2024 Vol. 51, No. 4
Article Contents

ZHANG Zhuo, GUO Huaming, HAN Shuangbao, NIU Xiaotong. 2024. Distribution characteristics of arsenic in sediments and its control on groundwater arsenic enrichment : A case study of Hetao Basin, Inner Mongolia[J]. Geology in China, 51(4): 1331-1341. doi: 10.12029/gc20220329001
Citation: ZHANG Zhuo, GUO Huaming, HAN Shuangbao, NIU Xiaotong. 2024. Distribution characteristics of arsenic in sediments and its control on groundwater arsenic enrichment : A case study of Hetao Basin, Inner Mongolia[J]. Geology in China, 51(4): 1331-1341. doi: 10.12029/gc20220329001

Distribution characteristics of arsenic in sediments and its control on groundwater arsenic enrichment : A case study of Hetao Basin, Inner Mongolia

    Fund Project: Supported by National Natural Science Foundation of China (No.42102298, No.41825017) and the projects of China Geological Survey (No.DD20230426, No.DD20230431).
More Information
  • Author Bio: ZHANG Zhuo, male, born in 1991, doctor, associate researcher, majors in hydro−geochemistry; E-mail: hydro_zhangzhuo@163.com
  • Corresponding author: GUO Huaming, male, born in 1975, doctoral supervisor, professor, engaged in teaching and research in groundwater science and engineering; E-mail: hmguo@cugb.edu.cn
  • This paper is the result of hydrogeological survey engineering.

    Objective

    Higharsenic (As) groundwater occurred in the west of Hetao Basin. Investigating the spatial distribution and occurrence characteristics of As in aquifer sediments and studying the enrichment mechanism of As ingroundwater are beneficial to ensure the safety of water for local residents.

    Methods

    Twenty five sediment samples from borehole K02 in the piedmont alluvial fan and twenty sixsamples from borehole K01 in the plain were collectedto analyze lithological characteristics and geochemical components. These samples were further to conduct sequential extraction and desorption experiments of As in sediments.

    Results

    The aquifers in the piedmont alluvial fan were in a relatively oxidized environment, while the aquifers in the plain area were in a closed reducing environment. Salinity of the latter sediment was generally higher than that of the former, and salinity of both sediments had a decreasing trend with depth. Total solid As content in the sediments of the piedmont alluvial vans and the plain area displayed little difference, but the occurrence pool of solid Aswas quite different. The former sediment solid As was dominated by the As incorporated in very amorphous Fe−(oxyhydr) oxides, while the latter was dominated by strongly adsorbed As.

    Conclusions

    The differences of As occurrence characteristics in sediments were the main reason why groundwater As concentration in the plain area was higher than that in piedmont alluvial vans. Desorption experiments showed that weak alkalinity or high Na/Ca0.5 molar ratio could promote the desorption of As.

  • 加载中
  • [1] Bélanger N, VanRees K C J. 2007. Soil Sampling and Methods of Analysis, SecondEdition[M]. Crc Press, 15–24.

    Google Scholar

    [2] Cao Wengeng, Wang Yanyan, Ren Yu, Fei Yuhong, Li Jincheng, Li Zeyan, Zhang Dong, Shuai Guanyin. 2022. Status and progress of treatment technologies for arsenic–bearing groundwater[J]. Geology in China, 49(5): 1408−1426 (in Chinese with English abstract).

    Google Scholar

    [3] Cook S J, Levson V M, Jackaman W, Giles T R. 1995. A comparison of regional lake sediment and till geochemistry surveys–a case–study from the Fawnie Creek area, Central British Columbia[J]. Exploration and Mining Geology, 4(2): 93−110.

    Google Scholar

    [4] Cui Xingtao, Wang Xueqiu, Luan Wenlou. 2015. An analysis of modes of occurrence and biological availability of the heavy metal elements in soil of the central and southern plain in Hebei[J]. Geology in China, 42(2): 655−663 (in Chinese with English abstract).

    Google Scholar

    [5] Drahota P, Peřestá M, Trubač J, Mihaljevič M, Vaněk A. 2021. Arsenic fractionation and mobility in sulfidic wetland soils during experimental drying[J]. Chemosphere, 277: 130306. doi: 10.1016/j.chemosphere.2021.130306

    CrossRef Google Scholar

    [6] Dzombak DA, MorelF M M. 1990. Surface Complexation Modelling–Hydrous Ferric Oxide[M]. John Wiley, New York.

    Google Scholar

    [7] Eiche E, Neumann T, Berg M, Weinman B, van Geen A, Norra S, Berner Z, Trang P T K, Viet P H, Stüben D. 2008. Geochemical processes underlying a sharp contrast in groundwater arsenic concentrations in a village on the Red River delta, Vietnam[J]. Applied Geochemistry, 23(11): 3143−3154. doi: 10.1016/j.apgeochem.2008.06.023

    CrossRef Google Scholar

    [8] Eiche E, Kramar U, Berg M, Berner Z, Norra S, Neumann T. 2010. Geochemical changes in individual sediment grains during sequential arsenic extractions[J]. Water Research, 44(19): 5545−5555. doi: 10.1016/j.watres.2010.06.002

    CrossRef Google Scholar

    [9] Fakhreddine S, Dittmar J, Phipps D, Dadakis J, Fendorf S. 2015. Geochemical triggers of arsenic mobilization during managed aquifer recharge[J]. Environmental Science & Technology, 49(13): 7802−7809.

    Google Scholar

    [10] Guo Huaming, Guo Qi, Jia Yongfeng, Liu Zeyun, Jiang Yuxiao. 2013. Chemical characteristics and geochemical processes of high arsenic groundwater in different regions of China[J]. Journal of Earth Sciences and Environment, 35(3): 83−96 (in Chinese with English abstract).

    Google Scholar

    [11] Guo H M, Yang S Z, Tang X H, Li Y, Shen Z L. 2008. Effect of indigenous bacteria on geochemical behavior of arsenic in aquifer sediments from the Hetao Basin, Inner Mongolia: Evidence from sediment incubations[J]. Applied Geochemistry, 23(12): 3267−3277. doi: 10.1016/j.apgeochem.2008.07.010

    CrossRef Google Scholar

    [12] Horneman A, van Geen A, Kent D V, Mathe P E, Zheng Y, Dhar R K, O’Connell S, Hoque M A, Aziz Z, Shamsudduha M, Seddique A A, Ahmed K M. 2004. Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part I: Evidence from sediment profiles[J]. Geochimica et Cosmochimica Acta, 68(17): 3459−3473. doi: 10.1016/j.gca.2004.01.026

    CrossRef Google Scholar

    [13] Han Shuangbao, Zhang Fucun, Zhang Hui, Jia Xiaofeng, He Jin, Li Xufeng. 2010. An analysis of the distribution and formation of high arsenic groundwater in northern China[J]. Geology in China, 37(3): 747−753 (in Chinese with English abstract).

    Google Scholar

    [14] He Jin, Ma Xuemei, Pang Yajie, Niu Xue. 2020. Comprehensive evaluation system of soil and water quality in typical farming area of the Sanjiang Plain[J]. Geological Survey and Research, 43(3): 271−278 (in Chinese with English abstract).

    Google Scholar

    [15] Keon N E, Swartz C H, Brabander D J, Harvey C, Hemond H F. 2001. Validation of an arsenic sequential extraction method for evaluating mobility in sediments[J]. Environmental Science and Technology, 35: 2778−2784. doi: 10.1021/es001511o

    CrossRef Google Scholar

    [16] Li Xiaofeng. 2018. Geochemical Characteristics of Sediments in Piedmont Plains of Hetao Basin and its Significance for Controlling Arsenic in Groundwater [D]. Beijing: China University of Geosciences (Beijing), 1–78 (in Chinese with English abstract).

    Google Scholar

    [17] Liu Xinmin. 2014. Soil ion Exchange Balance: Electric Field, Quantum Fluctuations and their Coupling Effects [D]. Chongqing: Southwest University, 1–149(in Chinese with English abstract).

    Google Scholar

    [18] Mandal B K, Suzuki K T. 2002. Arsenic round the world: A review[J]. Talanta, 58(1): 201−235. doi: 10.1016/S0039-9140(02)00268-0

    CrossRef Google Scholar

    [19] Masue Y, Loeppert R H, Kramer T A. 2007. Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum: Iron hydroxides[J]. Environmental Science and Technology, 41(3): 837−842. doi: 10.1021/es061160z

    CrossRef Google Scholar

    [20] Ma Xuemei, Tian Dazheng, Li Wei, He Jin. 2020. Geochemical evaluation of land quality in Qvyang County[J]. Geological Survey and Research, 43(3): 230−239 (in Chinese with English abstract).

    Google Scholar

    [21] Meharg A A, Scrimgeour C M, Hossain S S, Fuller K A, Cruickshank K, Williams P N, Kinniburgh D G. 2006. Co–deposition of organic carbon and arsenic in Bengal Delta Aquifers[J]. Environmental Science and Technology, 40(16): 28−35.

    Google Scholar

    [22] Neidhardt H, Berner Z A, Freikowski D, Biswas A, Majumder S, Winter J, Gallert C, Chatterjee D, Norra S. 2014. Organic carbon induced mobilization of iron and manganese in a West Bengal Aquifer and the muted response of groundwater arsenic concentrations[J]. Chemical Geology, 367: 51−62. doi: 10.1016/j.chemgeo.2013.12.021

    CrossRef Google Scholar

    [23] Paul C J, Ford R G, Wilkin R T. 2009. Assessing the selectivity of extractant solutions for recovering labile arsenic associated with iron (hydr)oxides and sulfides in sediments[J]. Geoderma, 152(1): 137−144.

    Google Scholar

    [24] Shen M M, Guo H M, Jia Y F, Cao Y S, Zhang D. 2018. Partitioning and reactivity of iron oxide minerals in aquifer sediments hosting high arsenic groundwater from the Hetao basin, PR China[J]. Applied Geochemistry, 89: 190−201. doi: 10.1016/j.apgeochem.2017.12.008

    CrossRef Google Scholar

    [25] Smedley P L, Kinniburgh D G. 2002. A review of the source, behaviour, and distribution of arsenic in natural waters[J]. Applied Geochemistry, 17: 517−568. doi: 10.1016/S0883-2927(02)00018-5

    CrossRef Google Scholar

    [26] van Geen A, Bostick B C, Thi Kim Trang P, Lan V M, Mai N N, Manh P D, Viet P H, Radloff K, Aziz Z, Mey J L, Stahl M O, Harvey C F, Oates P, Weinman B, Stengel C, Frei F, Kipfer R, Berg M. 2013. Retardation of arsenic transport through a Pleistocene aquifer[J]. Nature, 501: 204–207.

    Google Scholar

    [27] van Geen A, Bostick B C, Thi Kim Trang P, Lan V M, Mai N N, Manh P D, Viet P H, Radloff K, Aziz Z, Mey J L, Stahl M O, Harvey C F, Oates P, Weinman B, Stengel C, Frei F, Kipfer R, Berg M. 2013. Retardation of arsenic transport through a Pleistocene aquifer[J]. Nature, 501: 204–207.

    Google Scholar

    [28] Van Herreweghe S, Swennen R, Vandecasteele C, Cappuyns V. 2003. Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples[J]. Environmental Pollution, 122(3): 323−342. doi: 10.1016/S0269-7491(02)00332-9

    CrossRef Google Scholar

    [29] Wang Y X, Li J X, Ma T, Xie X J, Deng Y M, Gan Y Q. 2020. Genesis of geogenic contaminated groundwater: As, F and I[J]. Critical Reviews in Environmental Science and Technology, 51(24): 1−39.

    Google Scholar

    [30] Wenzel W W, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E, Adriano D C. 2001. Arsenic fractionation in soils using an improved sequential extraction procedure[J]. Analytica Chimica Acta, 436(2): 309−323. doi: 10.1016/S0003-2670(01)00924-2

    CrossRef Google Scholar

    [31] World Health Organization. 2017. Guidelines for Drinking–Water Quality, Fourth Edition Incorporating the First Addendum[S]. Geneva: World Health Organization.

    Google Scholar

    [32] Yuan R X, Guo H M, Zhang D, Li Y, Zhang Y L, Cao W G. 2017. Soluble components of sediments and their relation with dissolved arsenic in aquifers from the Hetao Basin, Inner Mongolia[J]. Journal of Soils and Sediments, 17(12): 2899−2911. doi: 10.1007/s11368-017-1770-9

    CrossRef Google Scholar

    [33] Zhang Wenkai, Yu Kun, Li Yongzhi, Ji Xinyang, Li Dan, Zhao Zheng, Jiang Xiao. 2020. Research progress of groundwater environment in Hetao Plain[J]. Environmental Chemistry, (2): 489−499 (in Chinese with English abstract).

    Google Scholar

    [34] Zhang Z, Guo H M, Liu S, Weng H C, Han S B, Gao Z P. 2020. Mechanisms of groundwater arsenic variations induced by extraction in the western Hetao Basin, Inner Mongolia, China[J]. Journal of Hydrology, 583: 124599. doi: 10.1016/j.jhydrol.2020.124599

    CrossRef Google Scholar

    [35] Zhang Zhuo, Liu Futian, Chen Sheming. 2023a. Review on the application of H, O, Sr, Ca, Li and B isotopes in the research of high–fluoride groundwater[J]. North China Geology, 46(3): 49−56 (in Chinese with English abstract).

    Google Scholar

    [36] Zhang Zhuo, Liu Futian, Chen Sheming, Niu Xiaotong, Gao Zhipeng. 2023b. Distribution characteristics and formation mechanism of high fluoride groundwater in Luan River Delta and suggestions for its utilization[J]. Geology in China, 50(3): 887−896 (in Chinese with English abstract).

    Google Scholar

    [37] Zhu Danni, Zou Shengzhang, Zhou Changsong, Lu Haiping, Xie Hao. 2021. Hg and As contents of soil–crop system in different tillage types and ecological health risk assessment[J]. Geology in China, 48(3): 708−720 (in Chinese with English abstract).

    Google Scholar

    [38] 曹文庚, 王妍妍, 任宇, 费宇红, 李谨丞, 李泽岩, 张栋, 帅官印. 2022. 含砷地下水的治理技术现状与进展[J]. 中国地质, 49(5): 1408−1426. doi: 10.12029/gc20220504

    CrossRef Google Scholar

    [39] 崔邢涛, 王学求, 栾文楼. 2015. 河北中南部平原土壤重金属元素存在形态及生物有效性分析[J]. 中国地质, 42(2): 655−663. doi: 10.3969/j.issn.1000-3657.2015.02.023

    CrossRef Google Scholar

    [40] 郭华明, 郭琦, 贾永锋, 刘泽云, 姜玉肖. 2013. 中国不同区域高砷地下水化学特征及形成过程[J]. 地球科学与环境学报, 35(3): 83−96. doi: 10.3969/j.issn.1672-6561.2013.03.008

    CrossRef Google Scholar

    [41] 韩双宝, 张福存, 张徽, 贾小丰, 何锦, 李旭峰. 2010. 中国北方高砷地下水分布特征及成因分析[J]. 中国地质, 37(3): 747−753.

    Google Scholar

    [42] 何锦, 马雪梅, 庞雅婕, 牛雪. 2020. 三江平原典型农垦区水土质量综合评价体系研究[J]. 地质调查与研究, 43(3): 271−278.

    Google Scholar

    [43] 李晓峰. 2018. 河套盆地山前平原沉积物地球化学特征及其对地下水砷的控制意义[D]. 北京: 中国地质大学(北京), 1–78.

    Google Scholar

    [44] 刘新敏. 2014. 土壤离子交换平衡: 电场、量子涨落及其耦合作用[D]. 重庆: 西南大学, 1–149.

    Google Scholar

    [45] 马雪梅, 田大争, 李伟, 何锦. 2020. 曲阳县土地质量地球化学评价[J]. 地质调查与研究, 43(3): 230−239.

    Google Scholar

    [46] 张文凯, 于坤, 李勇志, 冀欣阳, 李丹, 赵政, 蒋校. 2020. 河套平原地下水环境质量研究综述及展望[J]. 环境化学, 39(2): 489−499.

    Google Scholar

    [47] 张卓, 柳富田, 陈社明. 2023a. 氢氧、锶钙和锂硼同位素在高氟地下水研究中的应用[J]. 华北地质, 46(3): 49−56.

    Google Scholar

    [48] 张卓, 柳富田, 陈社明, 牛笑童, 高志鹏. 2023b. 滦河三角洲高氟地下水分布特征、形成机理及其开发利用建议[J]. 中国地质, 50(3): 887−896.

    Google Scholar

    [49] 朱丹尼, 邹胜章, 周长松, 卢海平, 谢浩. 2021. 不同耕作类型下土壤–农作物系统中汞、砷含量与生态健康风险评价[J]. 中国地质, 48(3): 708−720. doi: 10.12029/gc20210303

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(3)

Article Metrics

Article views(304) PDF downloads(33) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint