2022 Vol. 49, No. 3
Article Contents

QIN Xuwen, LU Cheng, WANG Pingkang, LIANG Qianyong. 2022. Hydrate phase transition and seepage mechanism during natural gas hydrate production tests in the South China Sea: A review and prospect[J]. Geology in China, 49(3): 749-769. doi: 10.12029/gc20220306
Citation: QIN Xuwen, LU Cheng, WANG Pingkang, LIANG Qianyong. 2022. Hydrate phase transition and seepage mechanism during natural gas hydrate production tests in the South China Sea: A review and prospect[J]. Geology in China, 49(3): 749-769. doi: 10.12029/gc20220306

Hydrate phase transition and seepage mechanism during natural gas hydrate production tests in the South China Sea: A review and prospect

    Fund Project: Supported by the National Natural Science Foundation of China (No.51991365)
More Information
  • Author Bio: QIN Xuwen, male, born in 1977, doctor, researcher, engaged in marine gas hydrate research; E-mail: qinxuwen@163.com
  • This paper is the result of marine hydrates exploration engineering.

    Objective

    The China Geological Survey successfully carried out two NGH production tests in the Shenhu area in the northern South China Sea (SCS) in 2017 and 2020, setting multiple world records, such as the longest gas production time, the highest total gas production, and the highest average daily gas production. Understanding and mastering the phase transition and seepage mechanism of natural gas hydrate reservoir exploitation in the SCS will help to further reveal the decomposition mechanism, production law, and production increase mechanism of this type of hydrate, and provide a theoretical basis for large- scale and efficient exploitation of hydrate resources in China sea.

    Methods

    As suggested by the in-depth research on the two production tests, key factors that restrict the gas production efficiency of hydrate dissociation include reservoir structure characterization, hydrate phase transition, multiphase seepage and permeability enhancement, and the simulation and regulation of production capacity, among which the hydrate phase transition and seepage mechanism are crucial.

    Results

    Study results reveal that the hydrate phase transition in the SCS is characterized by low dissociation temperature, is prone to produce secondary hydrates in the reservoirs, and is a complex process under the combined effects of the seepage, stress, temperature, and chemical fields. The multiphase seepage is controlled by multiple factors such as the physical properties of unconsolidated reservoirs, the hydrate phase transition, and exploitation methods and is characterized by strong methane adsorption, abrupt changes in absolute permeability, and the weak flow capacity of gas. To ensure the long-term, stable, and efficient NGHs exploitation in the SCS, it is necessary to further enhance the reservoir seepage capacity and increase gas production through secondary reservoir stimulation based on initial reservoir stimulation.

    Conclusions

    With the constant progress in the NGHs industrialization, great efforts should be made to tackle the difficulties, such as determining the micro-change in temperature and pressure, the response mechanisms of material-energy exchange, the methods for efficient NGH dissociation, and the boundary conditions for the formation of secondary hydrates in the large-scale, long-term gas production.

  • 加载中
  • Bian H, Xia Y X, Lu C, Qin X W, Meng Q B. 2020. Pore structure fractal characterization and permeability simulation of natural gas hydrate reservoir based on CT images[J]. Geofluids, 6934691.

    Google Scholar

    Cai Jianchao, Hu Xiangyun. 2015. Fractal Theory in Porous Media and Its Applications[M]. Beijing: Science Press (in Chinese).

    Google Scholar

    Cai J C, Xia Y X, Lu C, Bian H, Zou S G. 2020. Creeping microstructure and fractal permeability model of natural gas hydrate reservoir[J]. Marine and Petroleum Geology, 115: 104282. doi: 10.1016/j.marpetgeo.2020.104282

    CrossRef Google Scholar

    Cai Jianchao, Xia Yuxuan, Xu Sai, Tian Haitao. 2020. Advances in multiphase seepage characteristics of natural gas hydrate sediments[J]. Chinese Journal of Theoretical and Applied Mechanics, 52 (1): 208-223 (in Chinese with English abstract).

    Google Scholar

    Cao Qinya. 2017. Fracability of Reservoirs in Frozen Soil[D]. Qingdao: China University of Petroleum (East China), 21-69 (in Chinese with English abstract).

    Google Scholar

    Chaouachi M, Falenty A, Sell K. 2015. Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic[J]. Geochemistry, Geophysics, Geosystems, 16 (6): 1711-1722. doi: 10.1002/2015GC005811

    CrossRef Google Scholar

    Chen L, Feng Y C, Kogawa T. 2018. Construction and simulation of reservoir scale layered model for production and utilization of methane hydrate: The case of Nankai Trough Japan[J]. Energy, 143: 128-140. doi: 10.1016/j.energy.2017.10.108

    CrossRef Google Scholar

    Chen Qiang, Hu Gaowei, Li Yanlong, Wan Yizhao, Liu Cangling, Wu Nengyou, Liu Yang. 2020. A prospect review of new technology for development of marine gas hydrate resources[J]. Marine Geology Frontiers, 36 (9): 44-55 (in Chinese with English abstract).

    Google Scholar

    Fan Z B, Sun C M, Kuang Y M. 2017. MRI analysis for methane hydrate dissociation by depressurization and the concomitant ice generation[J]. Energy Procedia, 105: 4763-4768. doi: 10.1016/j.egypro.2017.03.1038

    CrossRef Google Scholar

    Gao Deli. 2020. Discussin on development modes and engineering techniques for deepwater natural gas and its hydrates[J]. Natural Gas Industry, 40 (8): 136-143 (in Chinese with English abstract).

    Google Scholar

    Geng L T, Cai J, Lu C, Qin X W, Qi R R, Meng F L, Xie Y, Sha Z B, Wang X H, Sun C Y. 2021. Phase equilibria of natural gas hydrates in bulk brine and marine sediments from the South China Sea[J]. Journal of Chemical and Engineering Data, 66: 4064-4074. doi: 10.1021/acs.jced.1c00307

    CrossRef Google Scholar

    Hauge L P, Birkedal K A, Ersland G, Graue A. 2014. Methane production from natural gas hydrates by CO2 replacement-review of lab experiments and field trial[J]. Proceedings of the SPE Bergen One Day Seminar, SPE-169198-MS.

    Google Scholar

    Heeschen K U, Schicks J M, Oeltzschner G. 2016. The promoting effect of natural sand on methane hydrate formation: Grain sizes and mineral composition[J]. Fuel, 181: 139-147. doi: 10.1016/j.fuel.2016.04.017

    CrossRef Google Scholar

    Hu Gaowei, Bu Qingtao, Lü Wanjun, Wang Jiasheng, Chen Jie, Li Qing, Gong Jianming, Sun Jianye, Wu Nengyou. 2020. A comparative study on natural gas hydrate accumulation models at active and passive continental margins[J]. Natural Gas Industry, 40(8): 45-58 (in Chinese with English abstract).

    Google Scholar

    Jiang Huaiyou, Qiao Weijie, Zhong Taixian, Song Xinmin, Qi Renli, An Xiaoxuan. 2018. Status and forecast of world's natural gas hydrate exploration & development[J]. Sino-global Energy, 13 (6): 19-25 (in Chinese with English abstract).

    Google Scholar

    Khurana M, Yin Z, Linga P. 2017. A review of clathrate hydrate nucleation[J]. ACS Sustainable Chemistry and Engineering, 5 (12): 11176-11203. doi: 10.1021/acssuschemeng.7b03238

    CrossRef Google Scholar

    Kondori J, Zendehboudi S, Hossain M E. 2017. A review on simulation of methane production from gas hydrate reservoirs: Molecular dynamics prospective[J]. Journal of Petroleum Science and Engineering, 159: 754-772. doi: 10.1016/j.petrol.2017.09.073

    CrossRef Google Scholar

    Kumar SawV, Udayabhanu G, Mandal A, Laik S. 2015. Methane hydrate formation and dissociation in the presence of silica sand and bentonite clay[J]. Oil Gas Sci. Technol., 70: 1087-1099. doi: 10.2516/ogst/2013200

    CrossRef Google Scholar

    Lei X, Yao Y B, Qin X W, Lu C, Luo W J, Wen Z A, Yuan X H. 2022. Pore structure changes induced by hydrate dissociation: An example of the unconsolidated clayey-silty hydrate bearing sediment reservoir in the South China Sea[J]. Marine Geology, 443: 106689. doi: 10.1016/j.margeo.2021.106689

    CrossRef Google Scholar

    Li J F, Ye J L, Qin X W, Qiu H J, Wu N Y, Lu H L, Xie W W, Lu J A, Peng F, Xu Z Q, Lu C, Kuang Z G, Wei J G, Liang Q Y, Lu H F, Kou B B. 2018. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 1(1): 5-16. doi: 10.31035/cg2018003

    CrossRef Google Scholar

    Li Shouding, Li Xiao, Wang Sijing, Sun Yiming. 2020. A novel method for natural gas hydrate production: depressurization and backfilling with in-situ supple-mental heat[J]. Journal of Engineering Geology, 28 (2): 282-293 (in Chinese with English abstract).

    Google Scholar

    Li Shuxia, Guo Shangping, Chen Mingyue, Zhang Ningtao, Wu Didi. 2020. Advances and recommendations for multi-field characteristics and coupling seepage in natural gas hydrate development[J]. Chinese Journal of Theoretical and Applied Mechanics, 52(3): 828-842 (in Chinese with English abstract).

    Google Scholar

    Li S X, Wang Z Q, Li S. 2021. Investigations on performance of hydrate dissociation by depressurization near the quadruple point[J]. Journal of Natural Gas Science and Engineering, 90: 1-12.

    Google Scholar

    Li Xiaosen. 2008. Progress in researches on exploration and exploitation for natural gas hydrate[J]. Modern Chemical Industry, 28 (6): 1-15 (in Chinese with English abstract).

    Google Scholar

    Li Z, Tian X, Li Z, Xu J, Zhang H, Wang D. 2020. Experimental study on growth characteristics of pore-scale methane hydrate[J]. Energy Reports, 6: 933-943.

    Google Scholar

    Liu W, Cui S, Wang Z, Ding B. 2019. Research progress on adsorbent materials for gas hydrate exploitation by displacement method[J]. Modern Chemical Industry, 11: 53-57.

    Google Scholar

    Liu W, Wang S, Yang M, Song Y, Wang S, Zhao J. 2015. Investigation of the induction time for THF hydrate formation in porous media[J]. Journal of Natural Gas Science and Engineering, 24: 357-364. doi: 10.1016/j.jngse.2015.03.030

    CrossRef Google Scholar

    Lu C, Ma C, Geng L T, Yu L, Bian H, Qi R R, Xing D H, Mao W J, Meng F L. 2021. Device for simulating the formation and evolution of NGH inverse phase transition[P]. 2021.08.17, China, ZL202023152284.6.

    Google Scholar

    Lu C, Qin X W, Ma C, Bian H, Cui Y D, Rao Y. 2020. Onsite data analysis platform for hydrate production and tests-Hydrate Captain V1.0[P]. 2020.01.3, 2020SR0916459.

    Google Scholar

    Lu C, Qin X W, Mao W J, Ma C, Geng L T, Yu L, Bian H, Meng F, Qi R R. 2021. Experimental study on the propagation characteristics of hydraulic fracture in clayey-silt sediments[J]. Geofluids, 6698649.

    Google Scholar

    Lu C, Qin X W, Yu L, Geng L T, Mao W G, Bian H, Meng F. 2021. The characteristics of gas-water two-phase radial flow in clay-silt sediment and effects on hydrate production[J]. Geofluids, 6623802.

    Google Scholar

    Lu C, Sun X X, Li Z Z, Ma C, Wang J L, Geng L T, Zhang K W. 2019. Simulation system for the radial flow in geological reservoirs[P]. 2019.09.17, China, ZL201821818171.5.

    Google Scholar

    Lu C, Xia Y X, Sun X X, Bian H, Qiu H J, Lu H F, Luo W J, Cai J C. 2019. Permeability evolution at various pressure gradients in natural gas hydrate reservoir at the Shenhu Area in the South China Sea[J]. Energies, 12 (19): 3688. doi: 10.3390/en12193688

    CrossRef Google Scholar

    Lu H, Matsumoto R. 2002. Preliminary experimental results of the stable P-T conditions of methane hydrate in a nannofossil-rich claystone column[J]. Geochemical Journal, 36 (1): 21-30. doi: 10.2343/geochemj.36.21

    CrossRef Google Scholar

    Lu Hailong, Shang Shilong, Cheng Xuejun, Qin Xuwen, Gu Lijuan, Qiu Haijun. 2021. Research progress and development direction of numerical simulator for natural gas hydrate development[J]. Acta Petrolei Sinica, 42 (11): 1516-1530 (in Chinese with English abstract).

    Google Scholar

    Lu Z Q, Zhu Y H, Zhang Y Q, Wen H J, Li Y H, Liu C L. 2011. Gas hydrate occurrences in the Qilian Mountain permafrost, Qinghai Province, China[J]. Cold Regions Science and Technology, 66 (2/3): 93-104.

    Google Scholar

    Luo Tianyu, Feng Yi, Hu Rende, Shi Yongheng. 2020. Fracturing technology of subsea gas hydrate reservoir[J]. Drilling & Production Technology, 43 (4): 67-70 (in Chinese with English abstract).

    Google Scholar

    Lü Q, Zang, X R, Li X S, Li G. 2017. Effect of seawater ions on cyclopentane-methane hydrate phase equilibrium[J]. Fluid Phase Equilibria, 458: 272-277.

    Google Scholar

    Ma Gongzheng, Lu Hailong, LU Jing'an, Hou Guiting, Gong Yuehua. 2020. Polygonal fault in marine sediments and its impact on gas hydrate occurrence[J]. Geology in China, 47(1): 1-13(in Chinese with English abstract).

    Google Scholar

    Moridis G J, Collett T S, Dallimore S, Inoue T, Mroz T. 2005. Analysis and interpretation of the thermal test of gas hydrate dissociation in the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well[J]. Bulletin-Geological Survey of Canada.

