, 赖勇, 鲁颖淮. 2009. 内蒙古敖仑花斑岩钼矿床成岩成矿年代学及地质意义[J]. 岩石学报, 25(11): 247-258.

    Google Scholar

    毛景文, 张作衡, 余金杰, 王义天, 牛宝贵. 2003. 华北及邻区中生代大规模成矿的地球动力学背景: 从金属矿床年龄精测得到启示[J]. 中国科学: 地球科学, 33(4): 289-299.

    Google Scholar

    毛景文, 谢桂青, 张作衡, 李晓峰, 王义天, 张长青, 李永峰. 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景[J]. 岩石学报, 21(1): 171-190.

    Google Scholar

    莫申国, 韩美莲, 李锦轶. 2005. 蒙古—鄂霍茨克造山带的组成及造山过程[J]. 山东科技大学学报(自然科学版), 24(3): 50-52. doi: 10.3969/j.issn.1672-3767.2005.03.014

    CrossRef Google Scholar

    邱检生, 肖娥, 胡建, 徐夕生, 蒋少涌, 李真. 2008. 福建北东沿海高分异I型花岗岩的成因: 锆石U−Pb年代学、地球化学和Nd-Hf同位素制约[J]. 岩石学报, 24(11): 2468-2484.

    Google Scholar

    邵济安, 张履桥, 牟保磊. 1998. 大兴安岭中南段中生代的构造热演化[J]. 中国科学(D辑), 28(3): 193-200. doi: 10.3321/j.issn:1006-9267.1998.03.003

    CrossRef Google Scholar

    邵济安, 李献华, 张履桥, 牟保磊, 刘玉琳. 2001a. 南口—古崖居中生代双峰式岩墙群形成机制的地球化学制约[J]. 地球化学, 30(6): 517-524.

    Google Scholar

    邵济安, 刘福田, 陈辉, 韩庆军. 2001b. 大兴安岭—燕山晚中生代岩浆活动与俯冲作用关系[J]. 地质学报, 75(1): 56-63.

    Google Scholar

    邵济安, 张履桥. 2002. 华北北部中生代岩墙群[J]. 岩石学报, 18(3): 312-318.

    Google Scholar

    邵济安, 牟保磊, 朱慧忠, 张履桥. 2010. 大兴安岭中南段中生代成矿物质的深部来源与背景[J]. 岩石学报, 26(3): 649-656.

    Google Scholar

    史长义, 鄢明才, 刘崇民, 迟清华, 胡树起, 顾铁新, 卜维, 鄢卫东. 2005. 中国花岗岩类化学元素丰度及特征[J]. 地球化学, 34(5): 56-68.

    Google Scholar

    万乐, 刘正宏, 李刚, 辛后田. 2016. 内蒙古林西朝阳沟早白垩世花岗岩锆石U−Pb年代学和地球化学及其意义[J]. 地质与资源, 25(1): 1-10. doi: 10.3969/j.issn.1671-1947.2016.01.001

    CrossRef Google Scholar

    王京彬, 王玉往, 王丽娟. 2002. 大兴安岭南段中生代伸展成矿系统[J]. 矿床地质, (s1): 241-244.

    Google Scholar

    汪洋. 2009. 北京白查A型花岗岩的地球化学特征及其成因与构造指示意义[J]. 岩石学报, 25(1): 13-24.

    Google Scholar

    王永磊, 王登红, 张长青, 王成辉. 2012. 广西钦甲花岗岩体岩石地球化学特征及成因研究[J]. 岩石矿物学杂志, 31(2): 155-163. doi: 10.3969/j.issn.1000-6524.2012.02.004

    CrossRef Google Scholar

    韦少港, 唐菊兴, 宋扬, 刘治博, 王勤, 林彬, 贺文, 冯军. 2017. 西藏班公湖—怒江缝合带美日切错组中酸性火山岩锆石U−Pb年龄、Sr-Nd-Hf同位素、岩石成因及其构造意义[J]. 地质学报, 91(1): 132-150. doi: 10.3969/j.issn.0001-5717.2017.01.008

    CrossRef Google Scholar

    吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    CrossRef Google Scholar

    吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 47(7): 745-765.

    Google Scholar

    鄢圣武, 白宪洲, 伍文湘, 朱兵, 詹琼窑, 文龙, 杨辉, 王玉婷. 2017. 扬子地块西缘新元古代泸沽A型花岗岩成因与变泥质岩熔融[J]. 中国地质, 44(1): 136-150.

    Google Scholar

    杨奇荻, 郭磊, 王涛, 曾涛, 张磊, 童英, 史兴俊, 张建军. 2014. 大兴安岭中南段甘珠尔庙地区晚中生代两期花岗岩的时代、成因、物源及其构造背景[J]. 岩石学报, 30(7): 1961-1981.

    Google Scholar

    姚磊, 吕志成, 叶天竺, 庞振山, 贾宏翔, 张志辉, 吴云峰, 李睿华. 2017. 大兴安岭南段内蒙古白音查干Sn多金属矿床石英斑岩的锆石U−Pb年龄、地球化学和Nd-Hf同位素特征及地质意义[J]. 岩石学报, 33(10): 3183-3199.

    Google Scholar

    翟德高, 刘家军, 王建平, 杨永强, 刘星旺, 王功文, 柳振江, 王喜龙, 张琪彬. 2012. 内蒙古哈什吐钼矿床熔融-流体包裹体特征及硫同位素组成[J]. 地球科学——中国地质大学学报, 37(6): 1279-1290.

    Google Scholar

    张可, 聂凤军, 侯万荣, 李超, 刘勇. 2012. 内蒙古林西县哈什吐钼矿床辉钼矿铼-锇年龄及其地质意义[J]. 矿床地质, 31(1): 129-138. doi: 10.3969/j.issn.0258-7106.2012.01.011

    CrossRef Google Scholar

    张雪冰. 2017. 大兴安岭南段西坡铅锌多金属矿床成矿系列与找矿方向[D]. 长春: 吉林大学, 1-169.

    Google Scholar

    张玉涛, 张连昌, 英基丰, 周新华. 2006. 大兴安岭北部扎兰屯脉岩群的地球化学特征及其地质意义[J]. 岩石学报, 22(11): 2733-2742.

    Google Scholar

    赵一鸣, 吴良士, 白鸽, 袁忠信, 叶庆同, 黄民智, 芮宗瑶, 盛继福, 林文蔚, 邓颂平, 毛景文, 毕承思, 党泽发, 王龙生, 张作衡, 陈伟十. 2004. 中国主要金属矿床成矿规律[M]. 北京: 地质出版社, 1-411.

    Google Scholar

    周振华, 吕林素, 杨永军, 李涛. 2010. 内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因: 锆石U−Pb年代学和岩石地球化学制约[J]. 岩石学报, 26(12): 3521-3537.

    Google Scholar

    朱日祥, 徐义刚. 2019. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 49(9): 1346-1356.

    Google Scholar

    祝新友, 王京彬, 王艳丽, 程细音, 何鹏, 傅其斌, 李顺庭. 2012. 南岭锡钨多金属矿区碱长花岗岩的厘定及其意义[J]. 中国地质, 39(2): 359-381. doi: 10.3969/j.issn.1000-3657.2012.02.009

    CrossRef Google Scholar

    祝新友, 张志辉, 付旭, 李柏阳, 王艳丽, 焦守涛, 孙雅琳. 2016. 内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征[J]. 中国地质, (1): 188-208. doi: 10.3969/j.issn.1000-3657.2016.01.014

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(4)

Article Metrics

Article views(2305) PDF downloads(117) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint