Citation: | QIN Xuwen, LU Cheng, WANG Pingkang, LIANG Qianyong. 2022. Hydrate phase transition and seepage mechanism during natural gas hydrate production tests in the South China Sea: A review and prospect[J]. Geology in China, 49(3): 749-769. doi: 10.12029/gc20220306 |
This paper is the result of marine hydrates exploration engineering.
The China Geological Survey successfully carried out two NGH production tests in the Shenhu area in the northern South China Sea (SCS) in 2017 and 2020, setting multiple world records, such as the longest gas production time, the highest total gas production, and the highest average daily gas production. Understanding and mastering the phase transition and seepage mechanism of natural gas hydrate reservoir exploitation in the SCS will help to further reveal the decomposition mechanism, production law, and production increase mechanism of this type of hydrate, and provide a theoretical basis for large- scale and efficient exploitation of hydrate resources in China sea.
As suggested by the in-depth research on the two production tests, key factors that restrict the gas production efficiency of hydrate dissociation include reservoir structure characterization, hydrate phase transition, multiphase seepage and permeability enhancement, and the simulation and regulation of production capacity, among which the hydrate phase transition and seepage mechanism are crucial.
Study results reveal that the hydrate phase transition in the SCS is characterized by low dissociation temperature, is prone to produce secondary hydrates in the reservoirs, and is a complex process under the combined effects of the seepage, stress, temperature, and chemical fields. The multiphase seepage is controlled by multiple factors such as the physical properties of unconsolidated reservoirs, the hydrate phase transition, and exploitation methods and is characterized by strong methane adsorption, abrupt changes in absolute permeability, and the weak flow capacity of gas. To ensure the long-term, stable, and efficient NGHs exploitation in the SCS, it is necessary to further enhance the reservoir seepage capacity and increase gas production through secondary reservoir stimulation based on initial reservoir stimulation.
With the constant progress in the NGHs industrialization, great efforts should be made to tackle the difficulties, such as determining the micro-change in temperature and pressure, the response mechanisms of material-energy exchange, the methods for efficient NGH dissociation, and the boundary conditions for the formation of secondary hydrates in the large-scale, long-term gas production.
Bian H, Xia Y X, Lu C, Qin X W, Meng Q B. 2020. Pore structure fractal characterization and permeability simulation of natural gas hydrate reservoir based on CT images[J]. Geofluids, 6934691. |
Cai Jianchao, Hu Xiangyun. 2015. Fractal Theory in Porous Media and Its Applications[M]. Beijing: Science Press (in Chinese). |
Cai J C, Xia Y X, Lu C, Bian H, Zou S G. 2020. Creeping microstructure and fractal permeability model of natural gas hydrate reservoir[J]. Marine and Petroleum Geology, 115: 104282. doi: 10.1016/j.marpetgeo.2020.104282 |
Cai Jianchao, Xia Yuxuan, Xu Sai, Tian Haitao. 2020. Advances in multiphase seepage characteristics of natural gas hydrate sediments[J]. Chinese Journal of Theoretical and Applied Mechanics, 52 (1): 208-223 (in Chinese with English abstract). |
Cao Qinya. 2017. Fracability of Reservoirs in Frozen Soil[D]. Qingdao: China University of Petroleum (East China), 21-69 (in Chinese with English abstract). |
Chaouachi M, Falenty A, Sell K. 2015. Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic[J]. Geochemistry, Geophysics, Geosystems, 16 (6): 1711-1722. doi: 10.1002/2015GC005811 |
Chen L, Feng Y C, Kogawa T. 2018. Construction and simulation of reservoir scale layered model for production and utilization of methane hydrate: The case of Nankai Trough Japan[J]. Energy, 143: 128-140. doi: 10.1016/j.energy.2017.10.108 |
Chen Qiang, Hu Gaowei, Li Yanlong, Wan Yizhao, Liu Cangling, Wu Nengyou, Liu Yang. 2020. A prospect review of new technology for development of marine gas hydrate resources[J]. Marine Geology Frontiers, 36 (9): 44-55 (in Chinese with English abstract). |
Fan Z B, Sun C M, Kuang Y M. 2017. MRI analysis for methane hydrate dissociation by depressurization and the concomitant ice generation[J]. Energy Procedia, 105: 4763-4768. doi: 10.1016/j.egypro.2017.03.1038 |
Gao Deli. 2020. Discussin on development modes and engineering techniques for deepwater natural gas and its hydrates[J]. Natural Gas Industry, 40 (8): 136-143 (in Chinese with English abstract). |
Geng L T, Cai J, Lu C, Qin X W, Qi R R, Meng F L, Xie Y, Sha Z B, Wang X H, Sun C Y. 2021. Phase equilibria of natural gas hydrates in bulk brine and marine sediments from the South China Sea[J]. Journal of Chemical and Engineering Data, 66: 4064-4074. doi: 10.1021/acs.jced.1c00307 |
Hauge L P, Birkedal K A, Ersland G, Graue A. 2014. Methane production from natural gas hydrates by CO2 replacement-review of lab experiments and field trial[J]. Proceedings of the SPE Bergen One Day Seminar, SPE-169198-MS. |
Heeschen K U, Schicks J M, Oeltzschner G. 2016. The promoting effect of natural sand on methane hydrate formation: Grain sizes and mineral composition[J]. Fuel, 181: 139-147. doi: 10.1016/j.fuel.2016.04.017 |
Hu Gaowei, Bu Qingtao, Lü Wanjun, Wang Jiasheng, Chen Jie, Li Qing, Gong Jianming, Sun Jianye, Wu Nengyou. 2020. A comparative study on natural gas hydrate accumulation models at active and passive continental margins[J]. Natural Gas Industry, 40(8): 45-58 (in Chinese with English abstract). |
Jiang Huaiyou, Qiao Weijie, Zhong Taixian, Song Xinmin, Qi Renli, An Xiaoxuan. 2018. Status and forecast of world's natural gas hydrate exploration & development[J]. Sino-global Energy, 13 (6): 19-25 (in Chinese with English abstract). |
Khurana M, Yin Z, Linga P. 2017. A review of clathrate hydrate nucleation[J]. ACS Sustainable Chemistry and Engineering, 5 (12): 11176-11203. doi: 10.1021/acssuschemeng.7b03238 |
Kondori J, Zendehboudi S, Hossain M E. 2017. A review on simulation of methane production from gas hydrate reservoirs: Molecular dynamics prospective[J]. Journal of Petroleum Science and Engineering, 159: 754-772. doi: 10.1016/j.petrol.2017.09.073 |
Kumar SawV, Udayabhanu G, Mandal A, Laik S. 2015. Methane hydrate formation and dissociation in the presence of silica sand and bentonite clay[J]. Oil Gas Sci. Technol., 70: 1087-1099. doi: 10.2516/ogst/2013200 |
Lei X, Yao Y B, Qin X W, Lu C, Luo W J, Wen Z A, Yuan X H. 2022. Pore structure changes induced by hydrate dissociation: An example of the unconsolidated clayey-silty hydrate bearing sediment reservoir in the South China Sea[J]. Marine Geology, 443: 106689. doi: 10.1016/j.margeo.2021.106689 |
Li J F, Ye J L, Qin X W, Qiu H J, Wu N Y, Lu H L, Xie W W, Lu J A, Peng F, Xu Z Q, Lu C, Kuang Z G, Wei J G, Liang Q Y, Lu H F, Kou B B. 2018. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 1(1): 5-16. doi: 10.31035/cg2018003 |
Li Shouding, Li Xiao, Wang Sijing, Sun Yiming. 2020. A novel method for natural gas hydrate production: depressurization and backfilling with in-situ supple-mental heat[J]. Journal of Engineering Geology, 28 (2): 282-293 (in Chinese with English abstract). |
Li Shuxia, Guo Shangping, Chen Mingyue, Zhang Ningtao, Wu Didi. 2020. Advances and recommendations for multi-field characteristics and coupling seepage in natural gas hydrate development[J]. Chinese Journal of Theoretical and Applied Mechanics, 52(3): 828-842 (in Chinese with English abstract). |
Li S X, Wang Z Q, Li S. 2021. Investigations on performance of hydrate dissociation by depressurization near the quadruple point[J]. Journal of Natural Gas Science and Engineering, 90: 1-12. |
Li Xiaosen. 2008. Progress in researches on exploration and exploitation for natural gas hydrate[J]. Modern Chemical Industry, 28 (6): 1-15 (in Chinese with English abstract). |
Li Z, Tian X, Li Z, Xu J, Zhang H, Wang D. 2020. Experimental study on growth characteristics of pore-scale methane hydrate[J]. Energy Reports, 6: 933-943. |
Liu W, Cui S, Wang Z, Ding B. 2019. Research progress on adsorbent materials for gas hydrate exploitation by displacement method[J]. Modern Chemical Industry, 11: 53-57. |
Liu W, Wang S, Yang M, Song Y, Wang S, Zhao J. 2015. Investigation of the induction time for THF hydrate formation in porous media[J]. Journal of Natural Gas Science and Engineering, 24: 357-364. doi: 10.1016/j.jngse.2015.03.030 |
Lu C, Ma C, Geng L T, Yu L, Bian H, Qi R R, Xing D H, Mao W J, Meng F L. 2021. Device for simulating the formation and evolution of NGH inverse phase transition[P]. 2021.08.17, China, ZL202023152284.6. |
Lu C, Qin X W, Ma C, Bian H, Cui Y D, Rao Y. 2020. Onsite data analysis platform for hydrate production and tests-Hydrate Captain V1.0[P]. 2020.01.3, 2020SR0916459. |
Lu C, Qin X W, Mao W J, Ma C, Geng L T, Yu L, Bian H, Meng F, Qi R R. 2021. Experimental study on the propagation characteristics of hydraulic fracture in clayey-silt sediments[J]. Geofluids, 6698649. |
Lu C, Qin X W, Yu L, Geng L T, Mao W G, Bian H, Meng F. 2021. The characteristics of gas-water two-phase radial flow in clay-silt sediment and effects on hydrate production[J]. Geofluids, 6623802. |
Lu C, Sun X X, Li Z Z, Ma C, Wang J L, Geng L T, Zhang K W. 2019. Simulation system for the radial flow in geological reservoirs[P]. 2019.09.17, China, ZL201821818171.5. |
Lu C, Xia Y X, Sun X X, Bian H, Qiu H J, Lu H F, Luo W J, Cai J C. 2019. Permeability evolution at various pressure gradients in natural gas hydrate reservoir at the Shenhu Area in the South China Sea[J]. Energies, 12 (19): 3688. doi: 10.3390/en12193688 |
Lu H, Matsumoto R. 2002. Preliminary experimental results of the stable P-T conditions of methane hydrate in a nannofossil-rich claystone column[J]. Geochemical Journal, 36 (1): 21-30. doi: 10.2343/geochemj.36.21 |
Lu Hailong, Shang Shilong, Cheng Xuejun, Qin Xuwen, Gu Lijuan, Qiu Haijun. 2021. Research progress and development direction of numerical simulator for natural gas hydrate development[J]. Acta Petrolei Sinica, 42 (11): 1516-1530 (in Chinese with English abstract). |
Lu Z Q, Zhu Y H, Zhang Y Q, Wen H J, Li Y H, Liu C L. 2011. Gas hydrate occurrences in the Qilian Mountain permafrost, Qinghai Province, China[J]. Cold Regions Science and Technology, 66 (2/3): 93-104. |
Luo Tianyu, Feng Yi, Hu Rende, Shi Yongheng. 2020. Fracturing technology of subsea gas hydrate reservoir[J]. Drilling & Production Technology, 43 (4): 67-70 (in Chinese with English abstract). |
Lü Q, Zang, X R, Li X S, Li G. 2017. Effect of seawater ions on cyclopentane-methane hydrate phase equilibrium[J]. Fluid Phase Equilibria, 458: 272-277. |
Ma Gongzheng, Lu Hailong, LU Jing'an, Hou Guiting, Gong Yuehua. 2020. Polygonal fault in marine sediments and its impact on gas hydrate occurrence[J]. Geology in China, 47(1): 1-13(in Chinese with English abstract). |
Moridis G J, Collett T S, Dallimore S, Inoue T, Mroz T. 2005. Analysis and interpretation of the thermal test of gas hydrate dissociation in the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well[J]. Bulletin-Geological Survey of Canada. |
Mu L, Cui Q Y. 2019. Experimental study on the dissociation equilibrium of (CH4 + CO2 + N2) hydrates in the mixed sediments[J]. Journal of Chemical and Engineering Data, 64 (12): 5806-5813. doi: 10.1021/acs.jced.9b00760 |
Ning Fulong, Liang Jinqiang, Wu Nengyou, Zhu Youhai, Wu Shiguo, Liu Changling, Wei Changfu, Wang Dongdong, Zhang Zhun, Xu Meng, Liu Zhichao, Li Jing, Sun Jiaxin, Ou Wenjia. 2020. Reservoir characteristics of natural gas hydrates in China[J]. Natural Gas Industry, 40 (8): 1-24 (in Chinese with English abstract). |
Numasawa M. 2008. Objectives and operation over view of the JOGMEC/NRCan/Aurora Mallik gas hydrate production test[C]//Proceedings of the 6th International Conference on Gas Hydrates. |
Oyama A, Masutani S M. 2017. A review of the methane hydrate program in Japan[J]. Energies, 10 (10): 1447. doi: 10.3390/en10101447 |
Qi R G, Qin X W, Bian H, Lu C, Yu L, Ma C. 2021. Overview of molecular dynamics simulation of natural gas hydrate at nanoscale[J]. Geofluids, 6689254. |
Qi RR, Qin X W, Lu C, Ma C, Mao W J, Zhang W T. 2022. Experimental study on the isothermal adsorption of methane gas in natural gas hydrate argillaceous silt reservoir[J]. Advances in Geo-Energy Research, 6 (2): 143-156. doi: 10.46690/ager.2022.02.06 |
Qin X W, Liang Q Y, Ye J L, Yang L, Qiu H J, Xie W W, Liang J Q, Lu J A, Lu C, Lu H L, Ma B J, Kuang Z G, Wei J G, Lu H F, Kou B B. 2020. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea[J]. Applied Energy, 278: 115649. doi: 10.1016/j.apenergy.2020.115649 |
Qin X W, Lu C, Ma C. 2019. Hydrate engine platform-Hydrate Smart V1.0[P]. 2019.11.01, 2019sr1329033. |
Qin X W, Lu C, Tian Y Y, Bian H, Meng F L, Cui Y D. 2021. Comprehensive management platform of reservoir physical property data-GH Properties V1.0[P]. 2021.02.10, 2021SR0245278. |
Qin X W, Lu J A, Lu H L, Qiu H J, Liang J Q, Kang D J, Zhan L S, Lu HF, Kuang Z G. 2020. Coexistence of natural gas hydrate, free gas and water in the gas hydrate system in the Shenhu Area, South China Sea[J]. China Geology, 3 (2): 210-220. |
Qin X W, Ye J L, Qiu H J, Lu C, Sun X X, Ma C, Li Z Z, Wan T H. Geng L T, Zhang X, Zhang K W. 2019. CT technology-based device form measuring the changes in the clayey silt reservoirs in sea areas[P]. 2019.07.16, China, ZL201821815838.6. |
Qin X W, Ye J L, Qiu H J, Zhang J H, Lu C, Ma C, Li Z Z, Wan T H, Geng L T, Sa R N. 2019. Device for fracturing experiments of clayey silt reservoir[P]. 2019.03.15, China, ZL201821179508.2. |
Qin Y, Pan Z, Liu Z. 2021. Influence of the particle size of porous media on the formation of natural gas hydrate: A review[J]. Energy & Fuels, 35 (15): 11640-11664. |
Schoderbek D, Farrell H, Howard J, Raterman K, Silpngarmlert S, Martin K, Smith B, Klein P. 2013. ConocoPhillips gas hydrate production test[R]. United States. |
Shi Yaohong, Liang Qianyong, Yang Jiangpin, Yuan Qingmeng, Wu Xuemin, Kong Liang. 2019. Stability analysis of submarine slopes in the area of the test production of gas hydrate in the South China Sea[J]. China Geology, 2(2): 276-286. |
Sloan E D, Koh C A. 2007. Clathrate Hydrates of Natural Gases[M]. New York: CRC press. |
Song G C, Li Y X, Sum A K. 2020. Characterization of the Coupling between Gas Hydrate Formation and Multiphase Flow Conditions[J]. Journal of Natural Gas Science and Engineering, 83: 103567. doi: 10.1016/j.jngse.2020.103567 |
Su Pibo, Liang Jinqiang, Zhang Wei, Liu Fang, Wang Feifei. 2020. Natural gas hydrate accumulation system in the Shenhu sea area of the northern South China Sea[J]. Natural Gas Industry, 40 (8): 77-89 (in Chinese with English abstract). |
Sun Jinsheng, Cheng Yuanfang, Qin Xuwen, Sun Youhong, Jin Yan, Wang Zhiyuan, Li Shuxia, Lu Cheng, Qu Yuanzhi, Lü Kaihe, Wang Chengwen, Wang Jintang, Wang Ren. 2021. The exploration and production test of gas hydrate and its research progress and exploration prospect in the northern South China Sea[J]. Bulletin of National Natural Science Foundation of China, 35 (6): 940-951 (in Chinese with English abstract). |
Sun S C, Kong Y Y, Zhang Y, Liu C L. 2015. Phase equilibrium of methane hydrate in silica sand containing chloride salt solution[J]. The Journal of Chemical Thermodynamics, 90: 116-121. doi: 10.1016/j.jct.2015.06.030 |
Teixeira A M A, Arinelli L D O, Medeiros J L D, Araújo O. 2018. Recovery of thermodynamic hydrate inhibitors methanol, ethanol and MEG with supersonic separators in offshore natural gas processing[J]. Journal of Natural Gas Science and Engineering, 52: 166-186. doi: 10.1016/j.jngse.2018.01.038 |
Terao Y, Lay K, Yamamoto K. 2014. Design of the surface flow test system for 1st offshore production test of methane hydrate[J]. Offshore Technology Conference-Asia. |
Too J L, Cheng A, Linga P. 2018. Fracturing methane hydrate in sand: A review of the current status[C]//Society of Petroleum Engineers Offshore. Kuala Lumpur, Malaysia, 28292. |
Uchida T, Takeya S, Chuvilin E M, Ohmura R, Nagao J, Yakushev V S, Istomin V A, Minagawa H, Ebinuma T, Narita H. 2004. Decomposition of methane hydrates in sand, sandstone, clays and glass beads[J]. Journal of Geophysical Research: Solid Earth, 109 (5): 1-12. |
Wang P, Yang M, Chen B, Zhao Y, Zhao J, Song Y. 2017. Methane hydrate reformation in porous media with methane migration[J]. Chemical Engineering Science, 168: 344-51. doi: 10.1016/j.ces.2017.04.036 |
Wang Pingkang, Zhu Youhai, Lu Zhenquan, Bai Minggang, Huang Xia, Pang Shouji, Zhang Shuai, Liu Hui, Xiao Rui. 2019. Research progress of gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China: Review[J]. Scientia Sinica Physica, Mechanica and Astronomica, 49 (3): 034606 (in Chinese with English abstract). doi: 10.1360/SSPMA2018-00133 |
Wang X H, Wang Y F, Xie Y, Sun C Y, Chen G J. 2018. Study on the decomposition conditions of gas hydrate in quartz sand-brine mixture systems[J]. The Journal of Chemical Thermodynamics, 131: 247-253. |
Wei Changfu, Yan Rongtao, Tian Huihui, Zhou Jiazuo, Li Wentao, Ma Tiantian, Chen Pan. 2020. Geotechnical status and challenges of natural gas hydrate exploitation[J]. Natural Gas Industry, 40 (8): 116-132 (in Chinese with English abstract). |