    Google Scholar

    Mu L, Cui Q Y. 2019. Experimental study on the dissociation equilibrium of (CH4 + CO2 + N2) hydrates in the mixed sediments[J]. Journal of Chemical and Engineering Data, 64 (12): 5806-5813. doi: 10.1021/acs.jced.9b00760

    CrossRef Google Scholar

    Ning Fulong, Liang Jinqiang, Wu Nengyou, Zhu Youhai, Wu Shiguo, Liu Changling, Wei Changfu, Wang Dongdong, Zhang Zhun, Xu Meng, Liu Zhichao, Li Jing, Sun Jiaxin, Ou Wenjia. 2020. Reservoir characteristics of natural gas hydrates in China[J]. Natural Gas Industry, 40 (8): 1-24 (in Chinese with English abstract).

    Google Scholar

    Numasawa M. 2008. Objectives and operation over view of the JOGMEC/NRCan/Aurora Mallik gas hydrate production test[C]//Proceedings of the 6th International Conference on Gas Hydrates.

    Google Scholar

    Oyama A, Masutani S M. 2017. A review of the methane hydrate program in Japan[J]. Energies, 10 (10): 1447. doi: 10.3390/en10101447

    CrossRef Google Scholar

    Qi R G, Qin X W, Bian H, Lu C, Yu L, Ma C. 2021. Overview of molecular dynamics simulation of natural gas hydrate at nanoscale[J]. Geofluids, 6689254.

    Google Scholar

    Qi RR, Qin X W, Lu C, Ma C, Mao W J, Zhang W T. 2022. Experimental study on the isothermal adsorption of methane gas in natural gas hydrate argillaceous silt reservoir[J]. Advances in Geo-Energy Research, 6 (2): 143-156. doi: 10.46690/ager.2022.02.06

    CrossRef Google Scholar

    Qin X W, Liang Q Y, Ye J L, Yang L, Qiu H J, Xie W W, Liang J Q, Lu J A, Lu C, Lu H L, Ma B J, Kuang Z G, Wei J G, Lu H F, Kou B B. 2020. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea[J]. Applied Energy, 278: 115649. doi: 10.1016/j.apenergy.2020.115649

    CrossRef Google Scholar

    Qin X W, Lu C, Ma C. 2019. Hydrate engine platform-Hydrate Smart V1.0[P]. 2019.11.01, 2019sr1329033.

    Google Scholar

    Qin X W, Lu C, Tian Y Y, Bian H, Meng F L, Cui Y D. 2021. Comprehensive management platform of reservoir physical property data-GH Properties V1.0[P]. 2021.02.10, 2021SR0245278.

    Google Scholar

    Qin X W, Lu J A, Lu H L, Qiu H J, Liang J Q, Kang D J, Zhan L S, Lu HF, Kuang Z G. 2020. Coexistence of natural gas hydrate, free gas and water in the gas hydrate system in the Shenhu Area, South China Sea[J]. China Geology, 3 (2): 210-220.

    Google Scholar

    Qin X W, Ye J L, Qiu H J, Lu C, Sun X X, Ma C, Li Z Z, Wan T H. Geng L T, Zhang X, Zhang K W. 2019. CT technology-based device form measuring the changes in the clayey silt reservoirs in sea areas[P]. 2019.07.16, China, ZL201821815838.6.

    Google Scholar

    Qin X W, Ye J L, Qiu H J, Zhang J H, Lu C, Ma C, Li Z Z, Wan T H, Geng L T, Sa R N. 2019. Device for fracturing experiments of clayey silt reservoir[P]. 2019.03.15, China, ZL201821179508.2.

    Google Scholar

    Qin Y, Pan Z, Liu Z. 2021. Influence of the particle size of porous media on the formation of natural gas hydrate: A review[J]. Energy & Fuels, 35 (15): 11640-11664.

    Google Scholar

    Schoderbek D, Farrell H, Howard J, Raterman K, Silpngarmlert S, Martin K, Smith B, Klein P. 2013. ConocoPhillips gas hydrate production test[R]. United States.

    Google Scholar

    Shi Yaohong, Liang Qianyong, Yang Jiangpin, Yuan Qingmeng, Wu Xuemin, Kong Liang. 2019. Stability analysis of submarine slopes in the area of the test production of gas hydrate in the South China Sea[J]. China Geology, 2(2): 276-286.

    Google Scholar

    Sloan E D, Koh C A. 2007. Clathrate Hydrates of Natural Gases[M]. New York: CRC press.

    Google Scholar

    Song G C, Li Y X, Sum A K. 2020. Characterization of the Coupling between Gas Hydrate Formation and Multiphase Flow Conditions[J]. Journal of Natural Gas Science and Engineering, 83: 103567. doi: 10.1016/j.jngse.2020.103567

    CrossRef Google Scholar

    Su Pibo, Liang Jinqiang, Zhang Wei, Liu Fang, Wang Feifei. 2020. Natural gas hydrate accumulation system in the Shenhu sea area of the northern South China Sea[J]. Natural Gas Industry, 40 (8): 77-89 (in Chinese with English abstract).

    Google Scholar

    Sun Jinsheng, Cheng Yuanfang, Qin Xuwen, Sun Youhong, Jin Yan, Wang Zhiyuan, Li Shuxia, Lu Cheng, Qu Yuanzhi, Lü Kaihe, Wang Chengwen, Wang Jintang, Wang Ren. 2021. The exploration and production test of gas hydrate and its research progress and exploration prospect in the northern South China Sea[J]. Bulletin of National Natural Science Foundation of China, 35 (6): 940-951 (in Chinese with English abstract).

    Google Scholar

    Sun S C, Kong Y Y, Zhang Y, Liu C L. 2015. Phase equilibrium of methane hydrate in silica sand containing chloride salt solution[J]. The Journal of Chemical Thermodynamics, 90: 116-121. doi: 10.1016/j.jct.2015.06.030

    CrossRef Google Scholar

    Teixeira A M A, Arinelli L D O, Medeiros J L D, Araújo O. 2018. Recovery of thermodynamic hydrate inhibitors methanol, ethanol and MEG with supersonic separators in offshore natural gas processing[J]. Journal of Natural Gas Science and Engineering, 52: 166-186. doi: 10.1016/j.jngse.2018.01.038

    CrossRef Google Scholar

    Terao Y, Lay K, Yamamoto K. 2014. Design of the surface flow test system for 1st offshore production test of methane hydrate[J]. Offshore Technology Conference-Asia.

    Google Scholar

    Too J L, Cheng A, Linga P. 2018. Fracturing methane hydrate in sand: A review of the current status[C]//Society of Petroleum Engineers Offshore. Kuala Lumpur, Malaysia, 28292.

    Google Scholar

    Uchida T, Takeya S, Chuvilin E M, Ohmura R, Nagao J, Yakushev V S, Istomin V A, Minagawa H, Ebinuma T, Narita H. 2004. Decomposition of methane hydrates in sand, sandstone, clays and glass beads[J]. Journal of Geophysical Research: Solid Earth, 109 (5): 1-12.

    Google Scholar

    Wang P, Yang M, Chen B, Zhao Y, Zhao J, Song Y. 2017. Methane hydrate reformation in porous media with methane migration[J]. Chemical Engineering Science, 168: 344-51. doi: 10.1016/j.ces.2017.04.036

    CrossRef Google Scholar

    Wang Pingkang, Zhu Youhai, Lu Zhenquan, Bai Minggang, Huang Xia, Pang Shouji, Zhang Shuai, Liu Hui, Xiao Rui. 2019. Research progress of gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China: Review[J]. Scientia Sinica Physica, Mechanica and Astronomica, 49 (3): 034606 (in Chinese with English abstract). doi: 10.1360/SSPMA2018-00133

    CrossRef Google Scholar

    Wang X H, Wang Y F, Xie Y, Sun C Y, Chen G J. 2018. Study on the decomposition conditions of gas hydrate in quartz sand-brine mixture systems[J]. The Journal of Chemical Thermodynamics, 131: 247-253.

    Google Scholar

    Wei Changfu, Yan Rongtao, Tian Huihui, Zhou Jiazuo, Li Wentao, Ma Tiantian, Chen Pan. 2020. Geotechnical status and challenges of natural gas hydrate exploitation[J]. Natural Gas Industry, 40 (8): 116-132 (in Chinese with English abstract).

    Google Scholar

    Wei Na, Zhou Shouwei, Cui Zhenjun, Zhao Jinzhou, Zhang Liehui, Zhao Jun. 2020. Evaluation of physical parameters and construction of a parameter classification system for natural gas hydrate in the northern South China Sea[J]. Natural Gas Industry, 40 (8): 59-67 (in Chinese with English abstract).

    Google Scholar

    Wu Nengyou, Huang Li, Hu Gaowei, Li Yanlong, Cheng Qiang, Liu Changling. 2017. Geological controlling factors and scientific challenges for offshore gas hydrate exploration[J]. Marine Geology and Quaternary Geology, 37 (5): 1-11 (in Chinese with English abstract).

    Google Scholar

    Wu Nengyou, Li Yanlong, Liu Lele, Wan Yizhao, Zhang Zhengcai, Chen Mingtao. 2021. Controlling factors and research prospect on creeping behaviors of marine natural gas hydrate-bearing-strata[J]. Marine Geology and Quaternary Geology, 41 (5): 3-11 (in Chinese with English abstract).

    Google Scholar

    Wu Nengyou, Li Yanlong, Wan Yizhao, Sun Jianye, Huang Li, Mao Peixiao. 2020. Prospect of marine natural gas hydrate stimulation theory and technology system[J]. Natural Gas Industry, 40 (8): 100-115 (in Chinese with English abstract).

    Google Scholar

    Xu T, Zhang Z B, Li S D, Li X, Lu C. 2021. Numerical evaluation of Gas hydrate production performance of the depressurization and backfilling with an in situ supplemental heat Method[J]. ACS Omega, 6 (18): 12274-12286. doi: 10.1021/acsomega.1c01143

    CrossRef Google Scholar

    Yamamoto K, Kanno T, Wang X X. 2017. Thermal responses of a gas hydrate-bearing sediment to a depressurization operation[J]. RSC Advance, 7 (10): 5554-5577. doi: 10.1039/C6RA26487E

    CrossRef Google Scholar

    Yang Chengzhi, Luo Kunwen, Liang Jinqiang, Lin Zhixuan, Zhang Boda, Liu Fang, Su Ming, Fang Yunxin. 2020. Control effect of shallow-burial deepwater deposits on natural gas hydrate accumulation in the Shenhu sea area of the northern South China Sea[J]. Natural Gas Industry, 40(8): 68-76 (in Chinese with English abstract).

    Google Scholar

    Yang Liu, Shi Fukun, Zhang Xuhui, Lu Xiaobing. 2020. Experimental studies on the propagation characteristics of hydrate fracture in clay hydrate sediment[J]. Chinese Journal of Theoretical and Applied Mechanics, 52 (1): 224-234 (in Chinese with English abstract).

    Google Scholar

    Yang L, Ye J L, Qin X W. 2021. Effects of the seepage capability of overlying and underlying strata of marine hydrate system on depressurization-induced hydrate production behaviors by horizontal well[J]. Marine and Petroleum Geology, 128: 105019. doi: 10.1016/j.marpetgeo.2021.105019

    CrossRef Google Scholar

    Yao Yuanxin, Li Donglian, Liang Deqing. 2020. Research progress on hydraulic fracturing of natural gas hydrate reservoir[J]. Advances in New and Renewable Enengy, 8(4): 282-290 (in Chinese with English abstract).

    Google Scholar

    Ye J L, Qin X W, Xie W W, Lu H L, Ma B J, Qiu H J, Liang G Q, Lu G A, Kuang Z G, Lu C, Liang Q Y, Wei S P, Yu Y J, Liu C H, Li B, Shen K X, Shi H X, Lu Q P, Li J, Kou B B, Song G, Li B, Zhang H E, Lu H F, Ma C, Dong Y F, Bian H. 2020. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 3 (2): 197-209.

    Google Scholar

    Yu L, Zhang L, Zhang R. 2018. Assessment of natural gas production from hydrate-bearing sediments with unconsolidated argillaceous siltstones via a controlled sandout method[J]. Energy, 160: 654-667. doi: 10.1016/j.energy.2018.07.050

    CrossRef Google Scholar

    Yu M, Li W, Jiang L. 2017. Numerical study of gas production from methane hydrate deposits by depressurization at 274K[J]. Applied Energy, 227: 28-37.

    Google Scholar

    Zhang L, Sun M, Sun L. 2019. In-situ observation for natural gas hydrate in porous medium: Water performance and formation characteristic[J]. Magnetic Resonance Imaging, 65: 166-174.

    Google Scholar

    Zhang Wei, Liang Jinqiang, Su Pibo, Wang Lifeng, Lin Lin, Huang Wei, Wei Jiangong, Liang Jin. 2020. Research progress and prospect of relationship between double bottom simulating reflector and the accumulation of gas hydrates[J]. Geology in China, 47(1): 29-42(in Chinese with English abstract).

    Google Scholar

    Zhang Wei, Liang Jinqiang, Lu Jingan, Meng Miaomiao, He Yulin, Deng Wei, Feng Junxi. 2020. Characteristics and controlling mechanism of typical leakage gas hydrate reservoir forming system in the Qiongdongnan Basin, northern South China Sea[J]. Natural Gas Industry, 40 (8): 90-99 (in Chinese with English abstract).

    Google Scholar

    Zhang Y, Li X S, Wang Y, Chen Z Y, Yan K F. 2016. Decomposition conditions of methane hydrate in marine sediments from South China Sea[J]. Fluid Phase Equilibria, 413: 110-115. doi: 10.1016/j.fluid.2015.12.004

    CrossRef Google Scholar

    Zhong Guangfa, Zhang Di, Zhao Luanxiao. 2020. Current states of well-logging evaluation of deep-sea gas hydrate-bearing sediments by international scientific ocean drilling (DSDP/ODP/IODP) programs[J]. Natural Gas Industry, 40 (8): 25-44 (in Chinese with English abstract).

    Google Scholar

    Zou Caineng. 2013. Unconventional Petroleum Geology, 2nd Edition[M]. Beijing: Geological Publishing House(in Chinese).

    Google Scholar

    蔡建超, 胡祥云. 多孔介质分形理论与应用[M]. 科学出版社, 2015.

    Google Scholar

    蔡建超, 夏宇轩, 徐赛, 田海涛. 2020. 含水合物沉积物多相渗流特性研究进展[J]. 力学学报, 52(1): 208-223.

    Google Scholar

    曹钦亚. 冻土带水合物储层可压裂性研究[D]. 中国石油大学(华东)石油工程学院, 2017, 21-69.

    Google Scholar

    陈强, 胡高伟, 李彦龙, 万义钊, 刘昌岭, 吴能友, 刘洋. 2020. 海域天然气水合物资源开采新技术展望[J]. 海洋地质前沿, 36(09): 44-55.

    Google Scholar

    高德利. 2020. 深海天然气及其水合物开发模式与钻采技术探讨[J]. 天然气工业, 40(8): 136-143.

    Google Scholar

    胡高伟, 卜庆涛, 吕万军, 王家生, 陈杰, 李清, 龚建明, 孙建业, 吴能友. 2020. 主动、被动大陆边缘天然气水合物成藏模式对比[J]. 天然气工业, 40(8): 45-58. doi: 10.3787/j.issn.1000-0976.2020.08.003

    CrossRef Google Scholar

    江怀友, 乔卫杰, 钟太贤, 宋新民, 齐仁理, 安晓璇. 2008. 世界天然气水合物资源勘探开发现状与展望[J]. 中外能源, 13(6): 19-25.

    Google Scholar

    李守定, 李晓, 王思敬, 孙一鸣. 2020. 天然气水合物原位补热降压充填开采方法[J]. 工程地质学报, 28(2): 282-293.

    Google Scholar

    李淑霞, 郭尚平, 陈月明, 张宁涛, 武迪迪. 2022. 天然气水合物开发多物理场特征及耦合渗流研究进展与建议[J]. 力学学报, 52(3): 828-842.

    Google Scholar

    李小森. 2008. 天然气水合物能源的勘探与开发[J]. 现代化工, 28(6): 1-15. doi: 10.3321/j.issn:0253-4320.2008.06.001

    CrossRef Google Scholar

    陆程, 秦绪文, 马超, 边航, 崔玉东, 饶阳. 水合物生产测试现场数据分析平台-Hydrate Captain V1.0, 2020.01.31, 2020SR0916459.

    Google Scholar

    陆程, 孙晓晓, 李占钊, 马超, 王静丽, 耿澜涛, 张渴为. 一种地质储层径向流模拟系统[P]. 2019.09.17, 中国, ZL201821818171.5.

    Google Scholar

    陆程, 马超, 耿澜涛, 余路, 边航, 齐荣荣, 邢东辉, 毛文静, 孟凡乐. 一种天然气水合物逆相变形成演化规律模拟装置[P]. 2021.08.17. 中国, ZL202023152284.6.

    Google Scholar

    卢海龙, 尚世龙, 陈雪君, 秦绪文, 古利娟, 邱海峻. 2021. 天然气水合物开发数值模拟器研究进展及发展趋势[J]. 石油学报, 42(11): 1516-1530. doi: 10.7623/syxb202111011

    CrossRef Google Scholar

    罗天雨, 冯一, 胡仁德, 石咏衡. 2020. 海下天然气水合物储层压裂工艺技术[J]. 钻采工艺, 43(4): 67-70. doi: 10.3969/J.ISSN.1006-768X.2020.04.19

    CrossRef Google Scholar

    马公正, 卢海龙, 陆敬安, 侯贵廷, 龚跃华. 2020. 海底沉积物多边形断层及其对天然气水合物赋存的控制[J]. 中国地质, 47(1): 1-13.

    Google Scholar

    宁伏龙, 梁金强, 吴能友, 祝有海, 吴时国, 刘昌岭, 韦昌富, 王冬冬, 张准, 徐猛, 刘志超, 李晶, 孙嘉鑫, 欧文佳. 2020. 中国天然气水合物赋存特征[J]. 天然气工业, 40(8): 1-24. doi: 10.3787/j.issn.1000-0976.2020.08.001

    CrossRef Google Scholar

    秦绪文, 陆程, 马超. 水合物引擎-Hydrate Smart平台V1.0. 2019.11.01, 2019sr1329033.

