Citation: | WAN Feipeng, YANG Weimin, QIU Zhanlin, XIANG Lingzhi, QU Jingkai, WU Jihuan, ZHANG Tiantian. 2023. Disaster mechanism and evolution of Nagune Gully landslide-debris flow disaster chain in Minxian County, Gansu Province[J]. Geology in China, 50(3): 911-925. doi: 10.12029/gc20220323005 |
This paper is the result of geological hazards survey engineering.
Naguni gully is located in the Eryang watershed in Chabu Town, Minxian County, Gansu Province. Structurally, it is situated within the Lintan-Dangchang fault branch zone. It is a small-scale, high-frequency debris flow gully, and the development of landslides within the watershed results in a unique landslide-debris flow disaster chain. The mechanisms and evolutionary processes of this disaster chain are worthy of in-depth study.
Through field investigations, remote sensing interpretation, and laboratory experiments, the development characteristics of the Nagune gully disaster were clarified. The disaster mechanisms of the landslide-debris flow chain were studied, and the evolutionary process of the landslide-debris flow disaster chain under fault activity within the small watershed was analyzed.
The research results indicate that the landslide-debris flow disaster chain in Nagune gully manifests as a cyclic development of debris flows, landslides, and burst flood debris flows. The current fault activity results in the development of loose materials and unstable slopes within the channel, establishing the material basis for the formation of the disaster chain. High-frequency, short-duration heavy rainfall or continuous rainfall triggers multiple occurrences of debris flows. The lateral erosion of the gully foot by debris flows causes slope instability and leads to landslides. The landslides block the gully, forming a barrier lake, and the breach of the barrier lake results in burst flood debris flows. The evolutionary process of the disaster chain includes the initial erosion phase of debris flow, gradual deformation of slopes approaching critical instability, the formation of a blocked gully due to landslide movement, breach of the barrier lake leading to burst flood debris flows, erosion of the opposite slope foot causing further instability and downslope movement, and the cyclic development of debris flows, landslides, and burst flood debris flows.
In summary, the formation of the disaster chain in Nagune gully is the result of current fault activity and the combined effects of short-duration, concentrated rainfall or continuous rainfall. The repeated occurrence of debris flows during the rainy season and the creeping deformation of landslides within the Nagune watershed contribute to the cyclic development of the landslide-debris flow-burst flood debris flow disaster chain.
Chen Ningsheng, Cui Peng, Liu Zhonggang, Wei Fangqiang. 2003. Calculation of the debris flow density based on the content of clay particles[J]. Science in China (Series E), (S1): 164-174 (in Chinese). |
Chen Ningsheng, Yang Chenglin, Li Huan. 2010. Calculation of the debris flow concentration based on debris flow slurry[J]. Journal of Chengdu University of Technology (Science and Technology Edition), 37(2): 168-173 (in Chinese with English abstract). |
Fan Bingwen, Niu Zuirong, Hu Jianxun, Du Kesheng. 2013. Investigation of "5.10" torrential rain and flood in Minxian county[J]. Gansu Water Resources and Hydropower Technology, 49(2): 5-8 (in Chinese with English abstract). |
Feng Wenkai, Jia Bangzhong, Wu Yiying, Wu Zhongteng. 2022. Characteristics and mechanism of landslide-debris flow chain disaster in low mountain and hilly terrain[J]. The Chinese Journal of Geological Hazard and Control, 33(1): 35-44 (in Chinese with English abstract). |
Feng Yutao, Xiao Shengxie. 2009. Chain mechanism and optimized contro1 of collapses, landslides and debris flows[J]. Journal of Catastrophology, 24(3): 22-26 (in Chinese with English abstract). |
Fu Shangyu. 2011. The Study of Shattering Mountains Landslide-break Debris Flow Disaster Chain[D]. Chengdu: Chengdu University of Technology, 1-63 (in Chinese with English abstract). |
Gao Mingxing, Chen Guihua, Xu Xiwei. 2015. Geomorphic indices recent differential tectonic uplift of the Lintan-Dangchang fault and the Minxian-Zhangxian earthquake[J]. Seismology and Geology, 37(3): 709-718 (in Chinese with English abstract). |
Guo Changbao, Du Yuben, Zhang Yongshuang, Zhang Guangze, Yao Xin, Wang Ke, Liu Jian. 2015. Geohazard effects of the Xianshuihe fault and characteristics of typical landslides in western Sichuan[J]. Geological Bulletin of China, 34(1): 121-134 (in Chinese with English abstract). |
Guo Fuyun. 2014. Formation mechanism and risk assessment of debris flow of "5.10"in Eryang gully of Minxian country, Gansu Province[J]. Journal of Lanhzou University (Natural Sciences), 50(5): 628-632 (in Chinese with English abstract). |
Guo Jinjing, Han Wenfeng, Liang Yunshou. 2006. Tectonic geomorphic evolution and plateau uplift in Minxian-Wudu area on the northeast margin of Qinghai-Tibet Plateau[J]. Geology in China, 33(2): 383-392 (in Chinese with English abstract). |
Han Jinliang, Wu Shuren, Wang Huabin. 2007. Preliminary study on geological hazard chains[J]. Earth Science Frontiers, 14(6): 11-23 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60001-9 |
Li Guangtao, Cheng Li, Wu Hao, Su Gang. 2020. Geological and geomorphological evidence of Late Quaternary activity along the southeastern segment of the Lintan-Tanchang major fault[J]. China Earthquake Engineering Journal, 42(2): 376-383 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2020.02.376 |
Li Ming, Tang Hongye, Ye Siqiao. 2008. Research on chain rule of typical geological disaster[J]. Journal of Catastrophology, 23(1): 1-5 (in Chinese with English abstract). |
Liu Fangbin, Qu Junhao. 2018. Research on static coulomb stress changes and seismicity in Lintan-Tanchang fault and the adjacent area[J]. Journal of Geodesy and Geodynamics, 38(9): 886-890 (in Chinese with English abstract). |
Liu Ting. 2015. The Research of Fault Gouge and it's Geochronology from Lintan-Dangchang Fault Zone in Western Qinling[D]. Beijing: China University of Geosciences (Beijing), 1-61 (in Chinese with English abstract). |
Ma Chao, He Xiaoyan, Hu Kaiheng. 2015. Rainfall parameter characteristics of high-frequency debris flow in China[J]. The Chinese Journal of Geological Hazard and Control, 26(2): 43-50 (in Chinese with English abstract). |
Sun Mengyu. 2020. Research on the Influence of Structural Damage Rock on the Formation of Debris Flow: Taking Anninghe fault Zone as an Example[D]. Chengdu: Chengdu University of Technology, 1-72 (in Chinese with English abstract). |
Tang Hongtao, Zhang Xuegui, Gao Zirang, Ding Guoli, Li Ruisha. 2019. The fracture activity analysis of the northeast margin of Qinghai Tibetan block based on the synthetic rate method[J]. Earthquake Research in China, 35(2): 319-326 (in Chinese with English abstract). |
Tang Yongyi. 1992. The effect of neotectonic movement on formations of landslide and debris flow in southern Gansu[J]. Journal of Lanzhou University (Natural Sciences), (4): 152-160 (in Chinese with English abstract). doi: 10.3321/j.issn:0455-2059.1992.04.027 |
Wang Tao, Wang Jiakun, Pan Dong. 2020. Analysis on mechanism of Kangjiapo landslide and consequent debris flow in Hanyuan County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 31(1): 1-7 (in Chinese with English abstract). |
Xiong S Q. 2021. Research achievements of the Qinghai-Tibet Plateau based on 60 years of aeromagnetic surveys[J]. China Geology, (4): 147-177. |
Yang Werimin, Huang Xiao, Zhang Chunshan, Si Haibao. 2014. Deformation behavior of landslides and their formation mechanism along Pingding-Huama active fault in Bailongjiang river region[J]. Journal of Jilin University (Earth Science Edition), 44(2): 574-583(in Chinese with English abstract). |
Ye Maosheng. 2018. Study of Activity Characteristics of Main Faults in the Northeast Margin of the Tibetan Plateau Ssing GPS[D]. Beijing: Institute of Earthquake Forecasting, China Earthquake Administration, 1-50 (in Chinese with English abstract). |
Yin Yueping, Wang Wenpei, Zhang Nan, Yan Jinkai, Wei Yunjie, Yang Longwei. 2017. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: A case study of the Xinmo landslide in Maoxian County, Sichuan Province[J]. Geology in China, 4(5): 827-841 (in Chinese with English abstract). |
Yu Bin. 2008a. Research on the calculating density by the deposit of debris flows[J]. Acta Sedimentologica Sinica, 26(5): 789-796 (in Chinese with English abstract). |
Yu Bin. 2008b. Research on the improved calculating density of less viscosity debris flows[J]. Journal of Mountain Science, 27(1): 70-75 (in Chinese with English abstract). |
Zhang Peizhen, Deng Qidong, Zhang Guomin, Ma Jin, Gan Weijun, Min Wei, Mao Fengying, Wang Qi. 2003. Mainland China strong earthquake activity and active block[J]. Chinese Science (D: Earth Sciences), (S1): 12-20 (in Chinese). |
Zhang Peizhen, Zheng Dewen, Yin Gongmin, Yuan Daoyang, Zhang Guangliang, Li Chuangwei, Wang Zhicai. 2006. Discussion on Late Cenozoic growth and rise of northeastern margin of the Tibetan Plateau[J]. Quaternary Sciences, 26(1): 5-13 (in Chinese with English abstract). |
Zhang T L, Zhou A G, Sun Q, Wang H S, Wu J B, Liu Z H. 2020. Hydrological response characteristics of landslides under typhoon-triggered rainstorm conditions[J]. China Geology, 3(3): 455-461. |
Zhang Yueqiao, Ma Yansheng, Yang Nong, Zhang Huiping, Shi Wei. 2005. Late cenozoic left-slip faulting process of the east Kunlun-Qinling fault systemin west Qinling region and its eastward propagation[J]. Acta Geoscintica Sinica, 26(1): 1-8 (in Chinese with English abstract). |
Zhou Hongjian, Wang Xi, Yuan Yi, Wang Dandan. 2014. Rapid assessing methods of loss in extremely heavy rainfall disaster chain in semiarid region[J]. Arid Zone Research, 31(3): 440-445 (in Chinese with English abstract). |
陈宁生, 崔鹏, 刘中港, 韦方强. 2003. 基于黏土颗粒含量的泥石流容重计算[J]. 中国科学E辑: 技术科学, (S1): 164-174. |
陈宁生, 杨成林, 李欢. 2010. 基于浆体的泥石流容重计算[J]. 成都理工大学学报(自然科学版), 37(2): 168-173. |
凡炳文, 牛最荣, 胡建勋, 杜克胜. 2013. "5·10"岷县特大暴雨洪水调查[J]. 甘肃水利水电技术, 49(2): 5-8. |
冯文凯, 贾邦中, 吴义鹰, 吴钟腾, 白慧林. 2022. 低山丘陵区典型滑坡-泥石流链生灾害特征与成灾机理[J]. 中国地质灾害与防治学报, 33(1): 35-44. |
冯玉涛, 肖盛燮. 2009. 崩滑流地质灾害链式机理及其优化防治[J]. 灾害学, 4(3): 22-26. |
付尚瑜. 2011. 震裂山体滑坡-溃决型泥石流灾害链研究[D]. 成都: 成都理工大学, 1-63. |
高明星, 陈桂华, 徐锡伟. 2015. 地貌参数指示的临潭—宕昌断裂带最新构造隆升差异与地震活动[J]. 地震地质, 37(3): 709-718. doi: 10.3969/j.issn.0253-4967.2015.03.004 |
郭长宝, 杜宇本, 张永双, 张广泽, 姚鑫, 王珂, 刘健. 2015. 川西鲜水河断裂带地质灾害发育特征与典型滑坡形成机理[J]. 地质通报, 34(1): 121-134. |
郭富赟. 2014. 甘肃省岷县耳阳沟5.10泥石流基本特征及危险度评价[J]. 兰州大学学报(自然科学版), 50(5): 628-632. |
郭进京, 韩文峰, 梁收运. 2006. 青藏高原东北缘岷县—武都地区构造地貌演化与高原隆升[J]. 中国地质, 33(2): 383-392. |
韩金良, 吴树仁, 汪华斌. 2007. 地质灾害链[J]. 地学前缘, 14(6): 11-23. |
李光涛, 程理, 吴昊, 苏刚. 2020. 临潭—宕昌主干断裂南东段晚第四纪活动的地质地证据[J]. 地震工程学报, 42(2) : 376-383. |
李明, 唐红叶, 叶四桥. 2008. 典型地质灾害链式机理研究[J]. 灾害学, 23(1): 1-5. |
刘方斌, 曲均浩. 2018. 临潭—宕昌断裂及附近地区静态库仑应力变化及地震活动性研究[J]. 大地测量与地球动力学, 38(9): 886-890. |
刘廷. 2015. 西秦岭临潭—宕昌断裂带断层泥及年代学研究[D]. 北京: 中国地质大学(北京), 1-61. |
马超, 何晓燕, 胡凯衡. 2015. 我国高频率泥石流的雨量特征[J]. 中国地质灾害与防治学报, 26(2): 43-50. |
孙梦宇. 2020. 断裂带构造损伤岩体对泥石流物源形成影响研究[D]. 成都: 成都理工大学, 1-72. |
唐红涛, 张学刚, 高子让, 丁国丽, 李瑞莎. 2019. 基于合成速率法的青藏块体东北缘断裂活动分析[J]. 中国地震, 35(2) : 319-326. |
唐永仪. 1992. 新构造运动在陇南滑坡泥石流形成中的作用[J]. 兰州大学学报(自然科学版), (4): 152-160. |
王涛, 王嘉昆, 潘冬. 2020. 四川汉源康家坡滑坡形成机理与滑坡—堰塞坝—泥石流灾害链分析[J]. 中国地质灾害与防治学报, 31(1): 1-7. |
杨为民, 黄晓, 张春山, 司海宝. 2014. 白龙江流域坪定—化马断裂带滑坡特征及其形成演化[J]. 吉林大学学报(地球科学版), 44(2): 574-583. |
叶茂盛. 2018. 利用GPS研究青藏高原东北缘主要断裂活动特征[D]. 北京: 中国地震局地震预测研究所, 1-50. |
殷跃平, 王文沛, 张楠, 闫金凯, 魏云杰, 杨龙伟. 2017. 强震区高位滑坡远程灾害特征研究——以四川茂县新磨滑坡为例[J]. 中国地质, 44(5): 827-841. |
余斌. 2008a. 根据泥石流沉积物计算泥石流容重的方法研究[J]. 沉积学报, 26(5): 789-796. |
余斌. 2008b. 稀性泥石流容重计算的改进方法[J]. 山地学报, 27(1): 70-75. |
张培震, 邓起东, 张国民, 马瑾, 甘卫军, 闵伟, 毛凤英, 王琪. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑: 地球科学), (S1): 12-20. |
张培震, 郑德文, 尹功明, 袁道阳, 张广良, 李传友, 王志才. 2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论[J]. 第四纪研究, 26(1): 5-13. |
张岳桥, 马寅生, 杨农, 张会平, 施炜. 2005. 西秦岭地区东昆仑—秦岭断裂系晚新生代左旋走滑历史及其向东扩展[J]. 地球学报, 26(1): 1-8. |
周洪建, 王曦, 袁艺, 王丹丹. 2014. 半干旱区极端强降雨灾害链损失快速评估方法——以甘肃岷县"5·10"特大山洪泥石流灾害为例[J]. 干旱区研究, 31(3): 440-445. |
Blocks, faults and seismic distribution in study area (modified from Zhang Yueqiao et al., 2005)
Geological sketch of debris Nagune gully and surrounding areas
The Nagune Gully landslide-debris and its features
Remote sensing interpretation and plane sketch of Nagune landslide and debris flow
Typical section of Nagune landslide
Variation curve of tensile crack width (a) and vertical drop (b) at the back edge of landslide C
Daily rainfall variation chart of Chabu Town, Minxian County in 2020
Formation mechanism of landslide in circulation area of Nagune gully
Evolution model of debris flow and landslide in fault zone of Nagune gully
Evolution flowchart of debris flow-landslide disaster chain in fault zone of Nagune gully