Wei Na, Zhou Shouwei, Cui Zhenjun, Zhao Jinzhou, Zhang Liehui, Zhao Jun. 2020. Evaluation of physical parameters and construction of a parameter classification system for natural gas hydrate in the northern South China Sea[J]. Natural Gas Industry, 40 (8): 59-67 (in Chinese with English abstract). |
Wu Nengyou, Huang Li, Hu Gaowei, Li Yanlong, Cheng Qiang, Liu Changling. 2017. Geological controlling factors and scientific challenges for offshore gas hydrate exploration[J]. Marine Geology and Quaternary Geology, 37 (5): 1-11 (in Chinese with English abstract). |
Wu Nengyou, Li Yanlong, Liu Lele, Wan Yizhao, Zhang Zhengcai, Chen Mingtao. 2021. Controlling factors and research prospect on creeping behaviors of marine natural gas hydrate-bearing-strata[J]. Marine Geology and Quaternary Geology, 41 (5): 3-11 (in Chinese with English abstract). |
Wu Nengyou, Li Yanlong, Wan Yizhao, Sun Jianye, Huang Li, Mao Peixiao. 2020. Prospect of marine natural gas hydrate stimulation theory and technology system[J]. Natural Gas Industry, 40 (8): 100-115 (in Chinese with English abstract). |
Xu T, Zhang Z B, Li S D, Li X, Lu C. 2021. Numerical evaluation of Gas hydrate production performance of the depressurization and backfilling with an in situ supplemental heat Method[J]. ACS Omega, 6 (18): 12274-12286. doi: 10.1021/acsomega.1c01143 |
Yamamoto K, Kanno T, Wang X X. 2017. Thermal responses of a gas hydrate-bearing sediment to a depressurization operation[J]. RSC Advance, 7 (10): 5554-5577. doi: 10.1039/C6RA26487E |
Yang Chengzhi, Luo Kunwen, Liang Jinqiang, Lin Zhixuan, Zhang Boda, Liu Fang, Su Ming, Fang Yunxin. 2020. Control effect of shallow-burial deepwater deposits on natural gas hydrate accumulation in the Shenhu sea area of the northern South China Sea[J]. Natural Gas Industry, 40(8): 68-76 (in Chinese with English abstract). |
Yang Liu, Shi Fukun, Zhang Xuhui, Lu Xiaobing. 2020. Experimental studies on the propagation characteristics of hydrate fracture in clay hydrate sediment[J]. Chinese Journal of Theoretical and Applied Mechanics, 52 (1): 224-234 (in Chinese with English abstract). |
Yang L, Ye J L, Qin X W. 2021. Effects of the seepage capability of overlying and underlying strata of marine hydrate system on depressurization-induced hydrate production behaviors by horizontal well[J]. Marine and Petroleum Geology, 128: 105019. doi: 10.1016/j.marpetgeo.2021.105019 |
Yao Yuanxin, Li Donglian, Liang Deqing. 2020. Research progress on hydraulic fracturing of natural gas hydrate reservoir[J]. Advances in New and Renewable Enengy, 8(4): 282-290 (in Chinese with English abstract). |
Ye J L, Qin X W, Xie W W, Lu H L, Ma B J, Qiu H J, Liang G Q, Lu G A, Kuang Z G, Lu C, Liang Q Y, Wei S P, Yu Y J, Liu C H, Li B, Shen K X, Shi H X, Lu Q P, Li J, Kou B B, Song G, Li B, Zhang H E, Lu H F, Ma C, Dong Y F, Bian H. 2020. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 3 (2): 197-209. |
Yu L, Zhang L, Zhang R. 2018. Assessment of natural gas production from hydrate-bearing sediments with unconsolidated argillaceous siltstones via a controlled sandout method[J]. Energy, 160: 654-667. doi: 10.1016/j.energy.2018.07.050 |
Yu M, Li W, Jiang L. 2017. Numerical study of gas production from methane hydrate deposits by depressurization at 274K[J]. Applied Energy, 227: 28-37. |
Zhang L, Sun M, Sun L. 2019. In-situ observation for natural gas hydrate in porous medium: Water performance and formation characteristic[J]. Magnetic Resonance Imaging, 65: 166-174. |
Zhang Wei, Liang Jinqiang, Su Pibo, Wang Lifeng, Lin Lin, Huang Wei, Wei Jiangong, Liang Jin. 2020. Research progress and prospect of relationship between double bottom simulating reflector and the accumulation of gas hydrates[J]. Geology in China, 47(1): 29-42(in Chinese with English abstract). |
Zhang Wei, Liang Jinqiang, Lu Jingan, Meng Miaomiao, He Yulin, Deng Wei, Feng Junxi. 2020. Characteristics and controlling mechanism of typical leakage gas hydrate reservoir forming system in the Qiongdongnan Basin, northern South China Sea[J]. Natural Gas Industry, 40 (8): 90-99 (in Chinese with English abstract). |
Zhang Y, Li X S, Wang Y, Chen Z Y, Yan K F. 2016. Decomposition conditions of methane hydrate in marine sediments from South China Sea[J]. Fluid Phase Equilibria, 413: 110-115. doi: 10.1016/j.fluid.2015.12.004 |
Zhong Guangfa, Zhang Di, Zhao Luanxiao. 2020. Current states of well-logging evaluation of deep-sea gas hydrate-bearing sediments by international scientific ocean drilling (DSDP/ODP/IODP) programs[J]. Natural Gas Industry, 40 (8): 25-44 (in Chinese with English abstract). |
Zou Caineng. 2013. Unconventional Petroleum Geology, 2nd Edition[M]. Beijing: Geological Publishing House(in Chinese). |
蔡建超, 胡祥云. 多孔介质分形理论与应用[M]. 科学出版社, 2015. |
蔡建超, 夏宇轩, 徐赛, 田海涛. 2020. 含水合物沉积物多相渗流特性研究进展[J]. 力学学报, 52(1): 208-223. |
曹钦亚. 冻土带水合物储层可压裂性研究[D]. 中国石油大学(华东)石油工程学院, 2017, 21-69. |
陈强, 胡高伟, 李彦龙, 万义钊, 刘昌岭, 吴能友, 刘洋. 2020. 海域天然气水合物资源开采新技术展望[J]. 海洋地质前沿, 36(09): 44-55. |
高德利. 2020. 深海天然气及其水合物开发模式与钻采技术探讨[J]. 天然气工业, 40(8): 136-143. |
胡高伟, 卜庆涛, 吕万军, 王家生, 陈杰, 李清, 龚建明, 孙建业, 吴能友. 2020. 主动、被动大陆边缘天然气水合物成藏模式对比[J]. 天然气工业, 40(8): 45-58. doi: 10.3787/j.issn.1000-0976.2020.08.003 |
江怀友, 乔卫杰, 钟太贤, 宋新民, 齐仁理, 安晓璇. 2008. 世界天然气水合物资源勘探开发现状与展望[J]. 中外能源, 13(6): 19-25. |
李守定, 李晓, 王思敬, 孙一鸣. 2020. 天然气水合物原位补热降压充填开采方法[J]. 工程地质学报, 28(2): 282-293. |
李淑霞, 郭尚平, 陈月明, 张宁涛, 武迪迪. 2022. 天然气水合物开发多物理场特征及耦合渗流研究进展与建议[J]. 力学学报, 52(3): 828-842. |
李小森. 2008. 天然气水合物能源的勘探与开发[J]. 现代化工, 28(6): 1-15. doi: 10.3321/j.issn:0253-4320.2008.06.001 |
陆程, 秦绪文, 马超, 边航, 崔玉东, 饶阳. 水合物生产测试现场数据分析平台-Hydrate Captain V1.0, 2020.01.31, 2020SR0916459. |
陆程, 孙晓晓, 李占钊, 马超, 王静丽, 耿澜涛, 张渴为. 一种地质储层径向流模拟系统[P]. 2019.09.17, 中国, ZL201821818171.5. |
陆程, 马超, 耿澜涛, 余路, 边航, 齐荣荣, 邢东辉, 毛文静, 孟凡乐. 一种天然气水合物逆相变形成演化规律模拟装置[P]. 2021.08.17. 中国, ZL202023152284.6. |
卢海龙, 尚世龙, 陈雪君, 秦绪文, 古利娟, 邱海峻. 2021. 天然气水合物开发数值模拟器研究进展及发展趋势[J]. 石油学报, 42(11): 1516-1530. doi: 10.7623/syxb202111011 |
罗天雨, 冯一, 胡仁德, 石咏衡. 2020. 海下天然气水合物储层压裂工艺技术[J]. 钻采工艺, 43(4): 67-70. doi: 10.3969/J.ISSN.1006-768X.2020.04.19 |
马公正, 卢海龙, 陆敬安, 侯贵廷, 龚跃华. 2020. 海底沉积物多边形断层及其对天然气水合物赋存的控制[J]. 中国地质, 47(1): 1-13. |
宁伏龙, 梁金强, 吴能友, 祝有海, 吴时国, 刘昌岭, 韦昌富, 王冬冬, 张准, 徐猛, 刘志超, 李晶, 孙嘉鑫, 欧文佳. 2020. 中国天然气水合物赋存特征[J]. 天然气工业, 40(8): 1-24. doi: 10.3787/j.issn.1000-0976.2020.08.001 |
秦绪文, 陆程, 马超. 水合物引擎-Hydrate Smart平台V1.0. 2019.11.01, 2019sr1329033. |
秦绪文, 陆程, 田英英, 边航, 孟凡乐, 崔玉东, 天然气水合物储层物性数据综合管理平台-GH Properties V1.0[P]. 2021.02.10, 2021SR0245278. |
秦绪文, 叶建良, 邱海峻, 张建华, 陆程, 马超, 李占钊, 万庭辉, 耿澜涛, 萨日娜, 泥质粉砂油气层的压裂实验装置[P]. 2019.03.15, 中国, ZL201821179508.2. |
秦绪文, 叶建良, 邱海峻, 陆程, 孙晓晓, 马超, 李占钊, 万庭辉, 耿澜涛, 张熙, 张渴为, CT技术测量海域泥质粉砂储层结构变化的装置[P]. 2019.07.16, 中国, ZL201821815838.6. |
苏丕波, 梁金强, 张伟, 刘坊, 王飞飞. 2020. 南海北部神狐海域天然气水合物成藏系统[J]. 天然气工业, 40(8): 77-89. doi: 10.3787/j.issn.1000-0976.2020.08.006 |
孙金声, 程远方, 秦绪文, 孙友宏, 金衍, 王志远, 李淑霞, 陆程, 屈沅治, 吕开河, 王成文, 王金唐, 王韧. 2021. 南海天然气水合物钻采机理与调控研究进展[J]. 中国科学基金, 35(6): 940-951. |
王平康, 祝有海, 卢振权, 白名岗, 黄霞, 庞守吉, 张帅, 刘晖, 肖睿. 2019. 青海祁连山冻土区天然气水合物研究进展综述[J]. 中国科学: 物理学力学天文学, 49(3): 76-95. |
韦昌富, 颜荣涛, 田慧会, 周家作, 李文涛, 马田田, 陈盼. 2020. 天然气水合物开采的土力学问题: 现状与挑战[J]. 天然气工业, 40(8): 83-99. |
魏纳, 周守为, 崔振军, 赵金洲, 张烈辉, 赵军. 2020. 南海北部天然气水合物物性参数评价与分类体系构建[J]. 天然气工业, 40(8): 59-67. doi: 10.3787/j.issn.1000-0976.2020.08.004 |
吴能友, 黄丽, 胡高伟, 李彦龙, 陈强, 刘昌岭. 2017. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 天然气工业, 37(5): 1-11. |
吴能友, 李彦龙, 刘乐乐, 万义钊, 张正财, 陈明涛. 2021. 海洋天然气水合物储层蠕变行为的主控因素与研究展望[J]. 海洋地质与第四纪地质, 41(5): 3-11. |
吴能友, 李彦龙, 万义钊, 孙建业, 黄丽, 毛佩筱. 2020. 海域天然气水合物开采增产理论与技术体系展望[J]. 天然气工业, 40(8): 100-115. |
杨承志, 罗坤文, 梁金强, 林智轩, 张伯达, 刘坊, 苏明, 方允鑫. 2020. 南海北部神狐海域浅层深水沉积体对天然气水合物成藏的控制[J]. 天然气工业, 40(8): 68-76. |
杨柳, 石富坤, 张旭辉, 鲁晓兵. 2020. 含水合物粉质黏土压裂成缝特征实验研究[J]. 力学学报, 52(1): 224-234. |
姚远欣, 李栋梁, 梁德青. 2020. 天然气水合物储层水力压裂研究进展[J]. 新能源进展, 8(4): 282-290. |
张伟, 梁金强, 苏丕波, 王力峰, 林霖, 黄伟, 尉建功, 梁劲. 2020. 双似海底反射层与天然气水合物成藏关系研究进展与展望[J]. 中国地质, 47(1): 29-42. |
张伟, 梁金强, 陆敬安, 孟苗苗, 何玉林, 邓炜, 冯俊熙. 2020. 琼东南盆地典型渗漏型天然气水合物成藏系统的特征与控藏机制[J]. 天然气工业, 40(8): 90-99. |
钟广法, 张迪, 赵峦啸. 2020. 大洋钻探天然气水合物储层测井评价研究进展[J]. 天然气工业, 40(8): 25-44. |
邹才能. 非常规油气地质(第二版)[M]. 北京: 地质出版社, 2013. |
Geological map of the study area
Typical mineral surfaces of reservoir samples
Comparison of mineral(a)and clay(b)contents of three samples in the Shenhu area of SCS
Distribution of pore sizes and pore types based on (a) N2-adsorption and (b) NMR(Li et al., 2022)
Original grayscale images (a) and binarized images (b, 5123 pixels) and the pressure field (Pa) distributed along y direction in the permeability simulation of six hydrate samples (c) (Bian et al., 2020).
Schematic diagram of porosity and permeability fitting of six hydrate samples (a); Fitted curve of succolarity and permeability for six hydrate samples along different positive directions (b) (Bian et al., 2020)
Configurations of pectin at 0, 1, 2, 3, 4, 5, 10, and 20 ns. Blue represents water molecules, blue dotted lines represent hydrogen bonds, green represents methane, and red represents pectin (Qi et al., 2021)
NGHs dissociation conditions in bulk water (a) and in sediments (b) with different salinities(Geng et al., 2021)
The plots of reciprocal temperature (1/T) vs. the natural logarithm of dissociation pressure (lnP) for experimental NGH in (a) the bulk water and (b) marine sediments. The solid lines indicate the reliability and accuracy of the experimental procedure and data points (Geng et al., 2021)
Relationships between hydrate saturation and permeability/initial permeability calculated using various models
Distribution of reservoir pressure and equilibrium pressure of hydrates over time when the dissociation front is (a) 3 m, (b) 5 m, (c) 8 m away from the production well, as well as distribution of reservoir temperature and pressure in the hydrate dissociation zone
Production curves of gas production rate (a) and secondary hydrate formation (b) under different pressure differences
Methane adsorption characteristics of clayey silt
Simulation results of samples (a) KT4-16 (dry condition), (b) KT4-17 (dry condition), (c) KT4-18 (dry condition), and (d) KT4-16 (moist condition) using the modified Langmuir and DR models (Qi et al., 2022)
Relationship between microscopic pore structure and pressure change of clayey silt reservoir
Relative permeability curves of other gas reservoirs (Lu et al., 2021)
Fracture characteristics of samples 1-3 after hydraulic fracturing by CT (Lu et al., 2021)
Interface of Hydrate Smart platform (Sun et al., 2021)
Relationship between the production dynamic characteristics and the variation of formation temperature and pressure of the first offshore NGHs production test