    Google Scholar

    秦绪文, 陆程, 田英英, 边航, 孟凡乐, 崔玉东, 天然气水合物储层物性数据综合管理平台-GH Properties V1.0[P]. 2021.02.10, 2021SR0245278.

    Google Scholar

    秦绪文, 叶建良, 邱海峻, 张建华, 陆程, 马超, 李占钊, 万庭辉, 耿澜涛, 萨日娜, 泥质粉砂油气层的压裂实验装置[P]. 2019.03.15, 中国, ZL201821179508.2.

    Google Scholar

    秦绪文, 叶建良, 邱海峻, 陆程, 孙晓晓, 马超, 李占钊, 万庭辉, 耿澜涛, 张熙, 张渴为, CT技术测量海域泥质粉砂储层结构变化的装置[P]. 2019.07.16, 中国, ZL201821815838.6.

    Google Scholar

    苏丕波, 梁金强, 张伟, 刘坊, 王飞飞. 2020. 南海北部神狐海域天然气水合物成藏系统[J]. 天然气工业, 40(8): 77-89. doi: 10.3787/j.issn.1000-0976.2020.08.006

    CrossRef Google Scholar

    孙金声, 程远方, 秦绪文, 孙友宏, 金衍, 王志远, 李淑霞, 陆程, 屈沅治, 吕开河, 王成文, 王金唐, 王韧. 2021. 南海天然气水合物钻采机理与调控研究进展[J]. 中国科学基金, 35(6): 940-951.

    Google Scholar

    王平康, 祝有海, 卢振权, 白名岗, 黄霞, 庞守吉, 张帅, 刘晖, 肖睿. 2019. 青海祁连山冻土区天然气水合物研究进展综述[J]. 中国科学: 物理学力学天文学, 49(3): 76-95.

    Google Scholar

    韦昌富, 颜荣涛, 田慧会, 周家作, 李文涛, 马田田, 陈盼. 2020. 天然气水合物开采的土力学问题: 现状与挑战[J]. 天然气工业, 40(8): 83-99.

    Google Scholar

    魏纳, 周守为, 崔振军, 赵金洲, 张烈辉, 赵军. 2020. 南海北部天然气水合物物性参数评价与分类体系构建[J]. 天然气工业, 40(8): 59-67. doi: 10.3787/j.issn.1000-0976.2020.08.004

    CrossRef Google Scholar

    吴能友, 黄丽, 胡高伟, 李彦龙, 陈强, 刘昌岭. 2017. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 天然气工业, 37(5): 1-11.

    Google Scholar

    吴能友, 李彦龙, 刘乐乐, 万义钊, 张正财, 陈明涛. 2021. 海洋天然气水合物储层蠕变行为的主控因素与研究展望[J]. 海洋地质与第四纪地质, 41(5): 3-11.

    Google Scholar

    吴能友, 李彦龙, 万义钊, 孙建业, 黄丽, 毛佩筱. 2020. 海域天然气水合物开采增产理论与技术体系展望[J]. 天然气工业, 40(8): 100-115.

    Google Scholar

    杨承志, 罗坤文, 梁金强, 林智轩, 张伯达, 刘坊, 苏明, 方允鑫. 2020. 南海北部神狐海域浅层深水沉积体对天然气水合物成藏的控制[J]. 天然气工业, 40(8): 68-76.

    Google Scholar

    杨柳, 石富坤, 张旭辉, 鲁晓兵. 2020. 含水合物粉质黏土压裂成缝特征实验研究[J]. 力学学报, 52(1): 224-234.

    Google Scholar

    姚远欣, 李栋梁, 梁德青. 2020. 天然气水合物储层水力压裂研究进展[J]. 新能源进展, 8(4): 282-290.

    Google Scholar

    张伟, 梁金强, 苏丕波, 王力峰, 林霖, 黄伟, 尉建功, 梁劲. 2020. 双似海底反射层与天然气水合物成藏关系研究进展与展望[J]. 中国地质, 47(1): 29-42.

    Google Scholar

    张伟, 梁金强, 陆敬安, 孟苗苗, 何玉林, 邓炜, 冯俊熙. 2020. 琼东南盆地典型渗漏型天然气水合物成藏系统的特征与控藏机制[J]. 天然气工业, 40(8): 90-99.

    Google Scholar

    钟广法, 张迪, 赵峦啸. 2020. 大洋钻探天然气水合物储层测井评价研究进展[J]. 天然气工业, 40(8): 25-44.

    Google Scholar

    邹才能. 非常规油气地质(第二版)[M]. 北京: 地质出版社, 2013.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(19)

Tables(3)

Article Metrics

Article views(6170) PDF downloads(150) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint